
THE BAR CONSTRUCTION AND ABELIAN -SPACES

BY

If X is an associative H-space with unit Dold and Lashof [2] have given a
method for constructing a classifying space Bx which generalizes the classify-
ing spaces for topological groups. In this note we present a construction
which has three advantages over that of [2]"

(1) if X is abelian Bx is also an abelian associative H-space with unit
(Section 1 ),

(2) if X is a CW complex and the multiplication is a cellular map then
Bx is also a CW complex and the cellular chain complex of Bx is isomorphic
to the bar construction on he cellular chain complex of X (Section 2),

(3) there is an explicit diagonal apprOximation D’Bx ---+ Bx X Bx
which is cellular and in the cell chain complex of BX induces exactly Cartan’s
diagonal approximation for the bar construction (Section 3).

These properties are all easily established and once obtained are applied
in Section 4 to give elementary constructions for the Eilenberg-Maclane spaces
and to deduce the algebraic and geometric preliminaries to Cartan’s calcula-
tions of H*(K(, n) ).
Remark. The recent results of J. C. Moore and S. Eilenberg [1] and N.

Steenrod and E. Rothenberg [8] which are applied to study H*(Bx) from
information on the homology algebra H,(X) may also be easily developed
using our techniques.

I would like to take this opportunity to thank Professors A. Aeppli, W.
Browder, J. Stasheff, and N. Steenrod for their help and encouragement.

1. The construction

In this section we define the/-classifying spaces B(X) for a given associa-
tive H-space X with identity and prove some of their more important
properties. Most of these results are well known in one form or another
[2], [5], [6], the only novel results being 1.6, 1.7, which exhibit the abelian
multiplication in Bx and play a vital role in the applications.

Let a" be the Euclidian n-simplex represented as the set of points tl, t)
in R with

O_t_t_ _t,_l.

It has faces a (for which t t+) 1

_
i < n, (t 0), and (t 1).

Let A(X), 0

_
i

_
o, be the disjoint union --0X X X’, (X is

the j-fold Cartesian product). In A generate an equivalence relation by
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means of generators of two kinds"

(x,t, ...,t,x, ...,
(1)

(x, tl, i, t, xl, 2i, (xi.xi+), x)

if t t+l or x (for i n delete the last coordinates if t 1 or x .).

(2) (y, O, t2, t, xl x,) (yx t2, t, x2, x,).

E(X) is defined to be A(X)/R. It is topologized by the quotient topology
and r is the projection

A-- E.
There are two things to notice about E(X).
PROPOSITION 1.1. X acts continuously and associatively as a set of "left trans-

formations" X X E X --> E X

Proof. Let y e X, then y Ai(X) -- A(X) is given by

y(x, h, t,, x, x,) (yx, h, t,, x, x,).

This action is continuous in X and AS(X), takes equivalence classes into
equivalence classes and hence induces the desired action in E(X), Q.E.D.
Let E(X) be the union of the E(X) with the weak topology.

PROPOSITION 1.2. E(X) is contained and contractible in Ei+(X). In par-
ticular E X is contractible.

Proof. The inclusion A A+I respects equivalence. The contraction is
induced by the map

Ft A---+ ATM

given on points by

Ft(x, t t xl x) (., , + t -- t x, x x)

(where a max(l, a)) which also respects equivalence.

DEFINITION 1.3. B(X) is the set of equivalence classes of points of E(X)
under the action of X. It has the quotient topology, and pi is the projection

p E(X) -- B(X).From 1.2 it would seem that B(X) is in some sense a classifying space for
X. This is justified by the following two results.

THEOREM 1.4. Let G be a topological group with identity., N an open neigh-
borhood of., ht a homotopy ht( G, *) G *) with ho id, ht(N) c N and
h(N) .; then pEi(G) ---, B(G) is a Steenrod fiber bundle with fiber and
group G.
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Proof. For i 0, E G, B and the result is true. The proof now
goes by induction. Assume the theorem for j

_
i. Since E is closed in E

nd E+1 E is equivalent to product G (B+1 B) it suffices to show the
theorem in some open set M with

B c M c B+1.
Let S G(+1) be the set of points (gl gl) with some gj ,. Our as-

sumption on G implies there is a homotopy id kt taking

(G X +i X G(+i), G X -i X S u G X 0(r+l X G+i)
into itself with k0 id. Deforming this homotopy we hve that id X k’ is
fiber preserving retraction of some neighborhood U of

G X (* X S u 0* X G(+))
into

G X (zTM X S u Oz+ X G(+)).
Set M p/+l "/l’i+l(U), V "/I’Q-I(V).
duces retractions

V -- E, Then the constructed retraction in-

m M --* B (p+l m).

Moreover, since G is a group maps fibers homeomorphiclly onto fibers.
Thus we may extend the local product structure in E into p-1(M), finally com-
paring the structure in o-1(M) with that in ETM E we see that they differ
only by left translation by elements of G, Q.E.D.

THEOREM 1.5. IfX is a connected, associative H-space with identity and a
homotopy h, as in 1.4, then p E(X) B(X) is a quasifibration with fiber X.

(For the definition and major properties of quasifibrations see [7].)

Proof. This is identical to that of 1.4 up to the last pragraph, kt need
not now mp fibers homeomorphically. However, since X is connected it is a
homotopy equivalence on fibers. The proof is now completed by means of 2.2,
2.10 and for B(X) 2.15 of [7].
In case X is abelian there is additional structure in B(X).

THEOREM 1.6.
with unit ,. If X is abelian then B(X) is an associative, abelian H-space

Proof. Define a mapping u B (X) X B (X) -- B (X) by

u{(h, t., x, x.), (t.+, t+, x+, x.+)}

(t.(1), t.(,+,), x,(), x,(+,))

where a is any element of the symmetric group S.+,. for which
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As a consequence of the first identification relation u is well defined and it is
easy to verify its continuity.

COROLLARY 1.7. If G is an abelian topological group the same is true of
B(G).

Proof. It suffices to exhibit inverses. In fact

(t, ,t,x,. ,)- (t, ,t,x, .,x).

Example 1.8. Let SP(Y) be the infinite symmetric product of Y. It is an
associative abelian H-space and

E’(Sp(y)) Sp’(cY), B(SP’O(Y)) SP(%Y),

these equivalences being multiplicative homeomorphisms. (Here cY is the re-
duced cone on Y, and 2;Y is the reduced suspension.) This may be seen by
identifying the point

((tl, al), ..., (tai), (t.ai+), (ta+j), ..., (t,,a,), ...,
of SP’+(cX) with the point

(u( h (a ai) t(a+ a+i) ), t, (a, a,+k)

of E’(SP’(X) ). In fact, in this case the fibration is given in [7] and plays an
important part in the proof of the main theorem.
Remark 1.9. This construction was originally given by Stasheff in [6] in a

form equivalent to that in which it appears here. He shows that it is homotopy
equivalent to those given by Milnor [5] and Dold-Lashof [7], and from this it
follows that for X connected E(X) is/-connected.

2. The cellular construction

X is now assumed to be a CW complex with cellular multiplication and a
0-cell.
Remark 2.1. If X is an associative H-space, then S(X), the singular poly-

tope of X, is an associative H-space with cellular multiplication. Thus, using
the equivalence between X and S(X), our restriction on X is always satisfied,
at least up to weak H-equivalence.
The k topology on X is defined by letting U be ]-open only if U n C is rela-

tively open in C for every compact subset C of X. In general the k topology is
finer than the original, hence the identity

i (X, ]) --* X
is continuous.

Since (X, k) has the same compact sets as X it follows that i induces iso-
morphisms of the respective singular complexes. Hence i is always a weak
homotopy equivalence.
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Finally, if X, Y are CW-complexes then

(1) (X,/) X
(2) (X X Y, k,) is the "product" CW complex of X and Y, that is its ceils

are products of cells of X and Y.

Let 2: be (A, k,) and/ fi../R with the quotient topology. Then 1.1,
1.2 hold without change and/ /X is defined. In fact, with the excep-
tion of 1.4, all the results of Section 1 continue to hold. Thus by use of ex-
cision and the Eilenberg-Zilber theorem it follows that the identity map

i"/}; -+ B

induces isomorphisms in homology.
Now we digress shortly to recall the definition of the bar construction.

Given a D.G.A. algebra A over a commutative ground ring P with unit, and
with augmentation e A -+ I’, let ker e, then the bar construction B(A
is

F -+- 2: q- fi (R)rfi q- q- fi (Dr’" (R)rfi q- "".

A typical generator a, (R) (R) a is written [a, I"" a], and has dimension
( ., dim a) -+- n. B(A) is a graded chain complex with boundary oper-
tor defined by

O[all...la] E’-,l(-1)[a[’’’la’a+[’’"
q- ’=, (--1)*()[a I"" Oa[ lad

+ e(a)[a= I"" Iad + 1)"e(a)[a, [... a_]

where (j) ’.<-dim a.
A generator of the form [a I’" a] is said to hve degree n, and F(A)

is the F-submodule of B(A) generated by the elements of degree -<_n.
Clearly, the F’(A give a filtration of B(A). The resulting spectral sequence
was studied by Eilenberg-Moore in [1].

Returningto classifying spces recall that the CW chain complex ofX is given
by

Ci(X) Hi(Xi, X_I Z)

and the boundary is that in the exact sequence of the triple (Xi, X_,, Xi_2).

PROPOSITION 2.2. There is a natural chain isomorphism

J Ca(X) (R) Ca(Y) "-+ Ca(X X Y, k)

(The proof is direct.)
As a result the map ui X X X, k) -+ X u is the multiplication) induces

a chain map
ua ia J Ca(X) (R) Ca(X) ---+ Ca(X)
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which makes Ca(X) into a D.G.A. algebra. We can now state the main result
of this section.

THEOREM 2.3. [’(X) is a CW-complex and there is an isomorphism

T" B( (Ca(X) Ca(["(X) ).

Proof. A cell n X e X X e of/}(X) is defined to be the set of all
epoints (h tn, x xn) with x It is easy to verify that this

decomposition gives/(X) the structure of a CW complex.
The boundary operator on such a cell is given by

O[o"n X e X X e]
= [ao-" X e X X e] -1- (-1)’[o-’’X a(e X X e’)].

From the identifications of Section 1 it follows that

[ >< e X X e]

lITn-1 X e X X (e.e+) X X en] for 1 <_ j < n.
Similarly,

[r X e X X en] 8(el)[qn-1 X e X X en],

[rn X e X X e] e(en)[an- X e X"" X en-1].

Thus if we identify a X e X X e with lell leVI in B(Ca(X)) the de-
sired isomorphism is obtained, Q.E.D.

COgOLL&g 2.4. The chain complex Ca([(X) is chain isomorphic under
T with FB(Ca(X)).

If X is abelian the multiplication

(x) x (x) - (x)
given in Section 1 is still continuous and is, moreover, cellular. In fact

nx e X X e’ X en+l X X e

a- (rift-m).s(,,,)(--1)(")/rm+n X e"-(1) X X e

Here, a is an n, m, shuffle, ,(a) a + m -k_n dim (ek) + s where s is the
sign associated with the map

Shuff a" (Ca(X))n-m-- (C#(X))nE’.

This is shown by subdividing a X a into simplexes via the standard decompo-
sition (see p. 68 of [3] ), and observing that the restriction, to the interior of each
of these simplexes is a homeomorphism onto .the interior of its image cell, in
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the composition
n- e e -rna X X" X

(’ X e x X e) X (d x e"+ X X e+"}
--, 3’(x).

3. The diagonal map
A homotopy of the diagonal map A " -/ " X " is defined by

f,(t, ..., t,)

{(1 + t)t,...,(1 + t)t,; (l+t)(h--1)+ 1, ..., (1 + t)(t,- 1) + 1}

where a =,min (a, 1)., _b mx (b, 0). On typicM point (tx, t) with
t _< 1/2 _< t+
fl(tl,... ,tn) {(2t1,"" ,2t,, 1,..., 1), (0,..., 0, 2t+1 1,... 2/, 1)},
and on the chain level

f() E (F*) (R) (L_.)

the usual diagonal approximation.
Shuff (A f, A) A -- A A commutes with the identifications and

hence induces a homotopy

F, B’(X) B’(X) x B’(x).
For a typical point

F(t, t,, x,

{(2h, 2t, x, x), (2t+ 1, 2t 1, x+l, x)},

and an easy calculation now gives

TrmOaEM 3.1.

F[e e] ’.=0 1)U)[e I"" d’] (R) [e’+ I"" e]
is a diagonal approximation where r(j) (n j)(

_
dim E).

4. Application to EilenbergiMacLane spaces
Let r be a group. Give it the discrete topology. Then it is a CW complex

consisting of 0-cells and the multiplication is cellular. Hence we can apply the
theory of the last three sections.

In particular E (r) is the universal covering space of B (r) with r as group
of cover transformations. Hence B*(r) is a K(r, 1), as is also/(r).

If r were abelian then/(r) would be an abelian topological group with
cellular multiplication, and we could iterate the construction obtaining
/(/(r) K(r, 2), etc. thus we have
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THEOREM 4.1. If r is an abelian group then there is a K(r, n) for each
n O, 1, 2, which is a topological abelian group and a CW complex with
cellular multiplication. Moreover,

ca(g(r, n)) B(Ca(K(r, n 1)),

the isomorphism being of D.G.A.-algebras.

Taking into account the diagonal maps we have

THEOREM 4.2. (i) g.(g(r, n)) -- H.(B(C(K(r, n 1))))
(ii) H*(g(r, n)) -- H*(B(C(K(r, n 1)))),

the isomorphisms being ring homomorphisms respectively of Pontrjagin and
cohomology rings.

Other results on suspension and transgression may be obtained from the fact
that BI(X) 2;(X), but we do not make them explicit here.

5. The H-type of an abelian H-space.
Suppose again that X is an abelian associative H-space with unit. There is

then a map
F" Z (B’C(X)

defined by [F(x)]t (1 t, x)eZX c B(X). Suppose we define an
abelian multiplication in the space E of paths by (.r)t ./(t).r(t), then F
may be extended to a map G E’c(X) -- E as follows" We first define a path
x by

(1 (1 x),

then G" (x, tl, t,, x x",.. F(x).xtl...xn and it is easy to
check that

(1) G is a continuous homomorphism,

(2) E G E
/

,/;
B’(X)

(3) GIX F.

Thus, from the homotopy exact sequences of the 2 quasifibrations it follows
that F is a weak homotopy equivalence (if X is connected). Moreover, as
B*(X) is again a connected, associative, abelian H-space with unit we may
iterate the constructions and we have

THEOREM 5.1. X (as above) is weakly homotopic to an nt loop space ’( Y)
for n 1, 2, 3, .... Moreover, there is an H-structure on ’(Y) so that X is
actually H-equivalent to Y
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