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Introduction

Using the bstmct theory of thet functions developed by Tte (see 1),
we prove a duality theorem in the cohomology theory of certain elliptic
curves over local fields (Theorem 1). For these curves, our theorem extends
the known results of Tare [13] t’o the equi-characteristic case.
When the ground field is quasi-local (3), we can prove only that the

cohomology groups, H(/, A), of these curves A vanish for r -> 2. This
gives a partial answer to a question raised by Serre [10, p. II-29].

1. Abstract theta functions (Tate)

If k is field complete with respect to rank one vlution I, then Tte
has constructed, for each q e with q < 1, a canonical elliptic curve A(q)
over k whose j invariant satisfies

j(A) l/q+ , [1 <- 1.

These curves are constructed in a universal manner, and satisfy the exact
sequence

0 Z k* A(q) 0

where the map p is given by n -- q’. Without giving any details, we wish to
recall here the definition and construction of these curves over/.
One starts with the power series

x( w) _,:-__, q’w/(1 q’nw)2 2 ":--1 q’/( 1 q’)2

which is absolutely convergent and defined on lc*/p(Z) in virtue of the ob-
vious "loxodromic" periodicity" x(w) x(qw). The function x plays the
role of a Weirstrass 6)-function in uniformizing the elliptic curve A(q) to be
constructed--in fact, in the case / C, the transformation u --+ w e
sends x(w) into 6)(u) -t- z for suitable periods 1 2i and . log q.
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One defines the function y(w) via the differential equation

x’( w) x( w) - 2y( w)
and verifies that

+ q /(1

Moreover, it turns out that x and y satisfy the functional equation

(.) y2 xy x b2x b3

where b., ba are power series in q with rational integer coefficients. Tare then
proves the

THEOREM (Tare). The map w ---+ (w) (x(w), y(w)} is a surjection
k* A (q)k with ternel p(Z), where A (q) is the cubic curve given by (.). The
discriminant Aq of this cubic is never zero; hence, A(q) is always an elliptic
curve. The j invariant, j(A ), of A(q) is given by

j(A) 1/q + 744 + 196884q +
hence, in the non-archimedian case, j(A is not an integer of k. Moreover,

q 1/j 744(1/j) -so that each such j is obtainable from a unique q with q < 1.

2. Cohomology of certain elliptic curves over local fields
By a local field, we mean field complete with respect to a non-rchimedin,

discrete, rank one valuation, with finite residue class field. In view of the
extensive results of Tare in the case of characteristic zero [13], [14], the main
interest in the theorem below is in the equi-characteristic case.

THEOREM 1. Let tc be a local field and let A be an elliptic curve over tc whose j
invariant is not an integer of k. Then the pairing described by Tate in [14] es-
tablishes a duality of topological groups

H(/, A) X HI(/, A) --> H(k, Gin) Q/Z,

and Hr(k, A) vanishes for r >= 2.

Proof. For convenience, we recall the Tate pairing: Let a e H(k, A)
and b e H(k, A) be chosen. Let {a} be a 1-cocycle representing a and let
/a} be a 1-cochain of @k with coefficients in the divisors of degree zero on A
which is a pre-image of a}. One checks immediately that tia. za
+ a is linearly equivalent to zero for each z, r; hence, there is a func-

tion c. on A whose divisor is a.. Choose a divisor of degree zero, , to
represent b; then c,.() is defined (i.e., the choices may be so made), and is an
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element of k*. The invariant of the two cohomology class of {c.(b)} is
independent of all the above choices and is denoted (a, b). This is Tate’s
pairing (in the case of curves).
The first step in the proof is the case when A is a canonical Tare curve

A (q) for some q with q < 1. In this case, we have the exact sequence

(W) 0 - Z -/* A(q) 0;

hence, the cohomology sequence

0 H(k, A) H(k, Z) U(k, k) H(k, A) O.

(Here, A stands for A(q), and H(k, A) denotes H(@, A), etc.) If k
denotes the reciprocity law isomorphism of local class field theory

* proj lim ,*/N/ K*

and if one takes note of the isomorphisms

Hom(@, Q/Z) H(k, Z),

Hom(@, Q/Z) Hom *, Q/Z),

H(k, Q/Z,

then one obtuins the exact sequence

0 H(k, A) Hom(*, Q/Z) Q/Z U(k, A) 0.

The well-known relation between inv and shows that the map is given by
O(f) f(q). The Pontrjagin dual of the last exact sequence is the sequence

0 U(k, A) 2 * H(k, A) O.

Using the description of given above, one checks trivially that O’(n) q.
The definition of the topology in * shows that" If q" 1 in *, then for

any integers d, d, there exist unramified extensions K, K of
large enough degrees s, s over k and an integer N > 0, such that for
every n > N, the assertion q e N K implies the assertion m e d Z.
This immediately implies 0 is injective, so that H(k, A) vanishes; and v"
establishes an isomorphism

*/2 HI(, A).
However, the natural isomorphism (of compact groups) k*/Z */ to-
gether with the map yields the isomorphism

(a) U(, A) U(, A) ".

On the other hand, by tracg through all these isomorphisms, one finds
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that the isomorphism of (a) is induced by the following pairing: Given
a e Hi(It, A) and b e A, let /z,} be a 1-cochain in k* which is a pre-image
under of the 1-cocycle/a}, and let w e k* be a pre-image of b. The exact
sequence (T) shows that z,,. has the form q’*, where n(, r) is a two cocycle
in Z. The invariant of the cohomology class of wn’* is independent of all
the choices made, and is the required pairing.
Now if is any integer, the Artinian group scheme At of "points of order l"

on A is self-dual under a non-degenerate pairing e,. This is rendered ex-
plicit by considering the sequence

O---- A ,--- A 1- A ---+0
and its "dual sequence"

0 -- Hom(A, Gin) --* Ext(A, Gin) /- Ext(A, G) --* 0.

The pairing e becomes the canonical evaluation pairing

At ) Hom(A, G) -- Gunder the isomorphism txt(A, G) ---_ Pic A, see [4], [8]. (Here, Pic A
is the Picard variety of A Jacobian of A A.) This being said, one finds
that the pairing inducing (a) commutes with e in the sense that the diagram

0 -- A/1A H(k, A) -- H(/c, A)-. 0

(**) (a) o

0 (H(k, A)) H(k, A) (A/lA) ’ 0

commutes for each 1. However, it is known [13], [14] that Tate’s pairing also
commutes in diagram (**) above. Since e is an isomorphism for every
[11], this shows that Tate’s pairing and the pairing inducing (a) agree on
A/1A. As A proi limA/1A,we deduce that (a)is also induced by
Tate’s pairing.

In the general case, one knows that there is a finite separable extension
K/k of degree 2, such that over K, the given curve A becomes isomorphic to
the canonical curve A(q) having the same j. Moreover, because j 0,

1728, one knows that the -rational points of A and A(q) are related by:

A Ix eA(q) A: x -t-- x 0}

where a is the generator of @(K/k). It follows from this that

-(g/k, A) I(g/k, A(q))
(b)

I(K/k, A)
_

-(g/tc, A(q)).

(Here,/(K/k, -) is the n* reduced cohomology group of @(K/k), [3].)
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Now consider the commutative diagram

Hi(K, ..A (q)) resD U D D(k,, A (q)) ----> HI(K/I, A (q)) --, 0

HO(K,A(q)) tr HO(l,A(q)) ---, O(K/l,A(q) ---*0,

where tr denotes the transfer map and @ @(K/k,). It shows that the
Tate pairing induces an isomorphism, , in the right-hand vertical column.
This isomorphism, together with those of (b), yields the duality

(c) HI(K/k,, A) X (K/k., A) Q/Z.

If tk denotes the map H(/c, A) -- H(/, A) induced by the Tate pairing
(so that t (a)), then the duality (c) and the commutative diagram

HI(K, A) -- HI(k, A)) --, H(K/t, A)) ---> O

H(K, A) ----, H(k, A) ---, (K/k, A) , 0

show that tk is an isomorphism, as required. (Observe that diagram (**)
shows that t is injective.)
There remains the proof that H2(/, A) (0). (Since/c is local, we know

that Hr(k,, A) (0) for r >- 3, [13].) For this, there are two methods avail-
able. One is presented in 3 below because it works equally well in the quasi-
local case, the second is the following very elegant method of Tate (together
with the main result of [11]): For any integer l, consider the exact sequence

O-- A-- A l-- A ---+0.

The cohomology sequence yields (with obvious notations)

H(A) 1. H(A) H2(A) --, H(A) l_ H(A).
By the duality established above, the cokernel of the map on Hi(A) is dual
to the group H(/, A ); in particular they have the same order. However,
by the main result of [11], this order is precisely the order of H2(A). It
follows that the map on H(A) is injective, which implies H:(A) (0),
Q.E.D.

Remark.s. 1. The proof that H(/, A) (0) given above also shows that
this result holds when A is an elliptic curve with Hasse invariant zero.

2. By the same methods, using Morikawa’s theta functions [7], one can
prove a duality theorem for the class of abelian varieties parametrized by
these theta functions. Since our method does not give full generality, we
have restricted attention to the simpler case of dimension one.
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3. The case of quasi-local fields
By a quasi-local field (also called a general local field in [2]) we mean a

field complete with respect to a non-archimedian, discrete, rank one valua-
tion with quasi-finite [9] residue class field. To investigate the cohomology
of elliptic curves defined over quasi-local fields, we need the following
cohomological lemma. It is stated in a more general form than the one in
which we will use it.

LEMMA. Let @ be a profinite group, let be a closed normal subgroup of @,
and let A be a @-module. Assume either

(1) s.c.d. @ r > 2 (c.d. @ r > 2 ira is a torsion module)
(2) H1(9, A) Hr-2(, A) (0)
(3) @/ is a finite cyclic group

or
(1’) s.c.d.@ 2(resp. c.d.@ 2)
(2’) @/ is a finite solvable group.

Then, whenever H , A (0), we have H (@, A (0) and the sequence

0 ---+ Hr-l((/), At
---> Hr-(, A) ---. Hr-(, A)/ --, gr(/, Am) -- 0

is exact.

(For the notations c.d., s.c.d, see [12], [13].)

Proof. Under hypothesis (1’), one may use induction on the length of a
composition series for @/9 to reduce (2’) to (3). Hence, we may assume that
@/9 is always finite cyclic.
Form the Hochschild-Serre spectral sequence

E ’q HP(@/gt, Hq(9, A =, g*(@, A

and observe that our hypotheses yield E ’q (0) for q 0, r 1. It
follows from Theorem 5.11 of [3, Chapter XV], that the sequence

]n--r-{-1 ,r--,1 5n ff-l ,O Hn-i -n--r..t-2 ,r--1
"-’-> E H ---> -’+ " -+

is exact. Let n r 1 in the above sequence, then

,o Hr-i ,r--1Hr- --, E’r- -ff E’ --, Hr- E’-1 --a E* --, -r-t-2 ,0 Hr-2.t2

is exact. We deduce that
12v-t-r ,0(i) E’r-

--* 2 is bijective for v >= 2
(ii) a is surjective.

Our aim is to show that t is surjective and a is injective.
immediately from these assertions.

The lemma follows
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Consider the diagrams
8 ,r--1

H @/, Hr_l A
,r ,Hr+a (/) HO 9, A

I_[I((/,Hr_I(,A) ,.r Hr+I(@/,HO(O,A))

H(@/, Hr-(, A))
d:-I H H((R)/, (?f, A))

((/, Hr-I(, A o

H(@/, Hr-(j, A d:7-1 H+2(@/9, H(, A ).

Here, 0 is the cyclic cohomology isomorphism obtained by cup product with
dv’qthe fundamental class in H(@/, Z) the maps . are those defined in

Chapter XV of [3]they are essentially the differentials d ’, and v is the
projection from H to /0. When these diagrams are proved commutative
or anti-commutative, our assertions concerning a, will follow from (i).
Now the spectral sequence for the @-module A is a "module" over the

corresponding spectral sequence for Z:

H(@/, Hq(, Z) = H*(@, Z).

Since the dement 0 can be identified as an element of H2(@/9, H(9, Z)),
and since 0 under this identification becomes a universal cocycte in the spec-
tral sequence for Z, we see that for every r >= 2,

d,(Ou ) d, Oo +/- Ou d, -4-00 d.
This proves that our diagrams either commute or anticommute, as required,
Q.E.D.

COnOLLAIY 1. Let k be a quasi-local field and let @ denote the Galois group
of the separable closure, k,, of k over k with Krull topology. Let A be a

I owe the following argument to the referee who suggested it as a simplification of
my original argument. In the latter argument, I used an oral communication of L.
Charlap in which he informed me that Theorem 4 of [6] as generalized by Charlap-
Vasquez [5] and Andrfie [1], could be further generalized so as to yield: For arbitrary
@, , A as above, if d dr- 0, then d’- is given by cup product with a
certain "characteristic class". Of course the commutativity (up to +/-1) of the diagrams
follows from this result.
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module. If K is a finite, normal, separable, extension of k, then H(@: A) (0)
implies H @k A) (0).

COROLLHRY 2. Let k be a field, and assume c.d. @k 2. If K/k is a finite
soh,able extension, then Br(K) (0) implies Br(k) (0). (Here, Br(-) is the
Brauer group of -.)
THEOREM 2. Let k be a quasi-local field, and let A be an elliptic curve over

whose j.invariant is not an integer of k. Then Hr(], A) (0) for r >-- 2.
If A is a canonical Tare curve, then Ak is dense in Hi(k, A)).

Proof. If A is a canonical Tare curve, the same argument as used in
Theorem 1 shows that H(k, A) (0). (That argument used only local
class field theory and the existence theorem--both of which are valid in the
case of quasi-local fields.) In the general case, A becomes isomorphic to
A(q) over a quadratic, separable extension K/k. Hence, H(K, A) (0).
Now, Corollary 1 shows that H(]c, A) (0) as well. When A A(q),
the argument of Theorem 1 shows that HI(]c, A) D is isomorphic to
However, Ak is isomorphic to ]*/Z which is dense in */, Q.E.D.

Remark. Theorem 2 is germane to a question raised by Serre [10, p. II-29].

BIBLIOGRAPHY

1. M. ANDRE, Cohomology of group extensions.
2. E. ARTN AND J. TTE, Class field theory, Cambridge, Harvard University, 1962.
3. H. CARTAN AND S. EILENBER(, Homological algebra, Princeton, Princeton University

Press, 1956.
4. P. CRTER, Duality of abelian varieties, Ann. of Math., vol. 71 (1960), pp. 315-351.
5. L. CttARL&P AND A. W. VASQUEZ, Cohomology of group extensions, Trans. Amer. Math.

Sou., to appear.
6. G. I-IocHSCHILD AND J.-P. SERRE, Cohomology of group extensions, Trans. Amer.

Math. Sou., vol. 74 (1953), pp. 110-134.
7. H. MORIK_WA, Theta functions and abelian varieties over valuation fields of rank one, I,

Nagoya Math. J., vol. 20 (1962), pp. 1-27.
8. J.-P. SERRE, Groups algbriques et corps des classes, Paris, Hermann, 1959.
9. , Corps locaux, Paris, Hermann, 1962.

10., Cohomologie Galoisienne, Berlin, Springer, 1964.
11. S. SHATZ, Cohomology of Artinian group schemes over local fields, Ana. of Math.,

vol. 79 (1964), pp. 411-449.
12. J. TXTE, Cohomology of profinite groups (cf. A. Douady, Cohomologie des groups

compactes totalement discontinus, Sem. Bourbaki, Expos 189, Paris, 1959).
13., Duality theorems in Galois cohomology over number fields, Proc. International

Congress of Mathematicians, Stockholm, August 1962.
14., WC-groups over p-adic fields, Sere. Bourbaki, Expos 156, Paris, 1957.

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA


