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1. Introduction

Suppose E is a real or complex Banach space, let M denote a closed positive
cone in E (possibly a subspace of E, and possibly all of E). Let S denote an
open subset of E such that S -t- M c S, and let X denote the Banach space
of all bounded and uniformly continuous complex valued functions on S.
Suppose p is a continuously Fr4chet differentiable function from S into M,
and that p’, the Frichet derivative of p, is a bounded function. Let D(A)
denote the set of all Frchet differentiable x in X such that x’p is in X, and let
A denote the operator in X with domain D(A) defined by Ax x’p. Vari-
ous properties are developed for the operator A, As, A W Q, A - Q, and
A PA Q, where P and Q are bounded operators in X, and the results
have applications to partial differential equations. If E is real or complex
Euclidean n-space, then

Ax pD x,

where p denotes the ith component of p, and D x denotes the ih place partial
derivative of x in the ordinary sense.
Most of the results require that p be a bounded function and are obtained

by giving a simple formula for a strongly continuous semi-group (group in
case M is a subspace of E) of operators in X which is generated by a closed
extension of A. In case E is real Euclidean n-space, the generator is the
minimal closed extension of A. In case M is a subspace of E, there is a simple
formula for a strongly continuous semi-group generated by a closed extension
of A2. The subspace case is of no interest if E is complex, because then D(A)
contains only the constant functions. If E is a real Banach space, then the
results can, by [3], be extended to the operators qA, qA2, (qA)2, etc., where
q is a positive function in X which is bounded away from zero.

2. An ordinary differential equation
If g is a function from S X [0, or S X (- , into a vector space,

then g. denotes the second place partial derivative of g in the ordinary sense,
and gl denotes the first place partial derivative of g in the Frchet sense (see
[1, Chapter VIII]).

2.1. THEOREM. If S is in S, then there is only one function ffrom [0,
into S (( , into S in case M is a subspace of E) such that f(O) s,
and f’(t) p(f(t)) for all in [0, ) (all in (-, )).
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Proof. The method of successive approximations will establish this result.
The range of 11 the approximate solutions will lie in s W M, which is a com-
plete metric space.

2.2. DEFINITION. Let y denote the function from S X [0, into S
(from S (- , into S if M is a subspace of E) defined by

y(s, O) s, y2(s, t) p(y(s, t)).

2.3. THEOREM. y is continuous on S X [0, (S X , ),

(i) y(s, t) y(s’, t)

_
s s’ exp (11P’

for s, s’ in S and in [0, in (- , ), and
(ii) if p is bounded, then

y(s, t) y(s, t’) - 11P II’[

for s in S and t, t’ in [0, t, t’ in (- , )).

Proof. The method of successive approximations will establish (i), and
(ii) is trivial. The continuity of y follows from (i) and the fact that y(s,
is continuous on [0, (on , for each s in S.

2.4. THEOnM. For s in S and t, u in [O, t, u in (- ),

y(y(s, u), t) y(s, u - t).

Proof. Suppose s is in S and u is in [0, (in , ), and let

f(t) y(y(s, u), t), g(t) y(s, u - t)

fortin[0, ) (tin(-, )). Then

f’(t) y(y(s, u), t) p(f(t)),

g’(t) y(s, u - t) p(g(t)),

and f(0) y(s, u) g(O).

2.5. THEOREM. y exists and is continuous on S X [0, (on S X
)) and

y(s, t) yl(s, t)p(s)

for all(s,t) inS X [0, )(S X (- , )).

Proof. It follows from [1, Theorem 10.8.2, p. 300] that yl exists and is
continuous on a neighborhood of (s, 0) for all s. The global existence and
continuity of yl follows from Theorem 2.4 and the chain rule for derivatives
[1, Theorem 8.2.1, p. 145]. Since

.t

y(s, t) s - ]_ p(y(s, u) du,
0
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it follows from the rule for differentiation under the integral sign [1, Theorem
8.11.2, p. 172] that

yl(s, t) I - J, p’(y(s, u) )yl(s, u) du

or that
y12(s, t) p’(y(s, t) )y(s, t), y(s, O) I,

where I denotes the identity transformation on E. Suppose s is in S, and let

f(t) y(s, t)p(s),

g(t) y2(s, t) p(y(s, t)).

Then f(0) p(s) g(O),

f’(t) y2(s, t)p(s) p’(y(s, t) )y(s, t)p(s) p’(y(s, t) )f(t),

g’(t) p’(y(s, t) )y.(s, t) p’(y(s, t) )g(t).

3. A partial differential equation
Here the results of Section 2 are applied to a partial differential equation.

This is the only one of the main results which is not based on the semi-group
theory and the only one which does not require that p be bounded.

3.1. THEOREM. If X is a Frdchet differentiable function from S into the
complex numbers, then there is only one function g from S X [0, (from
S X (- , )) into the complex numbers such that

g( s, t) g( s, t)p( s)

for all s and g s O) x s for all s.

Proof. The function g(s, t) x(y(s, t)) is as required.
Suppose and v are two such functions, and let (- n. Then

(s, t) (s, t)p(s) and 4)(s, O) O.

Suppose s is in S, u > O, and 4)(s, u) O. Let

f(t) (y(s,u- t),t) for 0_< t_< u.
Then

f’(t) --(y(s, u t), t)y:(s, u t) - (y(s, u t), t))

:(y(s, u t, t)) l(y(s, u t), t)p(y(s, u t))

=0
and

f(O) (y(s, u), O) O, f(u) (s, u).

The argument easily extends to give (s, t) 0 for negative if M is a sub-
space of E.
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3.2. Remark. The function g is bounded if x is bounded and continuous
if x is continuous, and g2 is continuous if x’p is continuous. If E is real or
complex Euclidean n-space, then the equation becomes

Og/Ot p(s)(

4. Semi-groups

For the rest of the paper, p is assumed to be bounded. For each in [0, oo

(each in (- o if M is a subspace of E), and x in X, let T(t)x denote
the function on defined by

[T(t)x](s) x(y(s, t) ).

By (i) of Theorem 2.3, T(t)x is a function in X. Clearly, T(t) is a bounded
linear operator in X, and T(t)[]

_
1. As in [4], a strongly continuous

semi-group of operators in X means a semi-group IS(t); 0

_
< ] of

bounded operators in X such that S(0) I, the identity operator on X,
and S(. )x is continuous on [0, oo for each x in X. Such a semi-group is
said to be of class (Co) in [5].

4.1. THEOREM. [T(t);O

_ _
] ([T(t);- oo < < oo]) is a strongly

continuous semi-group (group) of operators in X, and its infinitesimal generator
(which we shall denote by B) is a closed extension of A.

Proof. By Theorem 2.4, [T(t)] is a semi-group (group). By (ii) of
Theorem 2.3, [T(t)] is strongly continuous. For h > 0, and x in X, let

Bh x [T(h)x x]/h.

Suppose x is in D(A), and s is in S. For >_ 0, let

f(t) [T(t)x](s).
Then

[Bhx Ax](s) [([f(h) f(O)]/h)_
sup If’(t) -f’(O)l

sup [x’(y(s, t))p(y(s, t)) x’(s)p(s) [,

it follows that x is in D(B), the domain of B, and that Bx Ax.
is an extension of A. By [4, Lemma VIII.1.8, p. 620], B is closed.

Thus B

4.2. Remark. It follows from [4, Theorem VIII.I.ll, p. 622] that if

where the suprema are taken for 0 _<

_
h. Since x’p is uniformly con-

tinuous, and
y(s, t) s

_
p [It,
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re (),) > 0, then }, is in p(B), the resolvent set of B, and

R(),, B)x f, e-X.T(t)x dt

for all x in X.
4.3. THEOREM. If the set of all functions in D(A) which have bounded

continuous Fr$chet derivatives is dense in X, then B is the minimal closed ex-
tension of A. This is the case if E is real Euclidean n-space.

Proof. First we show that if x is in D(A), x’ is bounded and continuous,
and re (X) > P’ II, then R(X, B)x is in D(A). Let w R(X, B)x. Then

w(s) f e-Xx(y(s, t) dt

for 11 s in S. Let

w,(s) e-’x(y(s, t) dt

forsinS,ndn 1, 2, 3,.... Thenw--+winX. Also,

w’,(s) e-X’x’(y(s, t))y,(s, t) dt

by [1, Theorem 8.11.2, p. 172]. Since

by (i) of Theorem 2.3, it follows that

w’(s) -+ fo e-Xtz’(Y(S’ t))y,(s, t) dt

uniformly for s in S. Thus, w is Frchet differentiable on S and

w’(s) fo e-X’x’(y(s’ t) )y_(s, t) dt

by [1, Theorem 8.6.3, p. 157].

w’(s)p(s) fo e-X’x’(y(s’ t))p(y(s, t) dt,

and the integral converges uniformly for s in S, so that w’p is in X, and w is
in D(A).
NowsupposethatxisinD(B),andletX p’ q- 1. Letz (X- B)z,

so that x R(X, B)z. Choose a sequence {zn} :=1 from D(A) so that each
zn has a bounded continuous Frt!chet derivative, and z -+ z. Let x R(h,
B)z. Then x is in D(A) for each n, and x. -+ x. Also,

,Xn "-Axn ,Xn Bxn --Zn
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so that
Xx, ;- Ax, --+ z Xx Bx, Ax, -- Bx.

Now suppose that E is real Euclidean n-space. The functions

x(s) e x(sl -4- h, s + t) dh dt

are dense in X, have bounded continuous Fr4chet derivatives, and are in
D(A).

4.4. Remark. In [2], the case where E is the real line, M S E, was
considered, and p was assumed to satisfy a uniform Lipschitz condition
rather than to have a bounded continuous derivative. The semi-group
generator and its domain were easily describable in that case, and a com-
parison would seem appropriate. In order to facilitate this, consider the
following definition. If x is a complex valued function on S, is in M,
s is in S, and

lim(t0+)[x(s + ta) x(s)]/t

exists, then this limit is culled the derivative of x in the a direction at s, and is
denoted by [D, x](s). This is the usual definition of directional derivative
except that the "direction" is sometimes required to be a unit vector and is
usually required to be nonnull. Let D(A’) denote the set of all x in X such
that [D<,) x](s) existsfor all s ins andsuchthatthefunctionA’x [D(.)x](.
is in X. Although it was not described in exactly this way in [2], B A’
in case E is the real line and M S E. The following example shows
that this does not follow if E is real Euclidean 2-space, and that A’ need not
even be closed.

Let E be real Euclidean 2-space, and let M S E.
s (, ), p (p, p), y (a, ). Let

pl(, r/) 1, P(, 7) 2/(1 + 2).
Then

a( s, t) + t,
and

(, ) n + log {1 + ( + )]/(1 + )}.
Define f on the real line by

f() ( exp (-),
and define z on S by

x((, 7) f(v log (1 A- )).
Then x is in X, and

x(y(s, t)) f(v log (1 -4- 2)) x(s)

Use the notation



SOME PROPERTIES OF A PARTIAL DIFFERENTIAL OPERATOR 183

so that x is in D(B) and Bx O. However,

x(s + tp(s)) f(v + 2t/(1 + :) log [1 + ( -}- t)]),
so that IDa(,)x](s) does not exist if log (1 + ), because

v -4- 2t/(1 -f- ) log [1 + ( -4- t)]

has no limit as 0 in this case. Thus A’ is not an extension of B. Since
A’ is an extension of A, it follows that A’ is not closed. The author does not
know in general whether or not A’ is a restriction of B or if A’ and B agree
on the intersection of their domains.

4.5. Remark. If p is a constant function, it is easily seen that B A’,
but it does not follow that B A. Again let E be Euclidean 2-space, and
let M S E. Use the notation s ($, ), p (p, p), y (a,
Let pl(, v/) p($, v) 1. Then a(s, t) + t, and t(s, t) n + t.
Let f be a bounded uniformly continuous real or complex-valued function on
the real line which is not everywhere differentiable (perhaps nowhere differen-
tiable), and define x on S by x(, v) f($ v). Then x is not in D(A)
but x is in D(A’) D(B), and Bx A’x O.

4.6. DEFINITION. Let D(B) denote the set of all x in D(B) such that
Bx is in D(B), and let B denote the operator with domain B defined by
Bx B(Bx).

4.7. THEOREM. If M is a subspace of E, then B is the infinitesimal gener-
ator ofa strongly continuous semi-group (which we shall denote by [V(t), 0

]) of operators in X, with

V()z (4r)- exp (-r/4)T(r)z dr

:for > o, -< 1 for >_ O.

Proof. If X > 0, ghen X is in o(B), and

R(X, B)z f e-xT(r)z dr

by [4, Theorem VIII.1.11, p. 622], and also, by [4, Corollary VIII.1.17, p.
628], X is in o(B), and

f_R(-, B) -R(X, -B) rT(r)x dr,

since -B generates the semi-group [T(-t); 0

_
< ]. Also k is in

p(B), since
ks- B (, -+- B)(,- B).
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Thus
R(),, B) R(), B)R(),, --B) -R(X, B)R(-h, B)

(1/29)[R(),, B) R(-h, B)]

(1/x) e-xlT(r) r.
Thus, for h > 0,

R(),, B) (4),)-1/ e-lrlT(r)x dr.

Since h B is invertible, B is closed.
VIII.3.3, p. 653], If we let

D(B) is dense in X by [4, Exercise

V(t)x (4t)-1 exp (-r’/4t)T(r)x dr,

then

e-XV(t)x dt (4rt)-/ exp (--,t) exp (--r/4t) d T(r)x dr

Thus [V(t); 0 _< < o] is a strongly continuous semi-group and B is its
infinitesimal generator, by [4, Corollary VIII.I.16, p. 627].

4.8. THEOREM. If M is a subspace of E, and P is a bounded operator in X,
then the operator B 2r PB with domain D(B) is the infinitesimal generator of a
strongly continuous semi-group

[u(t); o<t< ,l

of operators in X such that u< t) 1 ,),)-te"’ for all >_ 0 if o > P
and,, P

Proof. Let Q denote the operator with domain D(B) defined by
Qx P(Bx) for x in D(B). We shall show that Q belongs to the class
(B) of [5, Definition 13.3.5, p. 394]. If h > 0, then QR(h, B)

PBR(h, B), and

BR(h, B2) (4h)-/B[R( v/h, B) R( v/h, B)]

(4h)-/[x/hR /h, B) q- /hR v/h, B) ],
so that

QR(h, B) <- P h-’,
and Q is in the class J(B) of [5, Definition 13.3.1, p. 391].
and > 0, then

QV(t)x PBV(t)x,

If x is in D(B),
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and

so that

BV(t)x (4rt)-1/

(4t)-1/ I
exp (-r:/4t)T(r)Bx dr

(r/2t) exp (--r/4t)T(r)x dr,

QV(t)x _< P [[. x [[(rt)-/ f(R) (r/2t) exp (--r2/4t) dr

(C0)) semigroup [U(t), 0

_
< ] of operators in X by [5, Corollary 1 of

Theorem 13.4.1, p. 400]. To get the inequality, set

($) 1,

(see [5, Equation 13.4.1, p. 397]),

X
()

Suppose o >_ P , and , P -/. If

x(") t) < ,"e’,
then

("+)(t) f x(")(t )() d

"e‘ e-() d

Also, x) (t) 1, so that
x(")() E "e

for 11 n nd for 11 > O, nd

e-,/,() d +e’.

() + 7= (")() ::=o x(")() < ( )-e.
This sum dominates U() by [5, Theorem 13.4.1, p. 400].

4.9. THEOnEM. If M is a subspace of E, and u is a real function in X,
then B + uB generates a strongly continuous semi-group of contraction opera-
tors in X.

Proof. For each function z in X, let m denote a multiplicative linear func-
tional m on X such that m(z) z II. Such a functional exists by [4,

Thus B is in (P(B) and B+ Q generates

P II" (=t)-’.
a strongly continuous (class
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Th. 18., p. 274]. For each x, y in X, let

Ix, y] m(x)[m(y)]*,

where the. denotes complex conjugation. Then [., is a semi inner-product
on X (see [6] or [3]); that is

lax + y, z] a[x, z] + [y, z],

Ix, <_ x !1"11
for all scalars a and and all functions x, y, and z in X. Since B and B
generate contraction semi-groups, they are both dissipative with respect to
this semi inner-product, by [6, Th. 3.1, p. 686]; that is, re IBmx, x]

_
0 for x

in D(B2), and re [Bx, x]

_
0 for x in D(B). Moreover, since B generates a

group of contraction operators, it is true that re [Bx, x] 0 for x in D(B).
Also

re [uBx, x] re {m(u)m(Bx)[m(x)]*}
m(u) re [Bx, x] O.

Therefore, B - uB is dissipative. Since B - uB does generate a strongly
continuous semi-group by Theorem 4.8, it follows that the domain of B - uB
is dense in X, and that the range of hi B uB is all of X for sufficiently
large real },. Thus by an obvious extension of the argument for [6, Th. 3.1,
p. 686], B - uB generates a strongly continuous semi-group of contraction
operators in X.

5. Applications
Here the semi-group theory is applied to some partial differential equations.

The main interest lies in the case where E is real Euclidean n-space, but the
solutions will in general be solutions in a weak sense. That is, the solutions
will not in general lie in the domain of the partial differential operator, but
rather in the domain of its minimal closed extension. All but the first of the
applications make use of the connection between the semi-groups and resol-
vents. Of course, the semi-groups apply directly to some partial differential
equations, for instance, the abstract Cauchy problems of [5, pp. 617-633],
but there the application is more straightforward.

5.1. DEFINITION. A function g from S X [0, (or from S (- ,
)) into the complex numbers is said to be of class C(B) if the function

g(., t) is in D(B) for all in [0, (for all in,(--t) ’ )" If g is such. a
function, then Bg(s, t) means the value of Bg(. at s.

5.2. THEOREM. If q is in X, and x is in D(B) then there is only one func-
tion g from S X [0, (from S X in case M is a subspace of E)
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into the complex numbers which is of class C(B) and satisfies
g.(s, t) Bg(s, t) -- q(s)g(s, t)

for all (s, t), g(s, O) x(s) for all s.

Proof. Let Q denote the operator in X defined by Qx qx. Then the
operator Q with domain D(B) generates a strongly continuous semi-group
IS(t), 0

_
< ] (or a group of operators) by [5, Theorems 13.2.1. and

13.2.2, pp. 389 and 390]. The function g(s, t) [S(t)x](s) is as required.
The uniqueness claim may be established by an argument similar to the one
given for Theorem 3.1.

5.3. Remark. The equation of Theorem 5.2. is not an abstract Cauchy
problem in the sense of [5, pp. 617-633], because the requirements on the
solution are not so strong. However, the argument does show that every
solution of the equation is also a solution of the associated abstract Cauchy
problem.

5.4. THEOREM. f Z is in X, q is in X, and re q) is negative and bounded
away from zero (the assumption of negativity is unnecessary if M is a subspace
of E), then there is only one function x in D(B) such that

Bx+qx z.

Proof. Let d inf [re (q) I. If , is a real number having the same sign
as re (q), and I1 q II/2d, then q )’ < IX I, so that -), is in the
resolvent set of B + Q, where Q is that operator in X defined by Qx qx x,
and x -R(-, B + Q)z is the only function in D(B) such that

Bx +qx z.

5.5. THEOREM. Suppose M is a subspace of E, q is a function in X whose
real part is negative and bounded away fl’om zero, and z is in X. Then there is
only one function x in D(B2) such that

Bx - qx z.

Proof. Let d inf Ire (q) I, > q ll2/2d, and Qx qx - hx for x
in X. Then ), is in the resolvent set of B - Q and x -R(},, B -t- Q)z
is the only function in D(B) such that BX + qx z.

5.6. THEOREM. Suppose M is a subspace of E, u, v, and z are functions in
X, and there exist numbers oo > Ilull, r > O, and > w+ r(1 -)-1,

112where u IIw- such that all the values of v lie in the circular disk with
center - and radius r. Then there is only one function x in D(B) such that

Bx + uBx -- vx z.

Proof. Let P and Q denote the operators defined on X by Px ux and
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Qx vx - kx, respectively. Then

h > o+ ][Q11(1
so that , is in the resolvent set of B - PB - Q, and

x -R(X, B - PB -Q)z

is the only function in D(B) such that BX zr uBx vx z.

5.7. THEOnEM. If M is a subspace of E, u, v, and z are functions in X, u
is real, and the real part of v is negative and bounded away from zero, then there
is only one function x in D(B) such that

Bx + uBx --vx z.

Proof. Let d inf [re (v)[, > ][v[[/2d, and Qx vxWkx for x
inX. Thenh > [[Q]], so that is in the resolvent set of B+uB+ Q,
and -R(h, B+ uB + Q)z is the only function x in D(B) such that
Bx + uBx + vx z.

5.8. Remark. If E is a real space, and q is a positive function in X which
is bounded away from zero, then it follows from [3] that qB is the infinitesimal
generator of a strongly continuous semi-group of contraction operators,
and that qB is also, if M is a subspace of E. This will allow the appropriate
theorems to extend to the operators qB, qB, (qB), qB -t- Q, qB -- Q, and
(qB) zr P(qB) + Q.
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