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A subset K of a Banach space B has norma structure [2] if for each bounded
convex subset H of K which contains more than one point there is a point x e H
which is not a diametral point of H (that is, sup {11 x Y Y e H} (H) ).
We proved in an earlier paper [1] that if K is a bounded, nonempty, weakly
compact, convex subset of a Banach space B, and if K has normal structure
then every nte family of commuting nonexpansive mappings of K into
itself has a common fixed-point. (A mapping/ on K is nonexpansive if
f(x) f(y) =< x y for each x, y K.) If the norm of B is strictly

convex then this theorem holds for infinite families. (For if the norm is
strictly convex then the fixed-point set for each fe is nonempty, bounded,
closed and convex. Hence these fixed-point sets are weakly compact and
have the finite intersection property; thus there is a point common to all of
them.)
Although we do not know whether this theorem is true in general for infinite

families, we show in this paper that by appropriately strengthening the con-
dition of normal structure we are able to establish the existence of a common
fixed-point for arbitrary families without assuming strict convexity of the norm.
After proving a consequence of this, an observation is made about charac-
terizations of Hilbert space due to Klee [6] and Phelps [7]. Finally, we show
that the stronger version of normal structure introduced in this paper holds
in compact convex sets and in closed convex subsets of uniformly convex
Banach spaces.

1. Notation and definitions

Throughout the pper, the symbol (A) will denote the diameter of A,
that is, (A) sup {ll x y x, y e A}, and if6 A will denote the closed
convex hull of A. For x e B, lI(x; r) and (x; r) will denote, respectively, the
open and closed spherical ball centered at x with radius r.
For subsets H and K of B, H bounded, let

r(H) sup {l] x y y H},

r(H, K) inf {r(H) "x

e(H, K) {x K" rz(H) r(H, g)}.

The set (H, B) is frequently referred to as the Chebyshev center of H in B.
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We shall accordingly refer to ((H, K) as the Chebyshev center of H in K. In
general, C(H, K) may be empty, but otherwise it consists of precisely those
points of K which serve as centers of balls of minimal radius, r(H, K), which
contain H.

LEMMA. If K is weakly compact and convex, and if H is bounded, then
e(H, K) is a nonempty closed convex subset of K.

Proof. The argument given for Lemma 1 of [5] establishes this. For
x e H, let

F(x, n) {yeg: llx yll <- r(H, K) + 1/n}.

The sets C . F(x, n) form a descending chain of nonempty closed con-
vex sets in K; hence these sets are weakly compact and their intersection,
(H, K), is nonempty.

DEFINITION. Let K be a bounded closed convex subset of B. We say
that K has complete normal structure (c.n.s.) if every closed convex subsetW
of K which contains more than one point satisfies the following condition"

(,) For every decreasing net W e A} of subsets of W which have the
property that r(W,, W) r(W, W), a e A, it is the case that the closure of
(J,. e( W, W) is a nonempty proper subset of W.
We shall subsequently show that any compact convex set and any bounded

convex subset of a uniformly convex space have this property. That the
above implies normal structure is seen by taking W, W in (,).

2. Fixed-point theorem
The first theorem of this section generalizes results of De Marr [4], who as-

sumed K compact, and F. Browder [3] who proved its analogue in uniformly
convex spaces.

THEOREM 2.1. Suppose K is a weakly compact, convex subset of a Banach
space B, and suppose that K has complete normal structure. Let be a com-
mutative family of nonexpansive mappings of K into itself. Then there is a
point x e K such that f( x) x for each f e .

Proof. Because closed convex subsets of K are weakly compact, we may
use Zorn’s Lemma to obtain a subset K* of K which is minimal with respect
to being nonempty, closed, convex, and mapped into itself by each member
of . If K* consists of a single point, this is the desired fixed-point. We
assume, then, that ti(K*) > 0 and obtain a contradiction.

Let a be the family of all nonempty finite subsets of . Since each finite
subcollection of mappings of has a common fixed-point [1, Theorem 3], for

e a, the sets
M {xeK*:f(x) xforeachfe}

are nonempty.
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Let a0 be an arbitrary but fixed element of a, and let r r(M K*). Then

(1) r

_
r(K*, K*).

For 0 c a, let
K*U {xe "M C (x;r)}.

The collection {H a e 6, a0 a} forms an increasing net of convex sets, and
in particular,

H e(Mo K*).
Le H {x K* x H,, a0 }. If x H and f { then there exists
aa (X with 0 aa, such that f a and x H,. Hence, for z M,t,

I[f(x) -zll IIf(x) -f(z) --< lix-z]] -< r

and thus f(x) e HI From this it follows that f(H) H, f e . Since the
closure/ of H is thus mapped into itself by each member of , and since it is
convex, the minimality of K* implies that/ K*.

Let e > 0 and let x K*. Then, since points of H are arbitrarily near x,
(x; r + e) contains M for some a (. This, with the fact that the weakly
compact sets {-d M, e 6} have the finite intersection property, implies

0 # [’l0c M fl,K, (x; r + e).

Therefore r(K*, K*) =< r + e. This, along with (1), implies

(2) r r(M,o K*) r(K*, K*)
where 0 is an arbitrary element of 0. Since the sets {M,, (} form a
decreasing net in K* we may apply condition (,) of complete normal structure
to conclude that the closure of

W U. e(M,, K*)
But W is mapped into itself by each member of ,is a proper subset of K*.

since (2) implies
H, e(M, K*), (.

This contradicts the minimMity of K* and we therefore conclude (K*) 0,
and K* consists of a single point which is fixed under each of f .

If condition (,) of complete normal structure is replaced by (*0) where only
countable nets (or decreasing sequences) are considered, we say tha,t K has
countable normal structure.

COROLLARY. If is countable, or if K is separable, then complete normal
structure in Theorem 2.1 may be replaced by countable normal structure.

Proof. If is countable, then the above argument carries through with-
out change under the weakened assumption of countable normal structure.
Each fixed-point set Ms of f e 3 is closed and nonempty; hence complements
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of these sets form an open cover {1I} for K (assuming N Ms 0). If K
were separable then some countable subcollection of sets of 11} would cover K.
But this would imply that some countable subcollection of elements of
have no common fixed-point--a contradiction.

3. Characterization of Hilbert space
In this section we point out a consequence of a characterization of Hilbert

space due to Klee [6].
We say that a Banach space B has property (R) if any bounded closed con-

vex subset K of B has the fixed-point property with respect to nonexpansive
mappings. All uniformly convex spaces have this property [3] and more
generally, so do all reflexive Banach spaces which have normal structure [5].

THEOREM 3.1. Let B be a reflexive Banach space of dimension at least 3,
which has property (R). Then B is a Hilbert space if and only if every non-
empty, bounded, closed and convex subset of B is the convex closure of the fixed-
point set of some nonexpansive mapping on B.

Proof. Suppose K is the convex closure of the fixed-point set M of some
nonexpansive mapping T of B into B. If x e (M, B), then for each z e M,

T(x) z T(x) T(z) <- x z <- r(M).

Thus, rr()(M) <-_ r(M) r(M, B). Hence T(x)e(M, B); this and
property (R) imply((M, B) M 0. Since (M, B) (K, B), we
have shown that (K, B) K 0 for any bounded closed convex subset K
of B. By a theorem of Klee [6, Corollary 2], B is Hilbert space.
On the other hand, if B is a Hilbert space, then the metric projection (nearest

point map) of B onto uny bounded closed convex subset K of B is non-
expansive (see Phelps [7]), and has precisely K as its fixed-point set. This
completes the proof.

It is not known whether every reflexive Banach space has property (R).
Although we have characterized Hilbert space among those reflexive spaces
which do, it would be interesting to know if our condition characterizes Hilbert
space in general. In these spces, we hve weakened the condition of Phelps
[7, Theorem 5.2] that every bounded closed convex set be a fixed-point set of
a particular nonexpnsive mapping--the metric projection.

4. Complete normal structure

In this section we take a closer look at the concept of complete normal
structure as defined in Section 1.

TEOnEM 4.1. If K is a bounded, closed, convex subset of a uniformly convex
Banach space then K has c.n.s.

Proof. Let W be a closed convex subset of K which contains more than one
point, and let {W, a e A} be a decreasing net of subsets of W. For a e A,
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suppose there are distinct points zl, z. e (W,, W). Then if x e W,

[[zl-x[I =< r(W,,W) and [[z.-x[[ -< r(W,,W).

Let m 1/2(z + z.). The uniform convexity of the space implies the exist-
ence of a positive number such that m x =< (1 )r(W, W). But
this implies that for some m e W,

r.(W.) < r(W., W)

which contradicts the way in which these numbers are defined. Thus, for each
a A, (W., W) consists of a single point. If r(W., W) r(W, W) for each
a e A, it follows that

e(W., W) e(W, W), a eA,

and hence U,, e(W,, W) will consist of precisely one point; thus it mustbe a
proper subset of W.

THEOREM 4.2. If K is a compact convex subset of a Banach space then K has
c.n.8.

Proof. Again let W be a closed convex subset of K which contains more
than one point, and let [W, a e A} be a decreasing net of subsets of W for
which r(W,, W) r(W, W), a e A. We order A in the natural way, that is,
a __>/ provided W, c W. There is no loss in generality if it is assumed that
the sets W, are closed (or, in fact, closed and convex) since r( W,, W) remains
unchanged.
We are actually able to prove the following"

U., e(w., w) c e(. w., w).

To see this let e > 0 and let r r( F]., W., W). Because the sets W. are
compact, for a sufficiently large,

(1) supw. [inf [ll x y x e N. W.}] < e.

Hence if x e (( N. W., W) then W. c (x; r + ) for a sufficiently large.
Therefore r(W., W) _-< r + ; since is arbitrary r(W, W) r(W., W) -< r,
aeA. But clearly r( W. W) _-> rsince M.W. W.. Thus

r(W., W) r( N. W., W), a eA.

If x e ((W, W) then since

N.W.W. (x’r),
we conclude

U. e(w., w) c e( N. w., w).

This is all that is needed to complete the proof of the theorem. Since
F]., W. is compact, some point x in H 5-5 F]., W. is not a diametral point
of H (see [4, Lemma 1]). Because r(H, W) r(.,a W., W), we see that
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r(H, W) < (H) <= (W). Therefore (H, W) is aproper subset of W, be-
cause (e(H, W)H) <- r(H, W). Since e(H, W) e(gl, W,, W) we
see that ( V, W,, W), and hence the closure of

U., e( W, W)

is proper subset of W, completing the proof.
We know of no example of wekly compact convex set K which does not

possess normal structure (or complete normal structure).
The uthors thnk the referee for suggestion which improved the original

version of this mnuscript.

Added in Proof. Mr. Stanley Weiss hs recently provided us,with n ex-
ample, which he ttributes to R. C. Jmes, of wekly compact convex set
which does not possess normal structure.
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