AN EXAMPLE OF NON-LOCALIZATION FOR
FOURIER SERIES ON SU(2)

BY
R. A. MaAvYER!

Let G = SU(2) and for each integer n > 0 let x. be the n-dimensional
irreducible character of G. Any function f ¢ L'(G) has a Fourier series

fNZ:ﬂPnf: P, f = fxnxa

where » denotes convolution. Let N be a subset of G and f a measurable
function on G. We will say that f léves on N if f vanishes on the complement
N’ of N.

The Riemann localization theorem says that if  is any point of the circle
group T, then any integrable function on T which vanishes on a neighborhood
of = has a convergent Fourier series at . In [4], Theorem C, it was shown
that the analogous theorem for G = SU(2) fails in a strong way: if y ¢ G
and V is any neighborhood of y such that ¥’ has an interior, then there is a
function g of bounded variation on G such that g lives on V' and the Fourier
series for g diverges at y. In this paper we will show that the function g can
be chosen so that its Fourier series diverges at y and —y and nowhere else.
(It follows from Lemma 1 below that if g vanishes near y and the Fourier
series for g diverges at y then the Fourier series for ¢ must also diverge at —y.)

TerOREM. Let 20 ¢ G and let N be any non-void open subset of G. Then
there exists a bounded function f of bounded variation on G, such that f lives on N,
f s infinitely differentiable except on a closed set of measure zero, and the Fourier
series for f diverges on {xo} U { —xo} and converges to f everywhere else. If fis a
function in L'(G) such that f vanishes near x, and the Fourier series for f diverges
at o , then the Fourier series for f also divergesat —xy . Thus the set {xo} U { — 2o}
in the conclusion of the theorem cannot be replaced by {xo}.

Proof of the theorem. Without loss of generality we assume that z, = ¢ is
the identity for G. Let

6(x) = arc cos 3xa(x), zeG.
Choose a € N such that a # e and 6(a) # m/2. Forr > 0let

B.(a) = {z¢G : 0(z"a) < 1}
and let
Se ={xeG:0(x) = 0(a)}.
Choose ¢ > 0so that B.(a) C N and (B.(a))” n{e, —e} = @ (where the bar
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denotes closure). By compactness of S, choose s, -+, s €S, so that
UI;-I Be(vgn) D Sa .

Then B.(s1), -+ , Be(si), Sf, is an open cover forG. Let fi, -+« , frsa be a
C” partition of un.iil;y subordinate to this cover, sosupp f; C B:(s:),1 < i< k,
and supp fr+1 € S, . Let A, be the function on @ defined by

N(@) =0 if x(z) < x2(a)
(1) =

[N

if x(z) = x(a)
if xo(2) > xo(a).

Then ), is infinitely differentiable except on S, , and in [4], Lemma 3.30, it is
shown that the Fourier series for A\, diverges at Z=¢ and converges to A, every-
where else. Let g, = fuda (1 £ n <k + 1) so that

As = Zl::‘;ll gn .

Since gi41 is a C” function it has an everywhere convergent Fourier series, and
it follows that some g; (1 < j < k) has a divergent Fourier series at e. Since
0(s;) = 6(a) we have s; = uau™" for some u ¢ G. Now define

f(x) = gi(ueu™) = fi(ueu™)\a(x).
Then f lives on B.(a) and hence f vanishes near #=e. Also
D1 Pef(e) = D1 Prgile) for all n

so f has a divergent Fourier series at e. In Section 4 of [4] it is shown that
all of the first order derivatives of A\, are measures, and hence X, is a function
of bounded variation. Since fis the product of A, and a C* function, it follows
that f is a function of bounded variation (it was observed in [4] that the func-
tions of bounded variation form a module over the C* functions). Also f is
clearly infinitely differentiable off of S, which is a closed set of measure zero.
Hence the theorem will follow if we prove the following two lemmas.

LemMa 1. Letf e LN(G). If f vanishes near b € G and the Fourier series for
f diverges at b then the Fourier series for f also diverges at —b.

I
—

LEmMA 2. Let a be an element of G such that 0(a) 7= w/2, let N, be as in (1)
and let g e C*(Q@). Then the Fourier series for gh, converges to g\, except pos-
sibly at Z-e.

Proof of Lemma 1. If feL'(@), the Riemann Lebesgue set for f is
r(f) = {x @G : limp,e P f(z) = 0}.

If f vanishes near b and the Fourier series for f diverges at b, then it follows
from Theorem C of [5] that b ¢ 7(f). Let U, be an irreducible » dimensional
matrix representation of G. Then U.(—e) = (—1)""I, where I, is the
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n X n identity matrix, 80 U,(—=b) = (—1)"1'U,(b) forall b ¢ G. Since P, f
is a linear combination of the coordinates of U, it follows that P, f(—b) =

(—=1)"*P, f(b) for all n. Hence —b ¢ r(f) and hence the Fourier series for f
diverges at —b.

The proof of Lemma, 2 will require a number of preliminary lemmas, and
before considering these lemmas we give a general outline of the proof.

First we show that if ¢ is in the representative ring of G then r(g\,) contains
all points of G except possibly e (Lemmas 3-6). From this we will conclude
that the Fourier series for g\, converges to g\, except possibly at Ze for any
such g. Next we show that if b 5 ¢ is an element of G which is not conju-
gate to —a, and h is any function in C*(@) which vanishes at b together with
all of its derivatives of order <6, then the Fourier series for A\, converges to 0
atb. Sinceany h e C*(G) can be written h = hy + he where h; is in the repre-
sentative ring of G and h, vanishes at b together with its derivatives of order <6
(Lemma 10), we conclude that for any h e C*(G) the Fourier series for A\,
converges to h\, except possibly at Z=e and on the set S_, of points conjugate
to —a. Since 6(a) # w/2, a and —a are not conjugate, and the Fourier
series for h\, converges on S,. Using this fact we show that the Fourier
series for A\, must also converge on S_, , and Lemma 2 follows.

The Lie algebra g of @ is isomorphic to the Lie algebra g’ of 2 X 2 skew
Hermitian matrices with zero trace under the map M — D where

@ Duf@) = 3z exp M) |um, M g/, Du €8,1 ¢ C(6).

Since x:; has a maximum at e, Dxz(¢) = 0 for all D eg. It is easy to verify
that

(3) (Du)x2 = — (det M)xa, M ey

Let My, M2, M; be a basis for ¢/, and let D; = Dy, (1 £ ¢ < 3). Let
ao, a1 , 4z , @3 be complex numbers such that

aoxz2 + a1 Dy xe + a3 D2 x2 + a5 Dg x2 = 0.
By evaluating at ¢ we get ap = 0 and Dy xo = 0 where
M = a1M1 -+ azMz + aaMg.

By (3), det M = 0 and hence M = 0 since any non-zero element of g’ has a
non-zero determinant. We conclude that {x:, Dy x2 , D2 x2 , D3 x2} islinearly
independent. Let E, be the two sided ideal in L,(G) with generating idempo-
tent nx, . Since each E, is invariant under every D eg, and dim E, = 4, we
see that {x2 , D1 x2 , D2 x2 , D3 x2} is a basis for B, . Let 3, be the subspace of
C(G) consisting of all functions of the form P(xz, D1 X2, Dz X2 , Ds x2) where
P is a complex polynomial in 4 variables of degree <n. Then 3, is left and
right translation invariant, and hence is a two-sided ideal in L,(G). Since
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we can write x, = p(x2) where p is a polynomial of degree n — 1, x; €3, for
1 <j<n+ 1. By thestructure theory foridealsin L*(@) (see [2, page 158])
5, DE ® -+ ®E,y1. Thespaced = Unoy 3, = Uy E, is the representa-
tive ring of G. We will call 3 the space of trigonometric polynomials, and 3,
the space of trigonometric polynomials of degree <n. If n > 0 then every
element f of 3, can be written in the form

4) f=fixe+ fiDixe+ faDaxe + fs D3 x2, fi€%1,0<7<3.

Also any f €3 can be written in the form

f=a+bx3 +fiDixe+ faDaxe + fs Ds xo

where, a, b eC, p is a positive integer, fi, fo, fs€3. If f(e) = 0 then
a + 2°b = 0, and this implies that a + bx? = (2 — x2)foforsome fy e 3. Thus
any f €3 which vanishes at 0 can be written in the form

(5) f=@2—x)o+fiDixe+ faDexe + fsDsx2, fi€3,0< 12 < 3.

Let D be the algebra of all left invariant differential operators on @, and for
each n > 0 let D' be the subspace of D consisting of all operators of degree
<n. Let D™ be the zero subspace of D.

LemMA 3. Letn > 0and let X e D™. Then there exists an integer k > 0,

a finite subset {fy , -+ , fi} of Ez and a finite subset {Yy1, - -+ , Y4} of D" such
that
(6) X2 Xxm = Xxma + Xxmtr + 2i=1£i Yi Xm forallm > 1.

For each D eg and X € D™ there is an integer | > 0, a finite subset {gy , - - - , g1}
of E; and a finite subset {Zy, - -+ , Z;} of D" such that

(7) DxaXxm = M XD (Xmt1 — Xm-1) + 2im19iZjxmfor all m > 1.
Proof. We will prove (7) by induction on the order of X. (The proof of

(6) is similar.) Since

(8) Dxa xm = M (DXm+1 — DXm1) forall D eg

by [4, Lemma 3.3], (7) holds for X eD”. Assume that (7) holds for all
X D™, and let Y ¢ D™, D’ eg. Then

Dxo(D'Y)xm = D'(Dx2:Yxm) — D'Dxz2* Yxm

since D’ is a derivation. Express Dxs- Yx. by (7) and then use the fact that
D’ is a derivation and the fact that any operator in D maps E, into itself to
conclude that (7) holds for all operators in D**? of the form D'Y, D’ g,
Y ¢D. Thus (7) holds for all X e D"*? since D*"*" is generated by D™
and elements of the form D’Y.
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Lemma 4. Foranyz, y e Glet J o, bethelinear functional on C(G) defined by

(9) Jo(f) = fa fla uyu™) du.

If x, y are both distinct from e then

(10) lim e Moy (fXxm) = 0

for all trigonometric polynomials f, and all X e D™, 0 < n < w.
Proof. First observe that for any f ¢ E,, we have

(11) Ta(f) = m™ f(@)xn(y)-

This is easily verified if f is a coordinate function of an irreducible m dimen-
sional representation of G, (cf. [6, page 87]) and these coordinate functions
form a basis for E, . Since any X ¢ D maps each ideal E, into itself we have
by (11)
(12) Moy (Xxm) = m " Xxm (@) xm(y)-
Using the relations

xm(x) = sin mb(x)/sin 0(z)
and
(13) Dxm = ((m 4 1)xme1 — (M = 1)xm41) (3 — x3)~ Dxe

(see [4, Lemma 3.3]), together with the fact that 3 — x; vanishes only at
+e, one can easily prove by induction on n (= order X) that the set
{m™" Xxm(2™) : 1 £ m < o} is bounded for each X eD™ 0<n < w,
x # +e. Henceit follows from (12) that if z and y are both distinet from
e then

litmysee M " T oy (Xxm) = 0, XeD™,0<n < .

Thus (10) holds for f = 1forall X e D. We will now prove (10) by induction
on the degree of f. Assume the result for all trigonometric polynomials of
degree <pand all X eD. By (4) we see that (10) holds for all trigonometric
polynomials of degree <p -+ 1 if and only if

(14) Mo m_"Jmu(sz XXm) = 0, limyne m_an(fDX2 Xxm) =0

for all fed,, Deg, 0 < n < o, X ¢eD™. We will prove (14) (for any
f €3, , D eg) by induction on n. Forn = 0 we have

M Jay(fxe xm) = Mmoo [Joy(f Xmt1) + Jay(f xma)] = 0
for f €3, , and by (8)
limMpow Jay(fDX2* Xm) = liMes [T oy (f- Dxms1) — M T ey(f-Dxm-1)] = 0.
Assume that (14) holds for all f €3, and X ¢ D'®. Then (10) holds for all
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fedpp and X eD™. Let X, e D™™, and express x2 Xo xm and Dxz Xo Xm
by (6) and (7). We then conclude that (14) holds with X = X, from the
fact that (10) holds for all fe3,, X ¢D, and all f € 3,41, X e D™,

LemMa 5. Let D eg. Then the set of numbers {n™" || Dxa ||z : n > 0} ds
bounded.

Proof. We assume without loss of generality that D has norm 1 with re-
spect to the Killing form on g. Write D = D, and choose D;, D; so that
{Dy, Dy, Dg} is an orthonormal basis for g with respect to the Killing form.
Then A = Dj + Dj + Dj is the Laplace operator for @ and there exists a
constant A such that

(15) Axn = AW — 1)xa forn > 1.

Thus ” Dxx ”g < Z?nl (DiXn , Di xn) = — (AXn , Xn) = _A(n2 = 1) [ xa ”g ’
and the lemma follows from this.

If f is any function on G and z € G, let L(z)f be the function on G defined
by L(z)f(y) = f(z™'y). Note that if f is a trigonometric polynomial so is
L(x)f.

LemMmA 6. Leta,z eG,a % te. Let A, be asin (1) and let f be a function
in C*(G) such that
Jaa(Dxa L(z™") (fDx2)) = o(n)
for all D eg. Then x s in the Riemann Lebesgue set of fAa . In particular, if

f is a trigonometric polynomial then the Riemann Lebesgue set of f\. contains all
points of G except possibly e (see Lemma 4).

Proof. Let Dy, Dy, D; be a basis for g which is orthonormal with respect
to the Killing form. Then for any f ¢ C'(@) we have for alln > 1 (cf. 15)

P’n(f)\a)(x) = (f>\a) * an(x)

3 n

16) = 2 gom =1y (DUL@)Dixa), o)

3

s n
TAME = 1)

Since \s D; f e L:(G) it follows from Lemma 5 and the fact that
{Dixn:1 < n < »} is an orthogonal set in L,(G) that the second sum in
(16) tends to zero as n — o. Thus z e r(f\,) provided that

(D(fL(2)Dxn), Na) = o(n)
forall D eg. In [4] (4.10) it was shown that

(Di Xny L(x—.l) (xa le))'

(17) (Df,A) = —7"sin 0(a) fe F(uar™) Dy (uari™) du
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for any D eg and f ¢ C°(G) (and hence any f e C*(®)). Thus
(D(fL(%)Dxn), Ns) = —x ' sin 0(a)Jsa(Dxn L(z™") (fDx2)),
and the lemma follows.

LemMa 7. Let g be a trigonometric polynomial, a ¢ G, a # e, and let \,
be as defined in (1). Then the Fourier series for gha converges to g\, except
possibly at +e.

Proof. Forany zeG,n > 1,feL'(G) put
(18) Suf(x) = 2ie1 P f().
Then
Su(gha) () = g(x)8n Na(z) + Su((g — g(x))Ns) ().

Since S, Aa(2) — N () except for x = +e the lemma will follow if we show
that

(19) limg,w Su(hda) (z) = 0
for all h €3 such that A(z) = 0, (x # +e). Now
(20) Sw(kha) () = (L(z™)h-L(& )Ny 2t bxi)

and L(27")h is a trigonometric polynomial which vanishes at e. Thus if we
show that

(21) limyaw ((2 — %)L& )N, 2iakxe) = 0
(22) limyew ((Dx2)fL(2™)Na y 2ok o) =

for all f €3, D eq, x ¥ e, then (19) will follow because of (5). Using the
relations

(23) (2 = x2) 2iakx = (N + Dxw — Nxwn

(24) Dxz 2 -1 kxe = D(xw + xw41)

(see [3] (5.12) and [4] (3.5)) we can rewrite (21) and (22) as
N+1

(21)  limysw Py(\o L(z)f)(z) — Pya(Ae L(2)f) () = 0

N N-I—l

limwse (D(L(2) (f(xn + xw41)))s M) — limyoe (L(z7)Na

-Df, xv + XN+1) =

Now (21’) is a consequence of Lemma 6, and the second limit in (22') is 0
because {x.} (1 < n < ) is an orthonormal set in Ly(G). To evaluate the
first limit in (22") we use (17) to get

limyae (D(L(2) (f(xy + xw41)))5 Na)

(22)

— limyas — S0 6(a)

J:m(f(XN + XN+I)L(x—1)DX2)’
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and this limit is zero by Lemma 4. This completes proof of Lemma 7.

Lemma 8. Let f be a C* function on G which vanishes at e together with all
of its derivatives of order <6. Then f can be written f = (2 — x2)% where
g eCY(@).

Proof. The function g = (2 — x.)™%fis clearly of class C* except possibly
at e. Define® : R® — G by

_ %] x4y

&(x,y,2) = exp (—-x +iy —i )

& maps a neighborhood of the origin diffeomorphically onto a neighborhood
of ein G. Let r be the function on R? defined by r(z, y, 2) = (&® + ¢ + 252
A routine calculation shows that (2 — x») o ® = +’h where A is analytic on R®
and h(0, 0,0) = 1. Hence the lemma will follow if we show that any fune-
tion F in C*(R®) which vanishes at the origin together with all of its deriva-
tives of order <6 can be written F = +'G where G ¢ C'(R®). This follows
by a straightforward argument using Taylor’s theorem.

Lemma 9. Let a, « be elements of G such that a # e, x # e, and suppose
that a and —zx are not conjugate in G. Let f be a function in C*(G) which
vanishes at x together with all of its derivatives of order <6. Then the Fourier
series for f\a converges to 0 at x.

Proof. Using (20) and (23) we get

NI 2 Pu(() (2 = ™) @)

__N
N+1

so the lemma will follow if we show that
limy.e Pr((L(2)(2 — x2)7)fNa) () = 0.

By Lemma 8 we have L(z%)f/(2 — x2) = ¢g(2 — x2) whereg ¢ C'(@). Using
this in (16) we get

P.((L(2)(2 = x2) ™) \a) (z)
= P,(A\L(z)(9(2 — x2))) ()

(25) = 2 1=y (PE@02 = x)Dixa)), \a)

Sv(fa)(2) =

Pyl (L(x)(2 — Xz)—l)fha) (2),

= 2 = Do LET DDA = 30))).

The second sum on the right in (25) tends to zero as n — « by an argument
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given in Lemma 6. Hence Lemma 9 will follow if we show that
(26) (D(L(2)(9(2 — x2)Dxn)), \a) = 0(n)

for all g e CY(@), D eg. By (17), (26) is equivalent to

(27) Jaa(9(2 = x2)Dxa (g™ ) Dxz) = o(n)

so the Lermoma will certaintly follow if we show that

(28) J2a(g(2 — x2)Dxa) = o(n)

for all g e C(G). In Lemma 4 we showed that (28) holds if ¢ is a trigono-
metric polynomial, and since the trigonometric polynomials are dense in
C(G@), (28) will hold for all g ¢ C(G) provided that the set of functionals

Fasn: g =1 Jaa(9(2 — X2)Dxn) (n=1,2"--)
is bounded in the dual space of C(G). Now
| Faan || < supuce 7 | Dxa(™  uau™) (2 — x2) (7 uaw™) |.
By (13) and the identity (2 — x2)(2 + x2) = 3 — x3 we have
77 Dt (2 — x2) = [(Xn1 — Xnt1) + 07 (Xoe1 + Xns1)IDxe/ (2 + x2).
Since || (xn—1 — Xnt1) + 27 (xno1 + Xnt1) [0 < 4, We see that
{ | Fawn ||t =1,2,---}

will be bounded provided that the compact set {2 uaw™ : u e G} does not
contain —e, i.e. provided that ¢ and —x are not conjugate. Since this is
true by hypothesis, the lemma follows.

LemMA 10. Letf e C°(G), x € G, and let n be an integer > 0. Then there
exists a trigonometric polynomial t, such that f — &, vanishes at x together with
all of its derivatives of order <n.

Proof. We assume without loss of generality that x = e. Let

we (s o) (5 ) =)
and let D; = Dy, ,1 < ¢ < 3. Then it is easy to verify that
(29) Dixa = —x, i=1,23
(30) DiDjx: = sgn (4, ], k) Di x2, i#j

where sgn (1, j, k) is the sign of the permutation (¢, j, k). For any 4-tuple
(M, 1 , M2, 13) Of non negative integers and any j = 1, 2, 3 we have

Djix3® [1i=1 (D& x2)™1

31) 3
( = —ni(06) " (Dix) " Ilictini (D x2)™ + R;
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where R; vanishes at e together with all of its derivatives of order
<m 4+ ny 4+ ns — 1. Let p, g, 7, a, b, ¢, be non negative integers with
p+qgq+r=a-4+b+4+ c=m Then by m applications of (31) we get

(D1 D? D§)((D1 x2)"(D2 x2)*(Ds x2)") (€) = dap 81q er(—2) ™ plglrl.
If f ¢ C* and m is an integer >0 put

» q T
" = (=2)™ 3 (DIDLD;f)(e) - (D1 x2)" (D2 x2)*(Ds x2) )
ptatr=m plg!r!

Then XT7(e) = 0 for all X ¢ D™ and
(DY D D5)T7(e) = (DY D: D f)(e)
if p+ ¢+ r = m. Recall that any ¥ ¢ D™ can be written in the form
Y = 205p+q+#5m qur DY Dg D3 , qur eC

(see[l, page 98]). The trigonometric polynomials ¢, can now be constructed
inductively. Take t, = f(e), and if ¢, is constructed choose tp41 = t, + Tr o

—tp
Proof of Lemma 2. Let g e C*(G@) and let z € G be an element such that
z # e and z is not conjugate to —a. By Lemma 10 we can write g = g1 + ¢»

where g, is a trigonometric polynomial, and g, vanishes at = together with its
derivatives of order <6. Thus

limy. Sx(gha) (2) = gha(z)

by Lemmas 7 and 9. Thus the Fourier series for gh, converges except pos-
sibly at =4=e and at points conjugate to —a. Now suppose z, ¢ G is conjugate
to —a. Then —uz, is not conjugate to —a (since 6(a) # w/2) and hence the
Fourier series for g\, converges at —x,, and —ao € 7(gAs). Thus 9 e 7(g\,)
since we saw in the proof of Lemma 1 that r(f) = —r(f) for any f e L'(Q).
Also g\, is infinitely differentiable at zo (since o is not conjugate to a). Theo-
rems A and C of [5] imply that the Fourier series of an L, function on @G con-
verges at any point of the Riemann Lebesgue set of the function at which the
function is C'. Thus the Fourier series for g\, converges at points conjugate
to —a, and the proof is complete.
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