CLASS TWO p GROUPS AS FIXED POINT FREE
AUTOMORPHISM GROUPS

BY
T. R. BERGER'

1. Introduction

This paper concerns itself with bounds on the Fitting length of solvable
groups G admitting class two odd p groups A as fixed point free automorphism
groups. Previous results are listed in the papers of E. Shult [9], [10]. The
cases where A = S; and A is abelian are discussed there.

The main result of this paper is the following theorem.

TuEOREM. Suppose AG s a solvable group with normal subgroup G. As-
sume A 1s an odd p group of class <2; (|4 |, |G|) = 1;and Ce(4) = 1.

Assumer is a prime and p° = 1° + 1 for any p° < exp A and ™™ || G|. Then
the Fitting length of G is bounded above by the power of p dividing | A |.

This result is proved by means of a representation theorem (VI. 1). The
representation theorem is proved by reduction of a minimal counterexample.

The results of this work are partially contained in the author’s doctoral
dissertation, written under Professor’s M. Hall, Jr and E. C. Dade, at the
Californa Institute of Technology.

The main work is done in Section VI. Section II is a statement of results
used; Section III an examination of class two groups; Section IV and V ex-
aminations of characters of particular groups; and finally, Section VII gives a
proof of the main theorem using the lemma of Section VI,

ll. Preliminary results

Assume that G is a group, Q is the rational field, é is a primitive | G |* root
of unity, and k = Q(5). Every irreducible representation T of G by linear
transformations may be written in k. Suppose x is the character of G as-
sociated with T. Since x = tr T and det T are invariants the function

¢(x) = det T

is well defined. By linearity we may extend ¢ from a function on irreducible
characters to a linear function on all characters of G. Then ¢ maps characters
of G onto sums of linear characters of G.

(II.1) Assume that H is a normal subgroup of G and let \ be an irreducible
character of H such that
1) N <is G invariant,
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122 T. R. BERGER

(2) & () extends to a linear character o of G,
3B) ANQ) and [G:H] are relatively prime.

Then there exists a unique character x of G such that
(@) x IH = A
(b) o(x) =«

This theorem is proved in [5]. It may also be proved using Schur’s lemma
and factor sets. The author has given a shorter and more elementary proof
than either of these [1].

(I1.2) Suppose G is a group with normal subgroup H. Assume that \ 7s an
irreducible character of H and x is an irreducible character of G such that x |z = \.
Then if ¥ 1is any irreducible character of G such that ¥ |z contains \ then

¥ = ux

Jor an appropriate irreducible character u on G/H. Further, for any irreducible
won G/H, px is an irreducible character of G.

The proof of this is elementary and may be found in [2, (51.7)].

(IL.3) Suppose that H is a group with normal subgroup N of index n. Sup-
pose that U s an H module over a field K of characteristic zero or prime to n.
Assume that U |y is completely reducible. Then U 18 completely reducible.

The proof of this is well known. The method is given in [2, (10.8)]. As
an immediate corollary we obtain

(I1.4) Suppose that H is a group with normal subgroup N of index n. As-
sume that U s a completely reductble N module over o field K of characteristic
zero or prime ton. Then U |®|y is completely reducible so U |* is completely re-
ducible.

(IL.5) Suppose Y A X < G are A wmvariant subgroups of AG where
(A, |G]) = 1. If A fixes the coset xY for x ¢ X then A fixes an element
zyexY. SoCxr(4) = Cx(4)Y/Y.

A proof is given in [6].

(I1.6) Supposep || G|, and G A AG where (|A |, |G|) = 1. Then A fixes
P some p Sylow subgroup of G.

This result is clear from the Sylow theorems.

(IL7) IfG A AGwhere (|A|,|G|) =1land H < Ce(A)and N = Nqo(H)
then
N = Cnv(A)Cx(H).

The Three Subgroup lemma applies here. See [4, (3.1)].
We now apply these to obtain some specialized lemmas. In what follows
assume we have a group AG with normal subgroup G where (|4 |, |G|) = 1.
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(I11.8) Suppose M < @G is normal in AG. Assume weG. Then we may
choose © ¢ mM so that

Ca(w’) = An (AM)” = An (AM)".
Let Ao = An (AM)". Now M eCqu(ds). So we may choose 7’ e 1M so
that 7' € Ce(4o) by (I1.5). ThenC,(x’') =An (AM)" =An (AM) = A,.
For the remainder of this section suppose K is a field of characteristic zero
or prime to | A |. Assume K is a splitting field for all subgroups of AG.

(I1.9) Suppose that V is a completely reducible K[AG] module. Assume
M < @G is normal in AG. Suppose Ay < A. Then V |a,u ts completely re-
ducible.

This is an application of Clifford’s theorems and (I1.3).

(I1.10) Suppose V is an irreducible K[AG] module and V | 4,6 is not homo-
geneous for AgG A\ AG. Assume that A is nilpotent. Then there is subgroup
A% such that Ao < A* A A, [A : A*] = n is a prime, and

VIA"G = Ul"i“ + Un
where the U, are irreducible A*G modules and V =~ 4q Uy |*°.

We know that 4,@G is normal in AG. So by Clifford’s theorems V |4, is
completely reducible. So

V|400= Vl‘i-"’-i-Ve

where the V; are homogeneous components. Let A; = Stab (4, V1) the

stabilizer in A of Vi. Since 4¢G A AG, A1 G = Stab (AG, V1). So Vi

(written V1(4: G) when considered as an 4; G module) is an irreducible 4; G

module and V; (4; G)|*® ~,¢ V. But A is nilpotent so thereis 4; < A* A 4

maximal of prime index n so that V |s+¢ = U; 4 -+ 4+ U, where the U; are

irreducible 4*G modules with Uy =g V1 (41 G)|** and so Uy |[*¢ =~,° V.
Next we prove a result about K[4] modules.

(I1.11) Suppose A’ < A* < A and A; < A. Also J is an irreducible
K[A,] module. Assume

L = ker [4; — AutJ] > 4;n 4™
Let I = Crpa(A™). Then
ker [A — Aut I] = LA™,

First suppose Cyj4,4*(4*) = Jo has kernel LA*. Set J; = [4%, J |***].
Then J [**** = Jo + J; as a K[4; A*] module. Let J’ be an irreducible com-
ponent of J;. Then [4% J'] = J'. Hence [A*, J' [“] = J|*. So I must
be contained wholly in J, [*. But

Jo IA ILA‘ = Zmla' + T ® Jolmt
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where summation is over cosets in A. Now A*, LA* A A so 7 ® Jo|ras is
both a trivial LA™ and A* module. Hence Jo|* = I.
So we may assume that 4; A* = A and prove the lemma, in that case

S /LA\
\ P

A*N4,
Now
J |A 'LA‘ A EAprLA‘ -I- T ® J lAl’"“!ﬂLA‘ |LA* 4 J IA;ﬂLA‘ ILA* = JIL ILA*

since Ay LA* = Aand L < A;nLA* < L(4,n A*) = L. But L is trivial on
J |1 s0
J IA lLA‘ Xypar (dimJ)lLII’“

where 1. is the trivial L module of dimension 1. Next
dim Homgzs (Lra», 12 |*") = dim Homgrz (1zas |z, 1) = L.
So dim Cy4(LA*) = dimJ. Clearly Cyja(LA™) is contained in I. But also

dim HomK“., (l,p, 1. ILA‘ '40) = 1.
And
J lA ILA‘ IA‘ 40 (dim J)1, ILA* IA‘ .

Therefore dim I = dimJ = dim Cyja(LA™). Hence Cya(LA*) = I. So
LA™ isin the kernel of I. Since 4;/A™ n A, is abelian, 4;/L is cyclic and J |4,
is a sum of cyeclic faithful 4;/L modules. So the kernel of I is LA™,

(I1.12) Suppose A’ < A* < A and Ay < A. Assume U is a K[4: G
module and V =45 U |*¢. Then

i) Cv(4™) = (0) if and only if Cu(41n A™) = (0).
If Cv (A*) # (0) then

(i) CiCv(4%) = A*C4, Cu(41n A™).

Remark. With A* = A, (i) says Cv(4;1) = (0) if and only if Cv(4) = (0).
For (i) we know that
14 |A‘ >4 U IAG IA‘ iy EA’:AIG -i— r®U I(A;G"“ﬂA‘ IA

The #’s may be chosenin A. Because A* A 4 and 7 ¢ A we have the modules
in the sum conjugate to U |4,ena+ |**. So the centralizer of A* is the same

*
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dimension in each summand. But 4, GnA4* = A;n A% so (i) follows im-
immediately.
For (ii) we apply (i) and (IL.11).

Remark. (I1.12) and the remark following it will be used heavily in section
VI, often without mention.

(L1.13) Suppose A is a p group in which every characteristic abelian subgroup
18 cyclic. Then A 1is the central product of a cyclic with an extra special group.
A proof is given in [7].
lll. Class two p groups

In this section we compute the nonlinear irreducible characters of a class
two p group. We then use this result to prove a fixed point theorem for a class
two odd p group irreducible on a module over a prime Galois field. For the
remainder of this section suppose that P is a class two p group, Q is the rational
field, § is a primitive | P [t root of unity, and k = Q (5).

(IL.1) Supposethat P has a faithful irreducible character 8. Then B(x) =0
for allxe P — Z (P).

Let e P — Z(P). By the Clifford theorems 8 |z = ma, a multiple of a
single linear faithful character of Z (P). Choose y so that [z, y] = 2" # 1.
Then

8(x) = (") = B(zlr, y]) = B)a(lx, y])

since [z, yl e Z(P). But « is faithful on Z(P) so a(fx, y]) = 1. Hence
B(x) = 0.

(ITI1.2) TaEOREM. Suppose f isa faithful irreducible character of P. Then
8 = p%a;  a faithful linear on Z(P)
= 0; outside Z(P)
and | P| = p*|Z(P)|.

Clearly 8|z = p°e for some faithful linear o on Z(P) and p* dividing
|P|. Now

1= 8,B)r =P XerB@)BE™)
= |P|_1 pzd Z,,Z(p)a(x)a(x_l) = |P|_1 PzdIZ(P)l-
This completes the proof.

(I11.3)  Suppose P has a fasthful irreducible character of degree p°. Let s (P)
be the number of subgroups A < P of order p such that AnZ(P) = 1. Then

s(P) < @ — /(@ — 1).
Consider P/Z (P). By (IL.2) this group has order p®. The largest pos-
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sible number of subgroups of order p in P/Z (P) is then (p* — 1)/(p — 1).
Let B/Z (P) be cyclic of order p. Then B is abelian of rank two or one. In
any case, it contains no more than (p* — 1)/(p — 1) = p + 1 subgroups of
order p. One of these must be the subgroup of order p in Z (P). Hence

s(P) < @ = 1)p/(p = 1).

(I114) TueorREM. Suppose that p is an odd prime and r (#p) s a prime.
Assume that V is an irreducible GF (q)[P], ¢ = r™, faithful on P. Then there
exists a vector v e V* which is fized by no element of P¥,

We proceed by contradiction.

Sincer # p, ordinary character theory holds. So we apply (II1.2) several
times. Now |P| = p™|Z(P)| so the Brauer character of V is a sum of ¢
algebraic conjugates of the character of (II.2). The number ¢ = 1if and only
if V is absolutely irreducible. Hence

dim V = &p%

So there are ¢*” * — 1 vectorsin V*. We know that Z (P) is elementwise fixed
point free on V. Hence, if ve V¥ and Cr(v) 5 1 then Cr(v) nZ(P) = 1.
Further, Cp (v) contains a cyclic subgroup of order p. So the largest number
of vectors in V* which can be fixed by subgroups of order p will be s(P) times
the maximum number of vectors in V¥ which can be fixed by a single subgroup
of order p.

Suppose 4 is eyclic of orderp and A n Z(P) = 1. Then by (IIL.2) we have
dim Cy(4) = #p°. So the prescribed product is s (P)[¢?* ' — 1]. In order
to have every v ¢ V* fixed by some A < P we must have

sP)g™ T — 11> ¢ — 1.
Using (II1.3) we obtain

p@* — 1)/ —1) > @~ 1)/(¢™" = 1).

A simple computation shows that with p odd we must have p = 3, ¢ = 2,
d =1, 2,and ¢ = 1 for the inequality to hold. In particular V is absolutely
irreducible. But then V |z is a multiple of a single one dimensional Z (P)
module. Or equivalently, GF (2) contains a primitive | Z (P)[t® root of one.
This contradiction proves the theorem.

IV. Extensions of extra special groups

In this section we compute characters of groups which are extensions of
normal extra special subgroups. Preliminary results in this direction are in
[3,4 (13.6)].

We reintroduce the field of Section II. Suppose that Q is the rational field
and 8 is a primitive | AR [t root of unity over Q. Weletk = Q(3). In what
follows we will be discussing k characters.
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Suppose AR is a group with normal extra special r subgroup R of order
™™, Assume that A centralizes D(R) and (|4 |,7) = 1. LetK = GF(r)
(K and k are different fields). Consider the K vector space B/D(R) = V.
Ifv1, 2¢V = R/D(R) choosex e Vi = 2D (R) and y ev, = yD (R). Thenset
(1, v) = [z, y] e D(R). We may identify D(R) = GF (r)* = K*. Using
this identification (-, -) becomes a nonsingular symplectic pairing on
V = R/DR) into K*. Forv = aD(R) eV, ye A we set

w = @ay )DR) = @ D(R).
With this conjugation as action V becomes a left K[A] module. Further, 4
centralizes D (B) so A fixes the pairing (-, -).

Fix a : A — A as that unique antiautomorphism of 4 which sends z — z*
for all ze A. Then a extends linearly to an antiautomorphism of K [A4].

AV.1) Supposethatl = ey + -+ + e, ts a decomposition of 1 into primi-
tive central orthogonal idempotents of K[A]. Then, except possibly when e = e;,
we have

(ei V, €; V) = 0.
Choose any v1, v2¢ V. Suppose ¢; > ¢;. Theneie; = 0. So
(eivi,ejv) = (n1,e5 ejve) = 0.

The symplectic space V is nonsingular. Soife; V # (0) thenei V = (0).
By choosing complementary bases we see that dimg ¢; V = dimg e V.
Further e; V + e V is a nonsingular subspace of V if it is not (0). Let

N.; = ker[A — Aute; V].

Since x ¢ N, implies ™" ¢ N, , we also have N,, = N,; a. So (IV.1) has the
following corollary.

(IV.2) In the notation of (IV.1) we have, for all <,

(a) N = N a,

(b) dimge; V = dimg e V, and

(¢) eV + e V is nonsingular or (0).

Now we decompose the space V. Since (|4 [, ) = 1, as a K[4] module, V
is completely reducible. That is,

V=Vo+V

as a K[4] module where V) is irreducible.

(AV.3) As aK[A] module

V=Vi4--+V,
where
(a) Vs nonsingular
(b) Vi, V)= 0)s#j
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(¢) () Vs is drreducible or (i) Vi = Wi 4 W7 as a K[A] module with
Wi, W irreducible isotropic subspaces of V.

We prove this by induction on dim V. We examine the decomposition
V = Vo4 V’. First, suppose that V,is nonsingular. Then set Vo = V; and
consider V* = Vi. Since V1 and ( , ) are A invariant and V; is non-
singular we get

V=vi4V*
as a K[4] module and V* is nonsingular. Second, suppose V, is singular.
Since ( , ) and Vjare A invariant, Vi is K[4] invariant. So by complete
reducibility

V = V(J)' —i— W1

as a K[A] module. Now rad V, # (0) and is A invariant. Further, V, is
irreducible so rad Vo = Vi ; that is, Vo = W7y is isotropic. In particular,
VoS Vo,

We see then that

Vi= W4+ Wt

is a K[A4] decomposition. Further, by choosing complementary bases we see
that V; is nonsingular and Wy, W7 are irreducible isotropic subspaces. Set-
ting Vi = V¥, as before we get, the K[4] decomposition

V="VvV4V

Now dim V* < dim V so induection completes the proof.
Using (IV.3) we set B; equal to the inverse imagein R of V;. Because V;is
nonsingular we know that B, is extra special with D (R;) = D (R).

(AV.4) R vsthe central product of the Ri, 2 =1, -+ ,s.
Since each R; > D(R), [[:R: = M > D(R). Further,
M/DR) =2 4+ Vi=V = R/D(R).

Hence M = R. Also Z(R;) = Z(R) = D(R).

Next, if ¢ £ j then [R;, R;] = 1. This is immediate since (V;, V;) = (0)
or equivalently [R;, R;] = 1.

Therefore, R is the central product of the R;.

For the following lemma, the construction of the central product is im-
portant. Let Ry = J]: © R: be the direct product of the R;. Also set M
equal to the subgroup of all J] © yseRy such that the product in
R]I] y: = 1. This subgroup is normal in Ryand is in ][] ® D (R;). Further,
R ~ Ry/M in a natural way. Since V = Y + ViforyeR,yD[R) = > v;
uniquely. Choose 2; € v; so that the product in R[] z; = y. Then setting
®(y) = I © 2; M gives the desired isomorphism. In fact, this is an A iso-
morphism as is easily verified.
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(IV.5) Suppose that 8; is an irreducible character of R; (given in (IV.3))
which is nontrivial on D (R) = D (R;). Suppose that for every <, 6; |p) contains
the fixed linear character N of D(R) = D (R;). Assume that X; is an irreducible
character of AR; and X ; |s; = 0:;. Then the direct product character.

g =1Ix;
is irreducible on AR ~ A*Ry/M where A* is the diagonal subgroup of H.Ll ©4

It is sufficient to note that 8 [z, = ]] :is an irreducible character of Ro with
M in its kernel. Hence, 8, considered as a character on AR, is irreducible.

(AV.6) Supposethat Ag = C4(R). Assume also that C4(R;) = H;. Fur-
ther, let B be an irreducible character of AR constructed as in (IV.5). Suppose
that (Xila,v)a > O for every irreducible character v of A/H;. Then

(B lA) o')A >0
for every irreducible character o of A/A,.

Since Ao = M H; it is not difficult to see that A/A, is isomorphic to a sub-
group of [] © A/H;.

Next, let Y; be the sum of every irreducible character of A/H;. We prove
that if the direct product character ]| Y is considered as a character of A*
then Y contains every character of A/A,.

Now Y; is a character of A/H;. Further, A4/4, is a ‘“subgroup” of
II © A/H:. Suppose u is any irreducible character of B = [] © A/H;.

Then
m = H Mi

where u; is an irreducible character of A/H;. But Y; = u; + uﬁ . Hence
Y =TT+ = ATw) + 4 = n+ 4w

Therefore, || Y: contains every character of B.

Finally, if ¢ is any irreducible character of A/4,, a subgroup of B, then
there is a character u on B such that u |44, contains ¢. But [] Y contains
w50 (I ¥:)|asa, contains o.

The result is immediate since Y is contained in X; |, by hypothesis.

Character Values. From (IV.3), (IV.5), and (IV.6) it is evident that, in
order to compute the character values on AR, we need only consider the spaces
V:. Inother words, we need only consider submodules of V which are faithful
on A/H;.

The next few lemmas are technical in nature and are used to compute actual
character values.

AV.7) Suppose A is cyclicand H; = C4(R;). Now dimg V; = n;d; where

n; (=1, 2) 1s the number of K[A4] drreducible submodules of V; and d; ts the di-
mension of one of these. Then 1™%? = (—1)" (mod [4:H.]).
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If [A:H,] = 1 the result is trivial. If [A:H;] = 2 then ([A:H{,r) = 1 by
hypothesis so r is odd and again we are done. So we may assume [4:H;] > 2.

Let ¢ e K[A] be a primitive central idempotent such that eV; # (0). For
the antiautomorphism o, €*V; s (0). In particular, (IV.2) says that
dimeV; = dim e*V;. That is, every K[4] irreducible submodule of V¢ has
the same dimension since there are at most two. Hence dim Vy = n;d;.

Let ¢ be the smallest positive integer such that »* = 1 (mod [4:H,]). Now
¢K[A] is an extension of K = GF (r) by a primitive [A:H,] root of unity.
Therefore eK[A] ~ GF (r*). In particular,

dimg K[A] = dimg GF (r') = t = d;

the dimension of an irreducible submodule of V.
Suppose Vi = W 4+ Wi . Thenn; = 2 and we get
PR = PRt = 1 = (=1) = (—=1)™ (mod [4:H|]).
So we assume V; is irreducible. Since V; is nonsingular, its dimension is
even. Son; = 1andd; = ¢{iseven. By the choice of ¢ we get
MR = = 1 = (=1)"  (mod [4:HJ]).

This completes the proof.

We now build a character. Fix 2. Consider R, the inverse image in R of
V:. Suppose dim V; = n; d; where n; is the number of irreducible K[4] sub-
modules in a reduction of V; and d; is the dimension of one of these. Assume
H i = CA (Rg)

(AV.8) Suppose A is cyclic and \ is a nontrivial linear character of D (R;).
Then
Xni(@) = r"%2\(@); x =y, yeH;, zeD(R:)

= (=1)"\e); =z~ yAd — H:, z2¢D(Ri)
= 0 elsewhere
18 an trreducible character of AR; .

This result is well known [3, 4 (13.6)]. A remark on its proof: Let n; = n,
d.’ = d,Ri = R,H,’ = H,X)\.' = X)H

B (@) = "\ (2); zeD(R)
0 elsewhere

is an irreducible character of B. The character 8) extends to the direct prod-
uct H © R so that the extended character 8x is trivial on H. Set

M@) = B |*F (@) = [A:HP™ ™\ (2); z = iz, yeH, zeD(R)
= 0 elsewhere.

The character \ extends to a linear character \° of A ® D (R) which is trivial
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on A. Set
Mr(z) = N |*F(x) = 1™\k); =1y, yeH, 2eD(R)
= A(2); x~yz, yedA — H, zeD(R)
0 elsewhere.

By (IV.7), (1 — (=1)""**)/[A:H] is an integer.
Further

1 e 1 n_nd/2 n
From this remark, the proof is straightforward. Further, this way of writing
X, gives:

(IV.9) Assume the conditions of (IV.8). Suppose v + 1 = [A:H].
Then Xo: |4 contains every character of A/H; .
For we get

_ r”idilz _ (_l)ni] ne
Xo IA = [ [A:H,-] Pa/Eg + (—'1) 14

where p4/u, is the regular character of A/H;.
We still consider 4 to be cyclic, but now we want to find a character on all of
R rather than just B;. First we define some numbers.

DerinNiTiON. Let ze A. By (IV.2) Cv(x) = Cz(z)/D(R) is of even di-
mension since it is non-singular. Let

2m(z) = dimg Cy (z).
Also let

n(z) = number of nontrivial K[(z)] irreducible submodules
in a direct decomposition of V.
It is not difficult to see that
mx) = >, nidi/2

where summation is over all ¢ such that x centralizes V;. And in the same
fashion

n(x) = Zn; (mod 2)

where summation is over all ¢ such that x is nontrivial on V;. So that (IV.5)
applied to AR using the character of (IV.8) gives

AV.10) Assume that A is cyclic. Suppose that \ is a nontrivial linear char-
acter of D(R). For x e A we consider m (x) and n(x) as defined above. Then
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aly) = ™ (=1)"6\(@e); y ~ 2, wed, zeD(R)
= 0 elsewhere
18 an trreductble character of AR.

We may also apply (IV.5), (IV.6), and (IV.9) to prove

(IV.11) Assume the conditions of (IV.10). If Ag = C4(R) then Y |4 con-
tains every character of A/Aq provided that ¥ + 1 5 [A:H,] for every 4.
The inequality here may be restricted under certain conditions.

(IV.12) Assume that A s gyclz’c and A is a subgroup. Suppose that p4 18
the regular character of A and py = ps — 14 and pﬁ/At = pajas — la. IfB1s
any linear character of A and vy = (o%) (pﬁ, a») then

(v, B)a = [4:4" = 1; B=14
=[A:4% —2; B#1ls, Blar=1a
=[A:A*] — 1;  Blas # las

The proof of this is a direct computation.

(IV.13) Suppose A is a cyclic odd p group. Assume the hypothesis of
(IV.10). Also assume Ay = C4(R). Then Yy |4 contains every character of
A /A, except when

[4:4 = V/[R:Cr(4)] + 1

and R/Cx (A) s a faithful irreducible A/Ao module. In this exceptional case
Y IA = 4/[Cz(4):D(R)] (PA/Ao — 14)

Consider the decomposition of (IV.3). Suppose e is that primitive central
idempotent of K[A4] yielding éK[A], the trivial A module. Then for the anti-
automorphism «, ¢* = ¢. Hence Crx(4)/D (R) = ¢V is nonsingular. So also
is (1 —e)V = R/Cr(4). The decomposition into V; then splits into V; non-
trivial on 4 and V; trivial on A. Let X,; be the character of AR; given in
(IV.8). If R; < Cr(4) then Xy;|lsa = hils is a multiple of 1,. If
R; < [R, A] then Xyi|a = gipasa; = 14 for some g; by the proof of (IV.9).

Now by the construction in (IV.5) we get

Yala = I’ (95 para; = 14)-hla

where the product is over some #’s. But by (IV.12) we see that only one ¢
can appear in the product since p is odd. And for that ¢,

Yala = (pasag — 1a)hla.
Hence [A:4¢ = A/[R:Cz(A)] + 1. For this ¢ we also have
P L (—1)™1, = [A:44).
Son; = 1. TFinally it is not difficult to see that & = +/[C:(4):D(R)].



CLASS TWO D GROUPS 133

This method of proof also gives another conclusion, Recall the map ¢ of
section II.

(AV.14) For ¢ of sectionIl and A cyclic we get

¢(Y)‘ IA) = 41,.
If | A | is odd then it is +1, .

In the proof of (IV.13) we did not use the fact that A was an odd p group
until we applied (IV.12). So as before we have

Yala = 1" (gi pasa; = 14)-Rl4.

This character corresponds to a tensor product of representations. KEach
representation A; in the product which is not trivial has a character g; pa/4; = 14.
Clearly ¢(g: paja; = 14) = =1, where the sign is + if | 4 | is odd. Since
det (A: ® A;) = [det AJ**®*i[det Aj]"**¢ we easily see that (IV.14) is true.

(IV.15) TuEorEM. Assume that AR is a group with normal exira special
subgroup R of order "™ and (A |, r) = 1. Suppose A centralizes D (R).
Assume that \ is a nontrivial linear character on D (R). Then there exists a
class function
v: A — {1, —1} such that

IO(y) = O (=1)"Cy@)e); y~az,zved,zeD(R)
= 0 elsewhere

is an trreducible character of AR. Further v(x) = 1 whenever | (z)| is odd.
Let N be the irreducible character of R lying over \. Then ), is fixed by 4.
By (I1.1) we may choose an extension x of Ao on AR such that

i) xle=N
(ii) o (x |A) = 1a4.

This choice of x is unique. Further, if A* < A is a subgroup then x |4+ is
the unique character on A*R satisfying (i) and (ii).
Letze¢ A. By (I1.2) and (IV.10)

X lwe = Y2 B

for some linear character 8, of (x)R/R. But ¢(x |zy) = 1 = ¢(¥\)é(8:)
= +8,. Hence 8, = =1 and is a character of (x)R/(z)R. That is, 8,
maps « into {1, —1}. Further 8;(z) = 1if |(x)|is odd. Therefore x = ¥\
has the values of (IV.15) where v(z) = B, (z).

Remark: IfzeA and2® = y and [(x):(y)] = 2 then y(y) = 1. This follows
by looking at ¥ |¢z)x -
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V. Class two extensions

Following (IV.10) we proved (IV.11) and finally (IV.13) which concerned
themselves with which characters appear in Yy [4. We now derive an analo-
gous result to follow (IV.15) when A is an odd class two p group.

Assume that p, r are distinet primes and p is odd. Suppose that P is a
class two p group of order p** | Z(P) | where | Z(P) | = p*. Assume that PR
is a group with normal extra special r subgroup R of order +*"**, Suppose
that every irreducible P submodule of B/D(R) = V is faithful, and P cen-
tralizes D(R). Let K = GF(r) and k = Q(8) as before. All characters are
k characters unless otherwise specified.

Recall that V is a symplectic space. The Brauer character of Pon V (p 5 r)
is a sum of ¢ characters as in (II.2). Hence, dimg V = tp®. We must find
out what ¢ is. Let m; be the smallest positive integer such that

™ =1 (modp®)
Then for b = 1,

my

I

r 1 (mod p).

As an obvious result we have

(V.1) Suppose c is the largest positive integer such that r™ = 1 (mod p°).
Then my = myif b < candmy = m " if b > c.

Further, we have
(V.2) GF (r™) is the splitting field for P on V where | Z (P) | = p°.

The Brauer character of an absolutely irreducible P module over an ex-
tension of GF (r) is given by (IL.2) and “lifts” values from GF (r™) exactly.
If |P| = p* | Z(P)| then an irreducible GF (*"*)[P] module has dimension
p* over some finite division algebra by the Wedderburn Structure Theorems.
So by the Wedderburn theorem on finite division algebras, GF (r™) is the
splitting field for P.

(V.3) If|Z(P)| = p®then t = ma n where n is the number of irreducible
GF (r)[P] modules tn a decomposition of V.

The dimension of V over GF (r) istp®. By (V.1) and (V.2) every irreducible
GF (r)[P] submodule must have dimension m, p’. There are n of them so
tp® = ma np®. Hence the result.

Next we compute information concerning m (z) and n(z).

(V.5) (a) n(l) =0 (mod 2), m(1l) = m.

(b) IfzePand{x)n Z(P) % 1thenn(z) = n (mod 2) and m(z) = 0.

(¢) IfzeP,(&)nZ(P) = 1and|{zx)| = p’ then n(z) = 0 (mod 2) and
m@@) = m/p’.

The K dimension of V is 2m. Hence (II1.3) shows immediately that
m(l) = m. Further,n(l) = 2mson(l) = 0 (mod 2).
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Next, Z(P) is fixed point free elementwise on V. So if z ¢ P and
() n Z(P) = 1 then (z) is fixed point free elementwise on V. Therefore,

m(x) = 0. If |(x)| = p’ then an irreducible K[(z)] submodule is faithful of
dimension m;. Hence

n(x) = 2m/my = t/my = mynp”/myp" °=n (mod 2)

since p is odd.

Finally, forz ¢ P, () n Z(P) = 1, and | (z)| = p’ we find from (II1.3)
that (z) acts as tp° regular representations on V. Therefore, m (z) = tp*~/2
= m/p’. Now [V, (z)] has dimension 2m — (2m/p’) = (2m/p") (" — 1).
In other words, if p is the regular representation of (x) then (z) is represented
upon [V, (z)] as 2m/p’ times p — 1. Let mo be the number of irreducible
K[(2)] representations in p — 1. Thenn(x) = (2m/p’)ne. But p is odd so
2m/p’ is even and hence

n(z) =0 (mod 2).
This completes the proof of (V.5).
(V6) (@) ' = (=1)" (mod p***),0 < ¢ < d.
(b) [T — (=1)" — pp™? — (—1)"] = & p" T > 0

frl1<i<dunlessd =i,a=n=1p=3m=pandr =1t=2.
(c)

O=w<wu < - <w

20+ @ + Tia "7 (% — p*H) + T (1) (7 = ph)
pw.rmlr >0

fore > lunlesse =1, d=a=n=1m=p=3,andr =1 = 2.

To do this we require (IV.7). We examine the representation of Z (P) on
V. Since an irreducible faithful K[Z (P)] module always has dimension m,
and since V |z, is a sum of such modules, V |z must contain tp’/m, = np’
irreducible Z (P) modules. In our case p is odd. If » is even then

(_l)n =1= (Tma)npdﬂpo' — rm/pi (mod pd+a—i).

Now suppose 7 is odd. We look at V as a Z (P) module. Here (IV.3) tells
us that there must be some V; irreducible. So for that j, (IV.7) tells us,
= 1land %% = —1 (mod p®). But then d; = m, by (V.1). Hence

(rmalz)npd/‘zp‘ = P = (—=1)" = =1 (mod pd+a—i).
For (b) we rewrite
PN (=) — Pl — (=1)"]
= e — ) + (= 1(=1)"
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Using (a) we have r™® """ = pp?™** L 1 for some & > 0. Hence our expres-
sion becomes

L+ T = p) + (= 1) (=1)"
We assume this number is less than or equal to zero. So
L+ T - p) < @ - 1(=1)

But 2 < d so the left hand side is positive and hence n + 1 is even. Further,
the left hand side is greater than p — 1 unless A = landd +a — ¢ = 1.

Now ) )
m(p — 1)/p" = tp’(p — 1)/2p° = t(p — 1)/2p*".

t(p—1) /2001 __

Sor 1+ p. Thereforer = 2. Butt¢ = my p°n for someg > 0
by (V.1). And»™ = 1 4 fp for some f > 0. But

m < tp — 1)/2p™”
sof = 1and
my = my p’n(p — 1)/2p"".

Therefore p°n = p*, and p = 3. Hence m; = 2 and m, = 2p°~ again by
(V.1). Sog=a—1andn = 1. Therefore,wehaver =my=mn =1t =2,
p=3 Nowm(p—1)/p'=m =2s0om =p’ =p®/2 = p°. Andd = 1,
a = n = 1. And we have the exceptional case.

We argue on congruences for the rest of (b). By (a) we have

m/pi = (_l)n (mod pd—-t+a)_
Therefore r™?' = (—1)" + fp*™°. Next
P = (1) + T
(=1)" 4+ fp™ ™+ 22 (D (T (=17,

And finally
m/p‘ 1 ( 1) [ mipi __ (_1)”]
S (Y1 = 0 (mod

From this and the above, (b) follows.
Now consider (¢). We rearrange terms.

1™ b i ™ (% — pPi) o i (—1)" (@M — ) — o™
= 24 pU T — (1)) — p (™ — (=1)")]
- e Wiy, ,2(d—0)+2a+1
= D i p” s p .

Now s8; = 0 by (b) only if d = 7. Hence (c¢) holds unless ¢ = 1 and the ex-
ceptions of (b) hold. This completes the proof.
The preceding will help us evaluate inner products of characters. To take
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the inner products we must know more about the elements of P. Suppose
zeP. If (x) n Z(P) ## 1 then we say x has central intersection, otherwise we
say x has nonceniral intersection. Now p is odd and P is class two; so P is a
regular p group. Suppose P has exponent p°. For ¢ < e, setting

= (z | 2® = 1, z ¢ P), we have ©; of exponent p’ and; the elements of P of
order p* are exactly the elements in the set ; — Q1. Suppose |Q:| = p**
and set @ = 1, wo = 0. Then P contains |Q; — Q| = p”* — p”*"! ele-
ments of order p°.

(V.7) Suppose that P has exponent e. Then for 1 < ¢ < ¢ P contains
(a) p"* — p"~**! elements of order p* with noncentral intersection, and
(b) p“i=t™ — p®i~1 elements of order p* with central intersection.

We have the subgroups Q; of P. We want to define a new collection of sub-
groups 0; with
2> 0; > Q.

Further, the elements in Q; — ©; are precisely those of order p* with non-
central intersection and ®; — Q;_; those with central intersection. The order
of ®;is p“~™. Hence (a) follows from | Q; — O;| = p** — p“~"™ and (b)
follows from | @; — Q1| = p“i~1™ — p¥i-1, ‘

Let Z = % n Z(P). Then define the map 6:(z) = =Z)”™ = &7 for
zeQ. Nowb;is a homomorphlsm of Q;. For suppose «, ¥y € ;. Then
[z, y] e Z(P) n Q50 [z, y]”" "€ Z. In other words,

0:(@)0:(y) = & g = & T g, &°CTY = (ay) TZ = 6:(ay),

since p*" divides the binomial coefficient C (p**, 2).
Let ©; = ker 6;. Now clearly

Qia < 0; < Q.

Suppose z € @ — Q1. Suppose x has noncentral intersection. Then
z’ L f Z (P) hence 6;(x) # 1. Suppose = has central intersection. Then
2 ' eZ(P)n® = Z 0 6;(z) = 1. Hence O; partitions @; — Q;_;1 as re-
quired.

Now we need only compute the order of ®;. Consider the mapy;(z) = x
of ®;. Soforz,ye0B;,

YiCay) = ay)” = @ Y y, 2] = T = (e (y)

since [y, 2°® 7 = [y, 0 = [y Y, : 2 7'P = 1. Next choose z ¢ P of
order p°. We may choose  so0 that 2° ' ¢ Z. For suppose not. Then there
isyePsothat [z ,y]l = 1. So[z,yleZ (P) and [z, y] has order p°. Substi-
tuting [z, y] for z we get the desired result, 2** "¢Z. Butthena” 'e®; — Q..
So ¢i(z® ) # 1. And ¢, is a nontrivial homomorphism of ©; with kernel
Qi1 onto Z. Hence [0::Q;4] = p or |©:| = p*~'*". This completes the
proof.

pi—l
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In what follows, we retain the notation for Q; and ©;.

(V.8) Assume that P s a class <2 odd p group. Suppose PR s a group
with normal exira special r subgroup R(r #= p). Assume that P centralizes
D(R). SupposePo= Cp(R). Alsop® # r*+ 1for anyr®|r™ where|R| = v
and p° < exp P = p°. Then

(xl 'P yu)p >0

Jor every character u of P/Py and (¥ |p, u)r = 0 for all p % 1 of P such that
u |py # 1, if %\ is the character of PR given in (IV.15).

We proceed by induction on | P| + |R|. First, we use (IV.3) to decom-
pose V = R/D(R) into V;. Then we define R; as the inverse image in R of
Vi. We consider the character ¥,; of PR; given by (IV.15). Since
|P|+ |R:| < |P|+ |R|if V decomposes we may apply (IV.5), (IV.6) and
induction to obtain the result.

Therefore, V is irreducible or the sum of two irreducible isotropic subspaces,
W, W*. Further Py = Cp(V) = Co(W) = Cp(W*). From (IV.15) we see
that %, |», is trivial. So ¥, is a character of PR/P,. So applying induction to
| P/Py| + | R | we may assume that Py = 1.

If P is abelian then P must be cyclic. So (IV.13) gives the conclusion.

So we are reduced to the group described in the second paragraph of this
section.

Now we start computing inner products. Consider an irreducible character
uof P. Supposeu(l) > 1. Then applying (ITII1.2) which gives the values of
u we see that if P; = ker u then

r(z) = pv(z); 2Py ¢ Z(P/Py)
= 0 otherwise.
Letting P;/P, = Z (P/P;) we then get |P;| + |R| < |P| 4+ |R|. So by
induction,
0 < (P[P : Pa]) (% lpys »)ry = (% |2, 1)2-

’Rlerefore we may assume that u(1) = 1. Next suppose that u®" = 1,
I)‘

u = 1fors > 0. Let P, = ker u*'. We want to prove that for s > 1,
Deer—r, Ba(@)u(@™) = 0.
In that case, | P:| 4+ |R| < |P| + |R| s0
0 < (/D) (E |pys b |py)es = (F |py )r.

So if we prove this, we may assume that u* = 1.

Let Py = keru. Letax e P sothat (x, P)) = P. ForanyyeP, (zy, P;) = P.
Hence | (zy)| > p*™'. From (IV.15) it is clear that %\ (zy) = % ([zy]’) for
any (3, p) = 1.

We now define a map #; of P, onto P; which is one-one and given by
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n(y) = y* where z'y* = (ay)". Suppose (xy-)" = (zy')’. Fix m so that
9m =1 (mod p°). Thenzy = (xy)™ = (2y')"™ = ay’. Therefore y = y/'.
In other words, 9:, (4, p) = 1, is one-one onto.

Hence

(@) e, @) (ET) = Xicicortt,mmt Dyers $a @YD (@)

= D e, Br(2y) Digicortr, G-t (@),

Soif s Z 1 then Z1sisp-+1,(¢,,)_1 M(w_i) = 0.
So finally we assume that »* = 1. Suppose s s 1. Then
Daci<o w(@™¥) = —1 and (a) gives (since P, = P; here)

Deerr @@ T) = =D, Bay) = (=1/(0 — 1)) Xoer—r, 5o (@)
forze P — P;. Therefore, with
4= |Pll(X)\ IPI, lPl)Pl = qupl % (z), B= EweP—Pl X)‘(x)
we get
[P|(Glp,u)e =4 — (1/(p —1))B and |P|(F|e,le)r = A + B.

These are the only two inner products which remain to be shown unequal to
Zero.
Suppose P, > 0, but P; is not >0;. Then [2;4:Q2i1n Py] = 1 or p.

First we compute B = 2 zer—p, %a(x). We sum up % (z) on the sets, ¢ > j,

.

&

(@ —0,)— @nP;—0;nP;) and (0;— Q) — (O;nP;— QranPy)
including finally the elements of
Q1 — Pin Q.
If |Q: — ;] = p™ — p“"~'™ then
|Q%nP,— O;n Py = pUiTh — P

and similarly for the second set since [P:Py] = p. We set ¢ = 0 if
[Qj—1:Qj1 0 Py] = 1 and £ = 1 otherwise. So that

| Qs — Qi1 n Pr| = E@Y — pw,-,_l).
Now

| (@ — 0;) — (n Py — O;n Py)|
and

| (®; — Qi) — (Bsn P, — Qan Py)|

(0 — 1)/p)@" — p"-**)

((0 = 1)/p) @™ — p"*).
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And so,
B = ZzeP—Pl X(x)
= 25 T @ = p" ) (0 - 1)/p) .
+ e (S 1@ = g (0 - 1/p) + 8™ — i,
Next we compute A = Z;upl %\ (z). Here the computations are similar.
=" 4+ >0 PPt (P — primitly 4 ST ()R (pUirT — pUi-t)
o+ D™ (P — P (/) + D (1)@ = ") (1/p)
+ T T — ) (L= T — T
So we have
IPl(%lll’, ”')P

A— @1/ —1))B
"4 1_1 Tm/p‘ (pw"‘”'l)
+ i:i —1)" (pws—1+1 _ pwc—l) _ Epw:'—xr'nlp"“.
But this is greater than zero by (V.6) ¢). Finally
| P | (%] 1e)e

= A+ B =1"4 2har™ @% — p*h) + Dia (1) @™ — pi)
which again is greater than zero by (V.6) ¢). This completes the induction.

(V.9) Assume that P s a class <2 odd p group. Suppose that PR is a group
with mormal extra special r subgroup R (r # p) of order ™,  AssumeCp(R) =1
and Cx (P) > D(R). Supposethatp® = * + 1for p° < expP = p° of d < m.
Suppose X is an irreducible character of PR nonirivial on D (R). Then

X |e, 1p)e > 0.

For v irreducible on P, (v, 1z)» > 0. By (I1.2) and (IV.15) X = 4%
for some \. But by (V.8), #isin ¥\. Hence the result.
This theorem gives us the result like (IV.13) for class two odd p groups.

VI. The main lemma

In this section we prove the major result of this paper. For an abelian
group a similar result was proven by E. Shult [10, (4.1)].

(V1.1) TueorEM. Suppose that A is a p group of class <2 for odd p. Assume
that AQG is a solvable group with normal subgroup G where (|A|, |G|) =
Suppose that | G| = q"go (m = 0) for a prime ¢ = p and (g, o) = 1. Assume
k = Q(8) where Q = GF (q) or the rational field and & is a primitive | A |qo root
of unity. Suppose V s a K[AG] module faithful on G. Assume that

(1) V is a sum of equivalent irreducible K[AG) modules

(i) fexp A = p°thenp® # 1° + 1 for 1 < d < e and any prime r such that
7™ divides | G |.



CLASS TWO P GROUPS 141

Then
1) Cv(4) = (0)or
2) Cv@') = ©)or
B) Cv(4’") # (0) and there is cyclic D < A with
(a) Cv(4'D) = (0)
(b) Ce(A’D) > Cqo(4’).
We assume that (VI.1) is false and choose a counter example (4, &, V)
minimizing | A | 4+ |G| + dim V. So we have the following:
(1) Cy(4) = (0) and
(2') Cvy(4’) & (0) and
(8’) forany cyclicD < 4
(a') Cvy(4’D) # (0) or
(') Ce(A’D) is not >Ce(4’).
(VI.2) V 4s an irreductble k[A Q] module.

Here V = Vi + -+ 4 V,is a sum of equivalent irreducible k[AG] modules.
Hence (4, G, V1) is a counterexample if and only if (4, G, V) isalso. So¢= 1.

(VI.3) Ve % a multiple of a single irreducible AG module for every
Ao A A.  In particular, V | is homogeneous.

Suppose not. By (I1.10) there is A9 < A1 A A of prime index p so that
Vige=U1 4 -+ + U,
where the Uj; are irreducible 4; G module and V >~ ¢ Uy [*®. Let
Gi=ker[@—Awt U], G;= G/G;.

Clearly (A1, Gi, Up) satisfies the hypotheses of (VI.1). Hence (VI.1)
holds, in this case, by induction.
Now V |A 4 UllAGIA 0y UllA‘IA. So by (11.12),

) Cu,(41) = (0) ifandonlyif Cy(4) = (0).
Also by (I1.12) we have, since 41 > 4’ > Ay ,
@) (0) % Cy,(A1n 4’) = Cp,(4’) < Co,(4)).

Hence we find

(3) thereis D, < A, cyclic so that
(87) Co,(41D) = (0) and
(") Cq(41D) 2 Ca (41).

Using the fact that 4; > A’ > Aj, from (a”) we get
(1) Co,(4'D) < Cu,(41D) = (0)
And Cs, (D) > C3,(41D) > Cs,(41) = Cs,(4")
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80
(by) Cs (A'D) = Cg (A").
By choosing coset representatives of 4; in A we may prove that
(ai) Cu,(A'D) = (0) and
(b:) Cg,(4'D) 2> C5,(4")
So finally
(a) Cvy(4'D) = (0) and
(b) Ca(A'D) = Co(4’) by (IL5).
Therefore, V |4,e is homogeneous.
(VI.4) For every Ao < A we have Cy(4o) #= (0).

Suppose 4o < 4 and Cy(4y) = (0). Hence we may choose 4o < A1 A A
and 4; < A of prime index since A is nilpotent, and Cy(41) = (0). Clearly
Ay < A'. SoCy(41) > Cy(A’) # (0). Soby (VL3), V |4, is homogene-
ous. Hence, using induction, we may apply (VL.1) to (41, G, V). From
the foregoing, it is clear that we have

@ @) Cv(41D) = (0) and
(') Ce(41D) > Co(A1)

for eyclicD < A;. So

() Cv(4'D) < Cy(41D) = (0) and Co(D) > Co(41D) > Co(41)
> Co(41)

or

(b) Ce(A’D) = Co(4’).
Hence the conclusion.

(VL5) A 4s faithful on V.

Suppose not. Let Ay = ker [A — Aut V]. Since @ is faithful and V is an
irreducible AG module we must have [4o, G] = 1. Hence (VI.1) applies to
(A/Aq, G, V). In the usual way we obtain a contradiction.

Choose M < G as a maximal AG invariant subgroup of G. The group
G/M is an irreducible A module, where the action, for z ¢ A and #M ¢ G/M, is

z(xM) = 7'M = (vrz M.

From each A orbit on G/M choose a representative m; M. So that
m M, -+, 7m M form a complete set of A orbit representatives. By (II.8)
we may choose mi, ¢ = 1, -+, m so that

Ca(mi) = An AT = An (AM)"7" = 4.
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By taking A conjugatesof my = 1, : - - , mm We get a complete set of coset repre-
sentativesof M in Gy m =1, -+« , Tm, **+ , e Where
Culnj) =AndA" " =An (AM)7" = 4;, j=1 e

Further A permutes the =; if we specify for z ¢ A that,
x(1r,- M) = Tiz) M.

Now V | is homogeneous. Therefore, V |y = V1 + .-+ + V, with homo-
geneous components V;. Further, G is transitive on the Vs and M fixes
each one. That is, f divides [G: M].

(VI6) Iff = lithenf = e = [G:M] and the V; may be numbered so that A
fixes Vi, we Vi = V;, and A permutes the V; exactly as it permutes the ;.

Consider the permutation representation ¢ of AG on the Vy’s. Now M isin
the kernel of ¢. Further G n ker ¢ is a proper AG invariant subgroup of G
containing M, so it is M. Since G/M is abelian, G n ker ¢ is the subgroup
fixing each V;. And now f = ¢ = [G: M].

But ¢ is a transitive representation of A (G/M) given on the cosets of a
subgroup B of order |A(G/M)|/e = |A|. So B and A are Hall | 4 | sub-
groups of A (G/M). Hence they are conjugate in A (G/M). In other words
the representation is given on the cosets of A. Therefore A fixes, say, V.
Setting V; = m; V1 we get the result.

(VL7) If f 5 1 then for (A, AM) coset representatives m = 1, +++ , Tn
we have
Vi0aa 2ot + Vala, |* and  V oue Vi(AM) |*°,

Since AM stabilizes V; and | Stab (AG, V1) | = | AG|/e = | AM | we have
AM = Stab (4G, V1). Now M A AG so V 6 Vi(AM) [*C.
By the Mackey Decomposition we get

Va4 Vi(AM) [49] 4 >~ E’in—l +mV luu)n"ﬂAlA =y Z'i”-ﬂ + Vifa*
since (AM)™ ' nA = Cu(ms) = 4.
Remark. 1If V1 |4; contains the trivial A; module then Vi|4,|* contains the

trivial A module by (II.12). So Cy(4) = (0) implies that Cv,(4;) = (0)
foreachj =1, ..., m. (Hencealsoforj =1,---,e.)

Let Ay = ker [A — Aut G/M].

(VI.8) If Vi |ay does mot contain the trivial A submodule then f = 1.
(i.e. V |u is homogeneous).

Suppose Vi |4, does not contain the trivial Ay submodule. Now
Ay M A AG since [Ax, Gl £ M and Ay A A. By (VI.3) V |4pye is homo-
geneous and isomorphic to Vi(A4x M) |*¥°. Hence Vi(Ax M) is homogene-
ous. Therefore (VI.1) applies to (Ax, M/M;, V1) where
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M, = ker [M — Aut V1]
by induction.
By assumption Cv, (4dx) = (0).
Next Ay < Ajforeveryj. So Ay < A;n A’ for everyj. If Cy, (A,'u) = (0)
then Cy,(4;n 4’) = (0) for every . Hence by (I1.12)
Crya54(4") = (0) for every j.

Thus Cy(A’) = (0). So we must have Cy, (4x) = (0).
This means that when we apply induction to (Ax, M/My, Vi) we have a
eyclic D < Ay so that

@") Cy,(A%D) = (0)
") Caupary (A2 D) > Cogpary ().

Set M. = ker [M — Aut V. Now A D < Aw 50 Ay D is centralized by
each ;. Hence conjugation of Ay D by =" fixes Ay D elementwise. There-
fore

®@)

CM/M,; (Afw D) Z CM/Mc (AJ’M)

So by (IL.8)
Co(Asu D) > Co(Ah).
That is,
Co(D) > Co(AuD) > Co(Au) = Co(4’).
And

(b) Ca(4'D) 2 Co(4’).
Again since each ; centralizes Ay ,
Cv(4% D) = (0).

That is,
(a) Cy(4’D) < Cy(AuD) = (0).
Hence f = 1.

(VL) If A/Axy is abelian then f = 1.

If f 5% 1 then A is cyclic and irreducible on G/M. Every orbit {77 |z ¢ A}
is regular on A/Ay except {m = 1}. Thatis, 4; = Ay, 7 # 1. By the
remark and (VI.8) we are done.

(VI.10) If A/Ay = A is non abelian then f = 1.

Now G/M is an r group for some . But 4 is a class two p group which is
faithful and irreducible on the GF (r) module G/M. So we apply (II1.4) to
get a m; M which is fixed by no element of A*. In other words, Cz(m:) = 1,
orCa(m;) = A¢ = Ax . So again the remark and (VI.8) show f = 1.

Under the hypotheses of (VI.1) this means V |y is homogeneous or f = 1.

Now G/M is an r section for some prime ». So by (I1.6) we may choose an
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r Sylow subgroup R, of G fixed by A. Next choose R in B, minimal such that

(1) R is A invariant, and

(ii) RM = G.
We will prove that R is extra special.
Next consider V |4u = Vi 4 --+ 4 V. where the V; are homogeneous com-

ponents. Since V |y is homogeneous, each V; is faithful and a multiple of a
single irreducible M/ module. Since Cy(4’) # (0) we may choose V1 so that
Cy,(4’) # (0). Clearly, Cv(A) = (0) implies Cy;(4) = (0),2 =14, -+,
So we apply (VI.1) to (4, M, V) and obtain D < A eyclic so that

(&”) Cv,(4’D) = (0) and
(b") Cu(4'D) 2 Cu(4).

(VI.11) If A is abelian then Co (M) = A™* # 1.

In this case, A’ = 1 so Cx(A’'D) = Cy(D) = Cu(A’) = M. Hence
D < Ci(M). ButCy,(A’D) = Cy,(D) = (0)s01 =D < A*,

(VI12) C (M) = A* = 1.

We may assume that A is nonabelian. Let U be a homogeneous component
of V1|arpu. Since V |y is homogeneous, U is faithful on M. Now (4’D) =1
since 4 is class two, A’ < Z(4), and D is ¢yclic. Since Cy,(4’D) = (0),
Cy(4’D) = (0). Further, Cy([4’D)) = U. So in applying (VI.1) to
(A'D, M, U) we get (3) a cyclic D, £ A’D so that

(®*) Cu(A'DI'D:) = Cu(D1) = Cu(A'D)) = M.
Also since
@*) Cu(4'DY) = Cu(D1) = (0),
we have D; = 1. Hence D, < C, (M) = A*.
(VI13) A*nAy = land Co(4™) = M.
Suppose A*n Ay = Ag # 1. Now Ay A A so we may take
Air=ZA)ndo# 1

since A is nilpotent. We know that A™ centralizes M and A, centralizes
G/M. Hence by (I15), A, centralizes A and G. So 4; £ Z(4G). But V
is irreducible so A; is eyclic and acts as scalar multiplication on ¥ by (VI.5).
Hence Cy(4:) = (0). By (VI4) A, = A. But then A is cyclic and

(a) Cy(4’A) = Cy(4) = (0) and
(b) Ce(4) =G 2= Ce(4’) =G.

Hence A*n Ay = 1. But then A*Ay/Au A A/Ay s0
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(A*Au/Aw)nZ(A/Ax) # 1 and Ceu(4*) = M.

(VI.14) We can choose R so that R < Cq(M), R s extra special, and
R A AG. Further, D(R) < M,D(R) < Cq(AQ).

Now G = Ne(M). But M = Ce(4*)soby (IL7) G = Ce(M)Ce(4*) =
Ce(M)M. The group Ce(M) is A invariant so B may be chosen in Ce(M).

Let Ry = Z(R). Weknow R; < Coe(M) s0o By < Z(G), since RM = G.
Further V |q is homogeneous and faithful so R; is cyclic and acts as scalar
multiplication on V. In particular, because AG is faithful, B, < Z(4G). So
Ry < M and R, £ C¢(AG). In particular, R is nonabelian.

By the minimal choice of B we must have M n B = D(R) as the unique
maximal A invariant normal subgroup of R. Let R, be any characteristic
abelian subgroup of R. Now R/D(R) ~, G/M soif Ry < Rthen Ry < D (R).
But R is nonabelian so By < D(R). But then Ry < M. Wealready know
that Ry < Co(M)nM = Z(M) and V |y is homogeneous. So

ReZZR) =R

and R, is cyclic. By (I1.13) R is the central product of a cyclic and extra
special group. But by minimality of R, this means R is extra special.

Finally, R < C¢(M) normalizes itself and is normalized by 4. Hence
R A AG.

(VI.15) V |z ¢s homogeneous; Cv(Ax) = (0).

Here V |q is homogeneous. So, since B A G, V |z is completely reducible
and the homogeneous components are permuted transitively by M since
MR = G. But M centralizes R so V |z is homogeneous.

Suppose next that Cv(4dx) # (0). Now Ay centralizes G/M ~, R/D (R),
so it centralizes B. Further, Ay A A. Hence Cy(Ax) is a k[AR] submodule
of V. Let Vo < Cy(4Ay) be an irreducible k[AR] submodule. Since

Z([R) = D(R) < Z(AG)

it acts as scalar multiplication nontrivially on V hence also on V,. Further,
on Vy, A is represented as A/Ay. Now Ay < A since Cy(4) = (0). There-
fore Vi is a k[(A/Ax)R] irreducible module. Also A/Ay is faithful and ir-
reducible on R/D (R). Now |R| = ** divides | @|. Further, by hypothe-
sis, p* 5 r° + 1 for any e < ¢ and any p° < exp A. Hence we may apply
(V.9) to the Brauer character of V, to find that (0) = Cv,(4) < Cy(4).
But Cvy(4) = (0). Hence Cy(4dx) = (0).

(VI.16) (VI.1) holds.
By (VL12), A* = 1. And by (VI.13) A*n Ay = 1. Hence Ay < A.

Soby (VI4) Cv(Ax) = (0). This contradicts (VI.15). Therefore (VI.1)
holds.

We now curtail the hypothesis on %.
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(VI17) Cororrary. In (VI.1) we may assume that k is any subfield of
Q). In particular, we may take

k = GF (q).

Suppose U is a homogeneous K[AG] module satisfying all of the hypotheses
of (VI.1) except that K < Q (8) is a subfield of Q (3). LetK(6) = k = Q(4).
Then k is a finite extension of K. Let U =k ®x U. Let V be any irreducible
k[AG] submodule of U'. Then V is a K[AG] module isomorphic to m copies of
an irreducible submodule U™ of U for some integer dividing the degree of the
extension [k:K]. We apply the theorem to (4, G, V). Suppose

V~gua U*+ -+ + U* (m summands)
It is clear that
Cv(L) ~gpae Cos(L) + +++ + Cvs(L) (m summands)
for any L < A. Also G is faithful on V since it is on U*. The two iso-
morphisms give (VI.17).

(VI.18) CororrARY. Suppose thatin (V1.17), conclusion (2) arises. That
s,
(2) Cv4’) = (0).
Then thereis 1 = D < A’ with
@) Cy(D) = (0) and
®) Ce(D) = G.

Here V|s¢ = Vi 4 --+ 4+ V, where the V; are (in the case of (VI.1))
homogeneous components. Let G; = ker [ — Aut V,]. Then we apply
(VL1) to (4’, G/G1, V1). Since A” = 1, and Cy,(4’) = (0) we get by
(VI.1) a eyelic D < A’ so that

(@) Cv (D) = (0) and
(®") Coe D) = G/Gy.

NowD < A’ < Z(4). So

@) CyD) = (0)
(b) Ce(D) = G.

Remark. Again it is no trouble to extend this by the argument of (VI.17)
to the field K < k.

VIl. The main theorem

Let A be a class <2 odd p group. Suppose AG is a group with normal sub-
group G where (|4 |, |G|) = 1. We define a function ¢ (G). Now

[4:C4 Ca(A)A:Ca(@)n A = 9/

v(@) =1

for some f. Set
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Notice that C4 Ce(4’) > A’ s0 (@) = f < d where | 4] = p°.

(VIL.1) TareoreEM. We assume that A is an odd p group of class <2.
Further, AG ts solvable with normal subgroup G where (|A |, |G|) = 1. Sup-
pose G has fitting length n and A s fixed point free on G (i.e. Ce(4) = 1).
Then

V@) =2n

unless p° = r° + 1 where r™** divides | G | and p° < exp 4.

Proof is by induction on a minimal counter example @. First, G has a
unique minimal normal 4 invariant subgroup M. Suppose not. Assume
M, , M, are minimal normal 4 subgroups of G. Let G; = G/M;,7 = 1, 2.
Clearly ¢ (G;) < ¢(@). Let

Yo = max {¥(G:)| ¢ = 1, 2}

Then by induction the Fitting lengths of G4 and G are bounded by ¥o. So
also the Fitting length of G, which is contained in G; X G, is bounded by
Yo < ¥(@).

Second, for some prime g, 0,(G) = M. Suppose not. Now M is a ¢ group
so we consider @ = 0,(@). Let @, = D(Q). Then G/Qhas the same Fitting
length » as does G. But ¢ (G/Q0) < ¥(G) and induction applies.

Finally we prove the result. Since M = 04(G) is unique minimal normal
A invariant, C¢(M) = M. And as an AG/M module, M is faithful on G/M
and irreducible on AG/M. Applying (VI.17), (VI.18) we find that

(2) Cu(4’) = 1and thereiscyclic D < A’ with
(@’) Cu(D) =1and
®) Cou(D) =G/M

or

(8) Cu(4’) £ 1 and there is c¢yclic D < A with
(a) Cu(A’'D) = 1and
(b) Ceou(A’D) = Cou(4’).

In either case, y (G/M) < ¢ (@) — 1. But the Fitting subgroup of G is M so

the Fitting length of G/M isn — 1. Son — 1 < ¢(G/M) < ¢(G) — 1 by
induction. Orn < ¢ (@).

(VIL.2) Under the hypotheses of (VIL.1),if | A| = p®thenn < d.

Added in proof. (I1.13) is stated only for odd p. The application is made
for arbitrary p. The application is correct for the strong form of (I1.13) given
in D. Gorenstein, Finite groups, Harper and Row, New York, 1968, p. 198.
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