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BY

T. R. BERGER

1. Introduction

This paper concerns itself with bounds on the Fitting length of solvable
groups G admitting class two odd p groups A as fixed point free automorphism
groups. Previous results are listed in the papers of E. Shult [9], [10]. The
cases where A Sa and A is abelian are discussed there.
The main result of this paper is the following theorem.

THEOREM. Suppose AG is a solvable group with normal subgroup G. As-
sume A is an odd p group of class <_ 2; (I A I, GI) 1; and Ca (A 1.
Assume r is a prime and p r - 1 for any p <_ exp A and r+ G I. Then

the Fitting length of G is bounded above by the power of p dividing A I.
This result is proved by means of representation theorem (VI. 1). The

representation theorem is proved by reduction of a minimal counterexample.
The results of this work are partially contained in the author’s doctoral

dissertation, written under Professor’s M. Hall, Jr and E. C. Dade, at the
Californa Institute of Technology.
The main work is done in Section VI. Section II is a statement of results

used; Section III an examination of class two groups; Section IV and V ex-
aminations of characters of particular groups; and finally, Section VII gives a
proof of the main theorem using the lemma of Section VI.

II. Preliminary results
Assume that G is a group, Q is the rational field, is a primitive G root

of unity, and k Q (). Every irreducible representation T of G by linear
transformations may be written in k. Suppose x is the character of G as-
sociated with T. Since x tr T and det T are invariants the function

(x) det T

is well defined. By linearity we may extend from a function on irreducible
characters to a linear function on all characters of G. Then maps characters
of G onto sums of linear characters of G.

(II.1) Assume that H is a normal subgroup of G and let h be an irreducible
character of H such that

(1) X is G invariant,
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(2) (h) extends to a linear character a of G,
(3) h (1) and [G:H] are relatively prime.

Then there exists a unique character x of G such that

(b)

This theorem is proved in [5]. It may also be proved using Schur’s lemma
and factor sets. The author has given a shorter and more elementary proof
than either of these [1].

(II.2) Suppose G is a group with normal subgroup H. Assume that X is an
irreducible character ofH and x is an irreducible character of G such that x IH X.
Then if b is any irreducible character of G such that b [, contains X then

for an appropriate irreducible character on G/H. Further, for any irreduciSle
on G/H, x is an irreducible character of G.

The proof of this is elementary and may be found in [2, (51.7)].

(II.3) Suppose that H is a group with normal subgroup N of index n. Sup-
pose that U is an H module over a field K of characteristic zero or prime to n.
Assume that U Ir is completely reducible. Then U is completely reducible.

The proof of this is well known. The method is given in [2, (10.8)]. As
an immediate corollary we obtain

(II.4) Suppose that H is a group with normal subgroup N of index n. As-
sume that U is a completely reducible N module over a field K of characteristic
zero or prime to n. Then U IIN is completely reducible so U ] is completely re-
ducible.

(II.5) Suppose Y/x X <_ G are A invariant subgroups of AG where
(] A ], [G ]) 1. If A fixes the coset xY for x X then A fixes an element
xy e xY. So Crlr (A C:r (A Y/Y.

A proof is given in [6].

(II.6) Suppose p I1 G ], and G/x AG where (] A I, G I) 1. Then A fixes
P some p Sylow subgroup of G.

This result is clear from the Sylow theorems.

(II.7) If G/x AG where (] A [, G ]) 1 andH <_ Ca (A) and N Na (H)
then

N C(A)C(H).
The Three Subgroup lemma applies here. See [4, (3.1)].
We now apply these to obtain some specialized lemmas. In what follows

assume we have a group AG with normal subgroup G where (i A I, GI) 1.



CASS TWO p eROITPS 123

(II.8) Suppose M <_ G is normal in AG. Assume r G. Then we may
choose r’ rM so that

Ca Or’) A r (AM)’ A (AM)’.
Let Ao A r (AM)’. Now rM e Ca/ (Ao). So we may choose r’ eM so

thatr’ Ca(Ao) by (II.5). ThenC (’) A r (AM)’ A n (AM)’= Ao.
For the remainder of this section suppose K is a field of characteristic zero

or prime to A I. Assume K is a splitting field for all subgroups of AG.

(II.9) Suppose that V is a completely reducible K[AG] module. Assume
M < G is normal in AG. Suppose A <_ A. Then V I, is completely re-
ducible.

This is an application of Clifford’s theorems and (II.3).

(II.10) Suppose V is an irreducible K[AG] module and V Ia is not homo-
geneous for Ao G/x AG. Assume that A is nilpotent. Then there is subgroup
A* such that Ao <_ A*/x A, [A A*] n is a prime, and

v 4...4v 
where the U ae irreducible A*G modules and V

We know that AoG is normal in AG. So by Clifford’s theorems V 1,0a is
oompletely reducible. So

4 -i- v,
where the V sre homogeneous components. Let A Stsb (A, V) the
stsbilizer inA of V. SinceAoGLxAG, A,G Stb(AG, V). So
(written V (A G) when considered ss sn A G module) is sn irreducible A1 G
module snd V (A G)I ,a V. But A is nilpotent so there is A _< A*/ A
msximsl of prime index n so thst V ]a.o U U, where the U sre
irreducible A*G modules with U ** V, (A, G)I* snd so U V.
Next we prove s result sbout K[A] modules.

(II.11) Suppose A’ <_ A* <_ A and A <_ A. Also J is an irreducible
K[A] module. Assume

L ker [A --, Aut J] >_ A n A*,

Let I C, (A * ). Then

ker [A -- Aut I] LA*.
’(A*First suppose CI J0 has kernel LA*. Set Jx [A*, J ]ata*].

Then J [at, J0 4- Jx as a K[Ax A*] module. Let J’ be an irreducible com-
ponent of Jx. Then [A*, J’] J’. Hence [A*, J’ "] J’ a. So I must
be contained wholly in J0 . But

Jo ], ’.,a. - r (R) Jo
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where summation is over cosets in A. Now A*, LA*/x A so v (R) Jo [,. is
both a trivial LA* and A* module. Hence J01 I.
So we may assume that A1 A* A and prove the lemma in that case

AAA*A
_LA*

A*NA1
Now

i, , IA*
sceALA* A and L A n LA* L (A n A* L. But L is tal on
J so

J ] ],, (dim J)l ]*
where 1 is the trivial L module of dimension 1. Next

dim HomK[, (1, 1 *) dim Hombre (1, [, 1) 1.

So dim C (LA*) dim J. Clearly Ca (LA*) is contaed I. But also

dim HomK, (1,, 1* ,) 1.
And

J ] , ],, (dim J)l ]* ],.
Therefore mI dim J dimC(LA*). Hence Ci (LA*) I. So
LA* is the kernel of I. Sce A/A* n A is abefan, A/L is cycfic and J
is a sum of cyclic faithful A/L modules. So the kernel of I is LA*.

(II.12) Suppose A’ A* A and A A. Asme U is a K[AG]
module and V U. Th

(i) Cr(A*) (0) if and only if Cv(A , A*) (0).
U C(A*) (0) hen

(fi) n A*).
Remark. WithA* A, (i) says Cv(A) (0) if and onlyif C(A) (0).

For (i) we ow that

The r’s may be chosen in A. Because A* A and r e A we have the modules
in the sum conjugate to U n, ]*. So the centralizer of A* is the same
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dimension in each summand. But A G n A* A n A* so (i) follows im-
immediately.

For (ii)we apply (i)and (II.11).

Remark. (II.12) and the remark following it will be used heavily in section
VI, often without mention.

(1.13) Suppose A is a p group in which every characteristic abelian subgroup
is cyclic. Then A is the central product of a cyclic with an extra special group.
A proof is given in [7].

Ill. Class two p groups
In this section we compute the nonlinear irreducible characters of a class

two p group. We then use this result to prove a fixed point theorem for a class
two odd p group irreducible on a module over a prime Galois field. For the
remainder of this section suppose that P is a class two p group, Q is the rational
field, $ is primitive P root of unity, and k Q ().

(III.1) Suppose that P has afaithful irreducible character . Then (x 0
for all x e P Z (P ).

Let x e P Z (P). By the Clifford theorems Iz(e) ma, a multiple of a
single linear faithful character of Z (P). Choose y so that Ix, y] x-ix 1.
Then

(x) (x) (x[x, y]) (x)a (Ix, y])

since [x, y] e Z (P). But a is faithful on Z (P) so a([x, y]) 1. Hence
() o.

(III.2) THEOREM. Suppose is a faithful irreducible character of P. Then

paa; a faithful linear on Z (P)

0; outside Z (P)

and Pi p Z(P) I.
Clearly B Iztv) paa for some faithful linear a on Z(P) and pa dividing

IPI. Now

1 (t, f)e P 1-1 x.e f (x)f (x-1)
[e [-lp ,z(P)a(x)ot(x-z) P ]-1

This completes the proof.

(IIi.3) Suppose P has afaithful irreducible character of degree p. Let s (P)
be the number of subgroups A

_
P of order p such that A n Z (P) 1. Then

s(P)

_
(p- 1)p/(p- 1).

Consider P/Z (P). By (II.2) this group has order p. The largest pos-
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sible number of subgroups of order p in P/Z (P) is then (p 1 )/(p 1 ).
Let B/Z (P) be cyclic of order p. Then B is abelian of rank two or one. In
any case, it contains no more than (p 1)/(p 1) p -f- 1 subgroups of
order p. One of these must be the subgroup of order p in Z (P). Hence

s(P)

_
(p-- 1)p/ (p- 1).

(III.4) THEOREM. Suppose that p is an odd prime and r p is a prime.
Assume that V is an irreducible GF (q)[P], q r", faithful on P. Then there
exists a vector v V which is fixed by no element of P.
We proceed by contradiction.
Since r p, ordinary character theory holds. So we apply (III.2) several

times. Now PI pIZ(P)I so the Brauer character of V is a sum of
algebraic conjugates of the character of (II.2). The number 1 if and only
if V is absolutely irreducible. Hence

dim V tp.
So there are q 1 vectors in V. We know that Z (P) is elementwise fixed
point free on V. Hence, if v e V and Cp (v) 1 then Cp (v) n Z (P) 1.
Further, Cz (v) contains a cyclic subgroup of order p. So the largest number
of vectors in V which can be fixed by subgroups of order p will be s (P) times
the maximum number of vectors in V which can be fixed by a single subgroup
of order p.
Suppose A is cyclic of order p and A n Z (P) 1. Then by (III.2) we have

dim Cv (A) tp-1. So the prescribed product is s (P)[qt-I 1]. In order
to have every v e V fixed by some A <: P we must have

Using (111.3) we obtain

p (p 1)/(p 1) > (qt 1)/(qtV,- 1).

A simple computation shows that with p odd we must have p 3, q 2,
d 1, 2, and 1 for the inequality to hold. In particular V is absolutely
irreducible. But then V zCe is a multiple of a single one dimensional Z (P)
module. Or equivalently, GF (2) contains a primitive Z (P)!t root of one.
This contradiction proves the theorem.

IV. Extensions of extra special groups
In this section we compute characters of groups which are extensions of

normal extra special subgroups. Preliminary results in this direction are in
[3, 4 (13.6)].
We reintroduce the field of Section II. Suppose that Q is the rational field

and is a primitive AR root of unity over Q. We let k Q (). In what
follows we will be discussing k characters.
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Suppose AR is a group with normal extra special r subgroup R of order
rm+l. Assume that A centralizes D (R) and (I A I, r) 1. Let K GF (r)
(K and k are different fields). Consider the K vector space RID (R) V.
If vl 2 V RID(R choose x V1 xD (R and y v yD (R ). Then set
(vl, v2) [x, y] e D (R). We may identify D (R) GF (r)+ K+. Using
this identification (., becomes a nonsingular symplectic pairing on
V R/D(R) intoK+. Forv xD(R)eV, yeAweset

yv (yxy-I )D (R x-ID (R ).

With this conjugation as action V becomes a left K[A] module. Further, A
centralizes D (R) so A fixes the pairing (., ).

Fix a A --, A as that unique antiautomorphism of A which sends x --. x-for all x e A. Then a extends linearly to an antiautomorphism of K [A].

(IV.l) Suppose that 1 el + + et is a decomposition of 1 into primi-
tive central orthogonal idempotents of K[A]. Then, except possibly when e. ei
we have

(ei V, e V) O.

Choose anyv,veV. Supposee # e.. Thenee 0. So

(ei vi, e. v) (v, e e v) O.

The symplectic space V is nonsingular. So if ei V (0) then e V (0).
By choosing complementary bases we see that dimr e V dim e V.
Further e V -t- e V is a nonsingular subspace of V if it is not (0). Let

N, ker [A -- Aut ei V].

Since x e N, implies x- e N, we also have N N a. So (IV.l) has the
following corollary.

(IV.2) In the notation of (IV.l) we have, for all i,
( N., N, .
(b) dim ei V dim e V, and
(c) ei V - e. V is nonsingular or (0).

Now we decompose the space V. Since (I A [, r) 1, as a K[A] module, V
is completely reducible. That is,

V Vo - V’

as a K[A] module where V0 is irreducible.

(IV.3) As a K[A] module

v=v 4...4v.
where

(a) V is nonsingular
(b) (V, V) (O i j
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(c) (i) V is irreducible or (ii) V, W W’ as a K[A] module with
W, W irreducible isotropic subspaces of V,.

We prove this by induction on dim V. We examine the decomposition
V Vo - V’. First, suppose that Vo is nonsingular. Then set V0 V and
consider V* V". Since V and ( are A invariant and V is non-
singular we get

v v- V*
as a K[A] module and V* is nonsingular. Second, suppose V0 is singular.
Since ( and V0 are A invariant, V is K[A] invariant. So by complete
reducibility

as a K[A] module. Now tad Vo (0) and is A invariant. Further, V0 is
irreducible so tad V0 V0; that is, Vo W* is isotropic. In particular,
V0 V.
We see then that

is a K[A] decomposition. Further, by choosing complementary bases we see
that V is nonsingular and W, W are irreducible isotropic subspaces. Set-
ting V V*, as before we get, the K[A] decomposition

V= V - V*.
Now dim V* dim V so induction completes the proof.
Using (IV.3) we setR equal to the inverse image in R of V. Because V is

nonsingular we know that R is extra special with D (R) D (R).

(IV.4) R is the central product of the R i 1, s.

Since each R _> D (R), IR M >_ D (R). Further,

MID(R) , 4 V, V RID(R).

Hence M R. Also Z (R) Z (R D (R ).
Next, if i j then [R, R.] 1. This is immediate since (V, V) (0)

or equivalently [R, R.] 1.
Therefore, R is the central product of the R.
For the following lemma, the construction of the central product is im-

portant. Let R0 I (R) R be the direct product of the R. Also set M
equal to the subgroup of all I (R) yeRo such that the product in
RI] y 1. This subgroup is normal in R0 and is in IX (R) D (R). Further,
R Ro/M in a natural way. Since V 4 V for y R, yD (R) v
uniquely. Choose z e v so that the product in RI] z y. Then setting

(Y) 1-I (R) zM gives the desired isomorphism. In fact, this is an A iso-
morphism as is easily verified.
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(IV.5) Suppose that is an irreducible character of R (given in (IV.3))
which is nontrivial on D (R D (R). Suppose that for every i, I)() contains
the fixed linear character ofD (R ) D (R). Assume that X is an irreducible
character ofAR andX I Then the direct product character.

is irreducible on AR AaRo/M where Aa is the diagonal subgroup ofH- A

It is sufficient to note that 0 0 is an irreducible character of R0 with
M its kernel. Hence, , considered as a character on AR, is irreducible.

(IV.6) Suppose that Ao C (R ). Assume also that C (R) H Fur-
ther, let be an irreducible character of AR constructed as in (IV.5). Suppose
that (X ) > 0 for every irreducible character g A/H. Then

> o
for every irreducible character of A/Ao.
Sce A0 flH it is not difficult to see that A/Ao is isomorphic to a sub-

group of A/H.
Next, let Y be the sum of every irreducible character of A/H. We prove

that if the direct produc characfer Y is considered as a character of Aa
then Y contains every character of A/Ao.
Now Y is a character of A/H. Further, A/Ao is a "subgroup" of

A/H. Suppose is any reducible character of B A/H.
Then

whr is an irreduoibl oharaor of A/H. Bu Y + .
Therefore, Y contas every character of B.
Fally, if is any irreducible character of A/Ao, a subgroup of B, then

there is a character on B such that ]a/ contains a. But Y contas
so ( Y)a/ confabs a.
The result is immediate since Y is contained in X by hypothesis.

Character Values. From (IV.3), (IV.5), and (IV.6) it is evident that, in
order to compute the character values on AR, we need only consider the spaces
V. In other words, we need only consider submodules of V which are faithful
on A/H
The next few lemmas are technical in nature and are used to compute actual

character values.

(IV.7) Suppose A is cyclic andH C (R). Now dim V n& where
n (= 1, 2) is the number of K[A] irreducible submodules of V and d is the di-
mension o/ one of these. Then r"’ (- 1)’ (rood [A H] ).
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If [A’H] 1 the result is trivial. If [A :] 2 then ([A’H], r) 1 by
hypothesis so r is odd and again we are done. So we may assume [,4 :H] 2.

Let e K[A] be a primitive central idempotent such that e (0). For
the antiautomorphism , e (0). In particular, (I.2) says that
dim dim e*. That is, every K[A] irreducible submodule of has
the same dimension since there are at most two. Hence dim n.

Let be the smallest positive integer such that r 1 (rood [A’H]). Now
eK[A] is an extension of K (r) by a primitive [A :] root of unity.
Therefore eK[A] --_ OF (r). In particular,

dim eK[A] dim GF (r) d
the dimension of an irreducible submodule of V.

Suppose V W W. Then n 2 and we get
r’’’ r’/ r’ 1 (- 1) (- 1)’ (rood [A :H,]).

So we assume V is irreducible. Since V is nonsingular, its dimension is
even. So n 1 and d is even. By the choice of we get

r’’’/ r*/ 1 (-- 1) (mod [A :H]).
This completes the proof.
We now build a character. Fix i. Consider R, the inverse image in R of

V. Suppose dim V n d where n is the number of irreducible K[A] sub-
modules in a reduction of V and d is the dimension of one of these. Assume
H C (R)

(IV.8) Suppose A is cyclic and is a nontrivial linear character of D (R).
Then

Xx(x)= r’’/(z); x yz, yeH,, zeD(R)
(-1)’),(z); x yz, yA H,, zeD(R)
0 elsewhere

is an irreducible character of AR.
This result is well known [3, 4 (13.6)]. A remark on its proof" Let m n,

d d,R R,H H, Xx Xx.
(x r"/ (x x D (R)

0 elsewhere

is an irreducible character of R. The character fix extends to the direct prod-
uct H (R) R so that the extended character is trivial on H. Set

Nx (x (x ) [A H]r/X (z x yz, y e H, z e D (R )

0 elsewhere.

The character extends to a linear character h of A (R) D (R) which is trivial
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on A. Set

M (x) X IR (x ) rndX(z); x yz, yell, z e D (R

)(z); xyz, yeA H, zeD(R)

0 elsewhere.

By (IV.7), (1 (-1)"rd/s)/[A’H] is n integer.
Further

s= i
]-(-i).

romis remark,h proo is straightforward. urChr, hisyo writing
X gives"

(IV.9) Assume the conditions of (IV.8). Suppose r 1 [A H].
Th Xx contains every character of A/H.
For we get

where p/ is the regulsr character of A/H.
We still consider A to be cyclic, but now we wsnt to find s chrscter on sll of

R rsther thsn just R. First we define some numbers.

Dsmo. Let x e A. By (IV.2) Cr (x) C (x)/D (R) is of even di-
mension since it is non-singulsr. Let

2u (x) dim C (x).
Also let

n (x) number of nontrivisl K[(x)] irreducible submodules

in direct decomposition of V.

It is not difficult to see thst

() n, d,/

where summstion is over slli such thst x centrslizes V. And in the ssme
fsshion

n () n, (rood 2)

where summstion is over sll i such thst x is nontrivil on V. So thst (IV.5)
spplied to AR using the chsrscter of (IV.8) gives

(IV.10) Assume that A is cyclic. Suppose that is a nontrivial linear char-
acter of D (R ). For x e A we consir m (x and n (x as defined above. Then
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y(u) r() y xz, xA, zD(R)

0 elsewhere

is an irreducible character of AR.
We may also apply (IV.5), (IV.6), and (IV.9) to prove

(IV.11) Assume the conditions of (IV.10). If Ao C, (R) then Y I, con.
rains every character of A/Ao provided that rd - 1 [A’H] for every i.
The inequality here may be restricted under certain conditions.

(IV.12) Assume that A is cclic and A* is a subgroup. Suppose that pa is
the regular character of A and p, p, 1 and
any linear character of A and , (p) (p/a.) then

(% ) [A’A*]- 1; t la

[A’A*] 2; fl 1, ]a, la,

[A’A*]- 1; f I* 1,

The proof of this is a direct computation.

(IV.13) Suppose A is a cyclic odd p group. Assume the hypothesis of
(IV.10). Also assume Ao C, (R ). Then Y i, contains every character of
A/A except when

[A:A0] /[R:C(A)] + 1

and R/C, (A is a faithful irreducible A/Ao module. In this exceptional ease

Y I /[C(A)’D(R)] (pa],,- la)

Consider the decomposition of (IV.3). Suppose e is that primitive central
idempotent of K[A] yielding eK[A], the trivial A module. Then for the anti-
automorphism a, e e. Hence C(A)/D (R) eV is nonsingular. So also
is (1 e) V R/Ca (A). The decomposition into V then splits into V non-
trivial on A and V trivial on A. Let X be the character of AR given in
(IV.S). If R <_ C(A) then XI hl is a multiple of la. If
R _< [R, A] then Xx la gP/ =t= la for some g by the proof of (IV.9).
Now by the construction in (IV.5) we get

Yx I,, IX’ (g, P/, +/- 1, ) hl,

where the product is over some i’s. But by (IV.12) we see that only one i
can appear in the product since p is odd. And for that i,

Yxla-- (p/0- la)hla.

Hence [A’A0] /R’C,(A)] T 1. For this i we also have

r’’’’ -t- (- 1)"la [A "A0].

So n 1. Finally it is not difficult to see that h /[C(A)’D(R)].
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This method of proof also gives another conclusion.
section II.

Recall the map of

(IV.14) For of sectionII and A cyclic we get

IliA is odd then it is + la

In the proof of (IV.13) we did not use the fact that A was an odd p group
until we applied (IV.12). So as before we have

rx la IX’ (g, pa/a, 4- la)’hla.

This character corresponds to a tensor product of representations. Each
representationh in the product which is not trivial has a charactergpa/a =t= la.
Clearly (g pa/a 4- la) 4-1a where the sign is -F if ]A] is odd. Since
det (h (R) h) [det h]degAJ[det &]degA’ we easily see that (IV.14) is true.

(IV.15) THEOR. Assume that AR is a group with normal extra special
subgroup R of order r’+1 and (I A ], r) 1. Suppose A centralizes D (R ).
Assume that k is a nontrivial linear character on D (R ). Then there exists a
class function. A -- 1, 1 such that

x (Y) rm() (-- 1 )"()/(x)h (z); y xz, x e A, z e D (R

0 elsewhere

is an irreducible character of AR. Further "I (x 1 whenever (x) is odd.
Let M be the irreducible character of R lying over . Then M is fixed by A.

By (II.1) we may choose an extension x of M on AR such that

(i) xl = Xo
(ii) (x [a) la.

This choice of x is unique. Further, if A* _< A is n subgroup then x la’ is
the unique character on A*R satisfying (i) and (ii).
Let x A. By (II.2) and (IV.10)

for some linear character of (x)R/R. But (x
4-/3. Hence/3 4-1() and is a character of

maps x into {1, -1}. Further (x) i if I(x) is odd. Therefore x
has the values of (IV.15) where -/(x) =/3 (x).

Remark" If x A and x y and [(x)" (y)] 2 then (y) 1. This follows
by looking at x
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V. Class two extensions

Following (IV.10) we proved (IV.11) and finally (IV.13) which concerned
themselves with which characters appear in Y I. We now derive an analo-
gous result to follow (IV.15) when A is an odd class two p group.
Assume that p, r are distinct primes and p is odd. Suppose that P is a

class two p group of order p2d Z (P) where Z (P) P. Assume that PR
is a group with normal extra special r subgroup R of order rm+l. Suppose
that every irreducible P submodule of RID (R) V is faithful, and P cen-
tralizes D (R). Let K GF (r) and k Q () as before. All characters are
k characters unless otherwise specified.

Recall that V is a symplectic space. The Brauer character of P on V (p r)
is a sum of characters as in (III.2). Hence, dim V tpd. We must find
out what is. Let mb be the smallest positive integer such that

rmb- 1 (modpb)
Then for b 1,

r’--- 1 (modp).

As an obvious result we have

(V.1) Suppose c is the largest positive integer such that r1 1 (mod p’).
Then m ml if b <_ c and mb m pb-C if b > c.

Further, we have

(V.2) GF (r"a is the splitting field for P on V where Z (P P’.
The Brauer character of an absolutely irreducible P module over an ex-

tension of GF (r) is given by (II.2) and "lifts" values from GF (r’) exactly.
If PI p2 Z (P) then an irreducible GF (r)[P] module has dimension
p over some finite division algebra by the Wedderburn Structure Theorems.
So by the Wedderburn theorem on finite division algebras, GF (r’) is the
splitting field for P.

(V.3) If Z (P P" then t m n where n is the number of irreducible
GF (r )[P] modules in a decomposition of V.

The dimension of V over GF (r) is tp. By (V.1) and (V.2) every irreducible
GF (r)[P] submodule must have dimension m, p. There are n of them so
tp m np. Hence the result.
Next we compute information concerning m (x) and n (x).

(V.5) (a) n(1) 0 (mod 2), m(1) m.
(b) If x e P and (x) a Z (P l then n (x =- n (mod2) andm(x) O.
(c) If x P, (x) Z (P 1 and (x) Pr then n (:) 0 (mod 2) and

m (x) m/p.
The K dimension of V is 2m. Hence (III.3) shows immediately that

re(l) m. Further, n(1) 2mson(1)-= 0 (mod2).
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Next, Z(P) is fixed point free elementwise on V. So if x P and
(x) n Z (P) 1 then (x) is fixed point free elementwise on V. Therefore,
m (x) 0. If I(x) p then an irreducible K[(x)] submodule is faithful of
dimension m/. Hence

n (x) 2m/m =-- t/m] m np-’/m p]-" =-- n (mod 2)

since p is odd.
Finally, for x e P, (x} Z (P) 1, and ](x}l p we find from (III.3)

that (x} acts as t- regular representations on V. Therefore, m (x) tp-]/2
m//. Now IV, (x}] has dimension 2m (2m/l) (2m/l)(/ 1).

In other words, if p is the regular representation of (x} then (x} is represented
upon IV, (x}] as 2m/p times p 1. Let n0 be the number of irreducible
K[(x)] representations in p 1. Then n (x) (2m//)no. But p is odd so
2m//is even and hence

n (x 0 (mod2).

This completes the proof of .5).

(V.6) (a) r/’ (-1)" (mod p-+), 0 E i d.

(b) [r/’-’ (- 1)] p[r’ (- 1)] s p(-’++ > 0

for l i d unless d i, a n 1, p 3, m pand r 2.
()

0 ww w,
2d + ar +

_
r’ (p’ p’-+) W- (-1)" (p’-+ p’-)

for e l unless e 1, d a n 1, m p 3, and r 2.

To do this we require (IV.7). We exae the representation of Z (P) on
V. Sce an irreducible faithful K[Z (P)] module always has dimension m,
and since V z(e) is a sum of such modules, V () mus conta t//m np
reducible Z (P) modules. In our case p is odd. If n is even then

(-- 1) 1 (r’)"’ r (mod p+"-).
Now suppose n is odd. We look at V as a Z (P) module. Here (IV.3) tells
us that there must be some V irreducible. So for that j, (IV.7) tells us,
n landr -1 (modp). But thend mby (V.1). Hence

ff’)’’ r’ (- 1) 1 (mod p+-).

For (b) we rewrite

[r’’-’ (-- 1)’] p[r’’’’ (-- 1)’]

rml, (r[m(-l)llp p) -5 (p 1)(-1).
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Using (a) we have rm(-l)/ hp-+a - 1 for some h > 0. Hence our expres-
sion becomes

r"/ (1 + hp-+ p) - (p 1 (- 1 )’.
We assume this number is less than or equal to zero. So

rm/’ (1 -t- hp-+ p)

_
(p 1 (- 1 )+1.

But i _< d so the left hand side is positive and hence n W 1 is even. Further,
the left hand side is greater than p 1 unless h 1 and d -t- a i 1.
Now

m (p 1 )/p’ tp (p 1)/2p t(p 1)/2p-.
So rt(-)’-I 1 + p. Therefore r 2. But m pgn for some g _> 0
by (V.1). Andr1 1+fpforsomef>_ 0. But

m

_
t(p 1)/2p-so f 1 and

ml m pgn (p 1)/2p-.
Therefore pn pa-, and p 3. Hence ml 2 and m 2p- again by
(V.1). Sog=a-landn= 1. Therefore, we haver=ml=mn=t=2,
p 3. Nowm(p- 1)/p m 2som p tp/2 p. Andd i,
a n 1. And we have the exceptional case.
We argue on congruences for the rest of (b). By (a) we have

r’’ =- (-1)" (mod p-+).
Therefore r (- 1) -t- fp+-. Next

r’/’-’ [(-- 1) + fp+-]

(--1) -t-fP+a-+ zr" . (’) (fP+-’)(--1)"(*-).
And finally

[rmz*- (- 1)’] p[r" (- 1)]. () (fp+-)(- 1)’(*-) 0 (mod p(-)++l).
From this and the above, (b) follows.
Now consider (c). We rearrange terms.

r + _,_ r’’ (p’’ p’’-+) -=(-- 1 )" (p’-+ p’-) p’r_,.. p’-’[ (r"/’’-’ (-- 1 )’*) p (r’’’ (-- 1 )’)]_, p’-s p(-)+"+.
Now s 0 by (b) only if d i. Hence (c) holds unless e 1 and the ex-
ceptions of (b) hold. This completes the proof.
The preceding will help us evaluate inner products of characters. To take
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the inner products we must know more about the elements of P. Suppose
x e P. If (x) Z (P) 1 then we say x has central intersection, otherwise we
say x has noncentral intersection. Now p is odd and P is class two; so P is
regular p group. Suppose P has exponent p. For i e, setting
t (x x’ 1, x e P), we have t of exponent p and; the elements of P of
order p are exactly the elements in the set ft t_. Suppose 121 p
and set ft0 1, w0 0. Then P contains I -1 P’ P’- ele-
ments of order p

(V.7) Suppose that P has exponent e. Then for 1

_
i

_
e P contains

( p’ p’-+ elements of order p with noncentral intersection, and
(b) p-+ p’’- elements of order p with central intersection.

We have the subgroups of P. We want to define a new collection of sub-
groups (R) with

Further, the elements in t, , are precisely those of order p with non-
central intersection and ) t_ those with central intersection. The order
of is p’’-+. Hence () follows from 12 1 P P-’+ and (b)
follows from (9 t_ p-+ p-.

Let Z Z(P). Then define the map O(x) (xZ)- - for
x e gt. Now is a homomorphism of 2. For suppose x, y e ft. Then
Ix, y] e Z (P) n t so [x, y]’- Z. In other words,

,(x),(y) ’-’’-’ x---’-’-y [y, ]c(,-.) (xy)’-Z ,(xy),

since p- divides the binomial coefficient C (p-, 2).
Let ker . Now clearly

Suppose x e 2 fl._. Suppose x has noncentral intersection. Then
x’-’ Z (P) hence t(x) 1. Suppose x has central intersection. Then
x’-’ e Z(P) fl Z so O(x) 1. Hence O, partitions t, ft_ as re-
quired.
Nowwe need only compute the order of

of O. So forx, y

b (xy ) xy ) x y [y, x y ,(x),(y)
pi-lbsince [y, x]c’-’ [y, x]’- [y, x 1. Next choose P of

pe--1order p. We my choose x so that x e . For suppose not. Then here
pe--1s y e P so that [x y] 1. So [x, y] e Z (P! nd [x, y] hs order p. Substi-

tuting [x, y] for x we get the desired result, x’- e Z. But then x- e O t_.
So (x-’) 1. And b is a nontrivial homomorphism of O with kernel
2_ onto Z. Hence [O:2_] p or I01 P-+. This completes the
proof.
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In what follows, we retain the notation for 2 and .
(V.8) Assume that P is a class <_ 2 odd p group. Suppose PR is a group

with normal extra special r subgroup R (r p). Assume that P centralizes
D (R). Suppose Pe C, (R). Alsop rd - 1 for anyr r’ where 1R
and pC

_
expP p’. Then

( i, ) > o
for every character of P/Po and ( i’, )P 0 for all 1 of P such that

IPo 1, if is the character of PR given in (IV.15).

We proceed by induction on P -t- R I. First, we use (IV.3) to decom-
pose V RID (R) into Vs. Then we define R as the inverse image in R of
Vs. We consider the character x of PR given by (IV.15). Since
Pl - R, < PI " Rlif V decomposes we may apply (IV.5), (IV.6) and

induction to obtain the result.
Therefore, V is irreducible or the sum of two irreducible isotropic subspaces,

W, W*. Further P0 Cp (V) Ce (W) Ce (W*). From (IV.15) we see
that leo is trivial. So is a character of PR/Po. So applying induction to
]P/Pol R] we may assume that P0 1.

If P is abelian then P must be cyclic. So (IV.13) gives the conclusion.
So we are reduced to the group described in the second paragraph of this

section.
Now we start computing inner products. Consider an irreducible character
of P. Suppose (1) > 1. Then applying (III.2) which gives the values of
we see that if P ker then

/z(X) pd(X); xP e Z (P/P1)

otherwise.

Letting P/P1 Z (P/PI) we then get P’- + R < P -t- R I. So by
induction,

o < (p/[p:p,.])( I, ) ( i, ,).

Therefore we may assume that # (1) 1. Next suppose that 1,
+’ 1 for s >_ 0. Let P ker ’. We want to prove that for s >_ 1,

5:.- ;()(-) o.
In that case, IP! + IRI < IPi + IRI so

0 < (/)( I,., I,.) (; I, ,).
So if we prove this, we may assume that 1.

LetP ker. Let x e P so that (x, P) P. For any y P, (xy, P) P.
Hence i(xy) >_ P’+. From (IV.15) it is clear that x (xy) ([xy]) for
any (i,p) 1.
We now define a map y of P onto P1 which is one-one and given by
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,(y) y* where y (xy Suppose (xy) (xyr). Fix m so that
im 1 (mod pC). Then xy (xy)’ (xy)’’ xy’. Therefore y
In other words, v, (i, p) 1, is one-one onto.
Hence

So if s 1 then ,+.(.)_() 0.
So finally we assume that 1. Suppose 1. Then
< () 1 and (a) gives (since P P here)

for z e P P. Therefore, with

we get

These are the only two ner products which remain to be shown equal to
zro.
Suppose P 0_ but P is not 0. Then [fl_’fl_ n P] 1 or p.

First we compute B ,e-e (x). We sum up x (x) on the sets, i j,

and (0 O_,) (On P, ,_ o P,)

including finally the elements of

If fti Oil p’’ p,,-1+1 then

ft n PI O, r, PI P’’-I P"-I
and silarly for the second set sce [P:P] p. We t g 0 ff
[_"

_
n P] 1 and 1 otheise. So that

Now

(fl, 0,) (, n P, O, n P,) ((p 1)/p) (p" p"-’+’)
and

(0 e,_,) (0, n P a,_, n P) ( (p 1)/p) @"-’+ p"-’).
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And so,
B ,.,._,,. ()_,.. r’1’ (p’ p’-’+’) (p 1 )In)

+

_
(--1)’(p’-’+ p’-’) ((p 1)/p) + r-’(p-’ p-’-).

Next we compute A ,e x (x). Here the computations are silar.

A r +2 r’ (p’ p’-’+) W:(-1)" (p’-’+’ p’-’)

+ _r’(p’ p’-’+)(1/p) +

_
(-1)’(p’-+ p’-’)(1/p)

+ rz*- (p-’- p-+) + (1 f)rz*-’ (p-’ p--)
So we hve

P](xe, #)e A (1/(p 1))B

r +: rl’ (p,-+)

+: (-- 1)" (p’-’+ p’-’)

But this is greater than zero by (V.6) c). Fally

P ( I )
A + r + $_, r’ (p"’ p"’-’) + $_, (- )" (p"’-’+’ p"’-’)

which again is greater than zero by (V.6) c). This completes the induction.

(V.9) Assume that P is a class 2 odd p group. Suppose that PR is a group
with normal extra special r subgroup R (r p gorder r+. Assume Ce (R 1
and C (P) D (R ). Suppose that p" r + I for p exp P p" of d m.
Suppose X is an irreducible characr of PR nontrivial D (R ). Then

(X I, 1) > 0.

For irreducible on P, (ff, le)e > 0. By (II.2) and (IV.15) X
for some X. But by (V.8), ff is in x. Hence the result.

This theorem gives us the result like (IV.13) for class two odd p groups.

Vl. The main lemma
In this section we prove the major result of this paper.

group a similar result was proven by E. Shult [10, (4.1)].
For an abelian

(VI. 1 ) THEOREM. Suppose that A is a p group of class <_ 2 for odd p. Assume
that AG is a solvable group with normal subgroup G where (I A I, G[) 1.
Suppose that 1GI q’qo (m >_ O) for a prime q p and (q, qo) 1. Assume
k Q () where Q GF (q) or the rational field and is a primitive A ]qo root
of unity. Suppose V is a k[AG] module faithful on G. Assume that

(i) V is a sum of equivalent irreducible k[AG] modules
(ii) if exp A p" then p r + 1 for i <_ d <_ e and any prime r such that

r’+ divides iG I.
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Then
(1) C, (A ) (0) or
(2) C,(A’) (0) or
(3) C.(A’) (0) and there is cyclic D <_ A with

(a) C,(A’D) (0)
(b) Co (A’D) >_ Co (A’).

We assume that (VI.1) is false and choose a counter example (A, G, V)
minimizing ]A q- G] h- dim V. So we have the following:

(1’) Cr(A) (0) and
(2’) C,(A’) (0) and
(3’) for any cyclic D _< A
() Cr(A’D) (0) or
(b’) Co (A’D) is not > Co (A’).

(VI.2) V is an irreducible k[AG] module.

Here V V1 - V is a sum of equivalent irreducible k[AG] modules.
Hence (A, G, Vx) is a counterexample if and only if (A, G, V) is also. So 1.

(VI.3) V Itoo is a multiple of a single irreducible AoG module for every
Ao A A. In particular, VIo is homogeneous.

Suppose not. By (II.10) there is A0 _< A1 A of prime index p so that

v i,,,o u, 4... 4
where the Us are irreducible A1 G module and V ---ao U1 a. Let

G ker [G --. Aut Ud, G GIGs.
Clearly (Aa, (, U1) satisfies the hypotheses of (VI.1). Hence (VI.1)

holds, in this ese, by induction.
Now V[ ’’a Ul[’[a "" Gila, So by (II.12),

(1) Cv (A) (0) if and only if Cr(A) (0).

Also by (II.12)we have, since Ax > A’ > A’
(2) (0) Cv, (A, n A’) Cv, (A’) <_ Ctr, (A:).
Hence we find

(3) there is D _< A1 cyclic so that
(a") Cv, (A; D) (0) and
(b")
Using the fact that A1 >_ A >_ A1, from we get

(al) Ctr, (A’D <_ Cv, (A D) (0)

And
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SO

Co, ) >_ Co, ).

By choosing coset representatives of A1 in A we may prove that

(a) Cv (A’D) (0) and
(b,) C, (A’D)

_
C, (A’)

So finally

(a) C(AD) (0)nd
(b) C(A’D)

_
C(A’) by (II.5).

Therefore, V I is homogeneous.

(VIA) For every Ao < A we have Cv(Ao) (0).

Suppose A0 < A and Cv(Ao) (0). Hence we my choose A0

_
A A A

nd A1 < A of prime index since A is nilpotent, nd C(A) (0). Clearly
A

_
A’. So Cv(A)

_
Cv(A’) (0). So by (VI.3), V I, is homogene-

ous. Hence, using induction, we my pply (VI.1) to (A, G, V). From
the foregoing, it is clear that we hve

(a’) Cv(A;D)= (0) and(3) (b’)

for cycli D

_
A. So

() Cv(A’D)

_
Cv(A D) (0) nd C(D)

_
C(AD)

_
C(A)

> Co(A )
or

(b) Ca (A’D )

_
Ca (A

Hence the conclusion.

(VI.5) A is faithful on V.

Suppose not. Let A ker [A -- Aut V]. Since G is faithful and V is an
irreducible AG module we must have [A0, G] 1. Hence (VI.1) applies to
(A/Ao, G, V). In the usual way we obtain a contradiction.
Choose M < G as a maximal AG invariant subgroup of G. The group

G/M is an irreducible A module, where the action, for x e A and rM G/M, is

x (rM) r’-’M (xx-)M.
From each A orbit on G/M choose a representative M. So that
1 M, ..., M form a complete set of A orbit representatives. By (II.8)
we may choose , i 1, ..., m so that

Ca (’,) A n A"-’ A n (AM)"’-’= A,.
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By taking A conjugates of 1 1, ..., r we get a complete set of coset repre-
sentatives of M in G; i 1, ..., , ..., , where

Ca(,r) A n A"- A n (AM)’- A., j 1, ..., e.

Further A permutes the v. if we specify for x e A that,

x(. M) i(,) M.

Now V ia is homogeneous. Therefore, V ] V - VI with homo-
geneous components Vs. Further, G is transitive on the V’s and M fixes
each one. That is, f divides [G:M].

(VI.6) Iff # 1 then f e [G:M] and the V may be numbered so that A
fixes V Vx V, and A permutes the V exactly as it permutes the r.

Consider the permutation representation b of AG on the V’s. NowM is in
the kernel of . Further G n ker is a proper AG invariant subgroup of G
containing M, so it is M. Since G/M is abelian, G n ker is the subgroup
fixing each Vs. And now f e [G:M].
But is a transitive representation of A (G/M) given on the cosets of a

subgroup B of order IA (G/M)lie A I. So B and A are Hall IA sub-
groups of A (G/M). Hence they are conjugate in A (G/M). In other words
the representation is given on the cosets of A. Therefore A fixes, say, V.
Setting V r V we get the result.

(VI.7)
we have

If f # 1 then for (A, AM) coset representatives rl 1, ..., v

Since AM stabilizes V and Stab (AG, VI) lAG ]/e AMI we have
AM Stab (AG, V). Now M/ AG so Va V(AM)I.
By the Mackey Decomposition we get

(AM)

since (AM)’’-n A
Remark. If Vx ]a contains the trivial A module then V]ai] contains the

trivial A module by (II.12). So Cv(A) (0) implies that Cv (Ai) (0)
for each j= 1,...,m. (Hence also forj= 1,...,e.)

Let A ker [A --, Aut G/M].

(VI.8) If V IM does not contain the trivial AM submodule then f 1.
(i.e. V I is homogeneous).

Suppose V [ does not contain the trivial AM submodule. Now
AM M/X AG since [AM, G] <_ M and A/ A. By (VI.3) V lama is homo-
geneous and isomorphic to VI(AM M) Mo. Hence V (AM M) is homogene-
ous. Therefore (VI.1) applies to (A, M/M, V) where
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M ker [M --. Aut V]
by induction.
By assumption C(A) (0).
NextA _< Aforeveryj. SoA _< AnA’ foreveryj. IfCvl(A’)= (0)

then C.I (An A’) (0) for every. Hence by (iI.12)

Cv,j (A’) (0) for every j.

Thus Cv (A’) (0). So we must have Cv, (A) (0).
This means that when we apply induction to (AM, M/M1, VI) we have a

cyclic D _< A so that

(a") D) (0)
(3)

(b") CM/, (AM D >_ C/M, (AM ).

Set M ker [M --. Aut V]. Now AM D _< A soAD is centralized by
each v. Hence conjugation of A D by r- fixes A D elementwise. There-
fore

C/, (A’M D >_ C/M, (A )
So by (II.8)

That is,
Co(AM D) >_

Co (D >_ Co (A D) >_ Co (A >_ Co
And

(b) Co (A’D >_ Co (A ).

Again since each centrali.es A,
C(A’D) (0).

That is,

(a) C,(A’D) <_ C,(AD) = (0).

Hence f 1.

(VI.9) If A/AM is abelian then f 1.

If f 1 then A is cyclic and irreducible on G/M. Every orbit r x e A}
is regular on A/A except {v 1}. That is, A A,i 1. By the
remark nd (VI.8) we are done.

(VI. 10) If A/AM . is non abdian then f 1.

Now G/M is n r group for some r. But 2: is class two p group which is
faithful and irreducible on the GF (r) module G/M. So we pply (III.4) to
get a M which is fixed by no element of 2:. in oher words, CI (,) 1,
or C, (v) At A,. So again the remark nd (VI.8) show $ 1.
Under the hypotheses of (VI.1) this means V I is homogeneous or f 1.
Now G/M is an r section for some prime r. So by (II.6) we may choose an
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r Sylow subgroup R0 of G fixed by A. Next choose R h R0 minimal such that

(i) R is A invariant, and
(ii) RM=G.

We will prove that R is extra special.
Next consider V la V1 - V where the V are homogeneous com-

ponents. Since V I is homogeneous, each V is faithful and a multiple of a
single irreducible M module. Since Cv(A’) (0) we may choose V1 so that
Cv, (A’) (0). Clearly, Cr(A) (0) implies Cv, (A) (0), i t,..., t.
So we apply (VI.1) to (A, M, V) and obtain D <_ A cyclic so that

(a") Cr, (A’D) (0) and
(b") C(A’D >_ C(A’).

(VI.11 If A is abelian then C, (M) A* 1.

In this case, A’ 1 so CM(A’D) CM(D) >_ C(A’) M. Hence
D<_ Ca(M). ButC,,(A’D) Cv,(D) (0) sol D_< A*.

(VI.12) Ca(M) A* 1.

We may assume tha A is nonabelian. Let U be a homogeneous component
of V [a,.. Since V I is homogeneous, U is faithful on M. Now (A’D)’ 1
since A is class two, A’ <_ Z (A), and D is cyclic. Since C (A’D) (0),
Ce(A’D) (0). Further, Cr([A’D]’) U. So in applying (VI.1) o
(A’D, M, U) we ge$ (3) a cyclic D <_ A’D so tha

(b*) C([A’DI’D1) C(D) >_ C([A’DI’) M.

Also since

(a*) Cv ([A’D]’ ) Cv (DI (0),

we hayeD1 1. HenceD <_ C(M) A*.
(VI.13) A’hAM l and Ca(A*) M.

Suppose A* nA A0 1. Now A0/ A so we may take

AI Z(A)nAo 1

since A is nilpotent. We know that A* centralizes M and A centralizes
G/M. Hence by (II.5), A centralizes A and G. So A _< Z (AG). But V
is irreducible so A is cyclic and acts as scalar multiplication on V by (VI.5).
Hence C (A) (0). By (VIA) A A. But then A is cyclic and

(a) C,(A’A) C(A) (0) and
(b) Co(A) G >_ Co(A’) G.

Hence A* n A 1. But then A*AM/A/ A/A so
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(A’AM/AM) n Z (A/AM) 1 and Calm (A*) M.

(VI.14) We can choose R so that R <_ Ca(M), R is extra special, and
R/ AG. Eurther, D (R <_ M, D (R <_ Ca(AG).

Now G Na(M ). But M Ca(A*)so by (II.7)G Ca (M)Ca (A *
Ca(M)M. The group Ca(M) is A invariant so R may be chosen in Ca (M).
LetR1 Z(R). We knowRl_< Ca(M) soRl_< Z(G),sinceRM G.

Further Vla is homogeneous and faithful so R is cyclic and acts as scalar
multiplication on V. In particular, because AG is faithful, R _< Z (AG). So
R _< M and RI <_ Ca (AG). In particular, R is nonabelian.
By the minimal choice of R we must have M n R D (R) as the unique

maximal A invariant normal subgroup of R. Let R0 be any characteristic
abelian subgroup of R. NowRID (R) G/M so if R0 < R then R0 _< D (R).
But R is nonabelian so R0 <_ D (R). But then R0 _< M. We already know
that Ro <_ Ca(M) M Z (M) and V I is homogeneous. So

Ro <_Z(R) R
and R0 is cyclic. By (II.13) R is the central product of a cyclic and extra
special group. But by minimality of R, this means R is extra special.

Finally, R <_ Ca(M) normalizes itself and is normalized by A. Hence
R /XAG.

(VI.15) V Ix is homogeneous; Cv(AM) (0).

Here V]a is homogeneous. So, since R/x G, V IR is completely reducible
and the homogeneous components are permuted transitively by M since
MR G. But M centralizes R so V Ix is homogeneous.

Suppose next that C,(A) (0). NowA centralizes G/M ’, RID(R),
so it centralizes R. Further, AM/ A. Hence C,(AM) is a k[AR] submodule
of V. Let V0 _< Cv (A) be an irreducible k[AR] submodule. Since

Z(R) D(R)

_
Z(AG)

it acts as scalar multiplication nontrivially on V hence also on V0. Further,
on Vo, A is represented s A/AM. NowA < A since C,(A) (0). There-
fore V0 is a k[ (A/A)R] irreducible module. Also A/AM is faithful and ir-
reducible on RID (R). Now ]R r+ divides G !. Further, by hypothe-
sis, p r W lforanye_< candanyp_< expA. Hence we mayapply
(V.9) to the Brauer character of V0 to find that (0) C,o (A) <_ C,(A ).
But C, (A ) (0). Hence C, (A (0).

(VI.16) (VI.1) holds.

By (VI.12), A* 1. And by (VI.13)A*AM 1.
So by (VIA)C,(A) (0). This contradicts (VI.15).
holds.
We now curtail the hypothesis on k.

Hence AM < A.
Therefore (VI.1)
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(VI.17) COROLLARY. I (VI.1) we may assume that k is any subfield of
Q (). In particular, we may take

k

Suppose U is a homogeneous K[AG] module satisfying all of the hypotheses
of (VI.1) except that K _< Q () is a subfield of Q (). Let K () k Q ().
Then k is a finite extension of K. Let k (R) m U. Let V be any irreducible
k[AG] submodule of . Then V is a K[AG] module isomorphic to m copies of
an irreducible submodule U* of U for some integer dividing the degree of the
extension [k’K]. We apply the theorem to (A, G, V). Suppose

U* U*V rAol 4- 4- (m summands)

It is clear that

C,(L) -maol Cv.(L) 4- 4 Ctr.(L) (m summands)

for any L _< A. Also G is faithful on V since it is on U*. The two iso-
morphisms give (VI.17).

(VI.18) ColoLnm:. Suppose that in (VI.17), conclusion (2) arises. That
is,

(2) C,(A’)= (0).
Then there is 1 # D < A with

(a) C,(D) (O) and
(b) Ca(D) G.

Here V la,o V1 4- 4- V, where the V are (in the case of (VI.1))
homogeneous components. Let G ker [G -- Aut V]. Then we apply
(VI.1) to (A’, G/GI, V). Since A" 1, and Cr,(A’) (0) we get by
(VI.1) a cyclic D _< A’ so that

(d) C,(D) (0) and
(b’)

NowD <_ A’ <_ Z (A ). So

(a) Cr(D)= (0)
(b) Ca(D) G.
Remark. Again it is no trouble to extend this by the argument of (VI.17)

to the field K _< k.

VII. The main theorem
Let A be class _< 2 odd p group. Suppose AG is group with normal sub-

group G where ([ A [, [G[) 1. We define function b (G). Now

[A’C, Co(A’)][A"Ca (G) n A’] p
for some $. Set

f.
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Notice that Ca C(A’) >_ A’ so (G) f _< d where A p.
(VII.l) THEOREm. We assume hat A is an odd p group of class <_2.

Further, AG is solvable wih normal subgroup G where (I A I, G I) 1. Sup-
pose G has fi$ting length n and A is fixed point free on G (i.e. C(A) 1).
Then

() > n

unless p r - 1 where r+ divides G and p <_ exp A.

Proof is by induction on a minimal counter example G. First, G has a
unique minimal normal A invariant subgroup M. Suppose not. Assume
M, M are minimal normal A subgroups of G. Let G G/M, i 1, 2.
Clearly (G) _< (G). Let

b0 max {b(G,)l i 1, 2}.

Then by induction the Fitting lengths of G and G are bounded by b. So
also the Fitting length of G, which is contained in G X G, is bounded by
< ().
Second, for some prime q, 0q (G) M. Suppose not. Now M is a q group

so we consider Q 0q (G). Let Q0 D (Q). Then G/Qo has the same Fitting
length n as does G. But b (G/Qo) <_ b (G) and induction applies.

Finally we prove the result. Since M 0q (G) is unique minimal normal
A invariant, Ca (M) M. And as an AG/M module, M is faithful on G/M
and irreducible on AG/M. Applying (VI.17), (VI.18) we find that

(2) C(A’) 1 and there is cyclic D <_ A’ with
(a’) C(D) land
(b’) Ca(D G/M

OF

(3) CM (A’) 1 and there is cyclic D _< A with
(a) C(A’D) land
(b) Ca/M(A’D) Co/(A’).

In either case, (G/M) _< (G) 1. But the Fitting subgroup of G is M so
the Fitting length of G/M is n- 1. So n- 1 _< b(G/M) _< b(G) 1 by
induction. Or n _< (G).

(VII.2) Under the hypotheses of (VII.l), if lA P then n <_ d.

Added in proof. (II.13) is stated only for odd p. The application is made
for arbitrary p. The application is correct for the strong form of (II.13) given
in D. Gorenstein, Finite groups, Harper and Row, New York, 1968, p. 198.
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