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1. Introduction
We consider affine algebraic groups over a fixed algebraically closed base

field of characteristic 0. The totality of all polynomial functions on such a
group is the underlying set of a Hopf algebra over the base field, and the group
is recoverable from this Hopf algebra structure. Similarly, a tIopf algebra is
attached to a Lie algebra. The elements of this Hopf algebra are the repre-
sentative functions on the universal enveloping algebra of the Lie algebra.
The main theme of this paper is the comparison of the Hopf algebra of an

algebraic group with the Hopf algebra of its Lie algebra. Within the theory of
algebraic groups, this theme is very closely tied to that of group coverings. In
particular, we shall exhibit the use of Hopf algebras in constructing universal
coverings in the category of affine algebraic groups. An affine algebraic group
has such a universal coveting if and only if its radical is unipotent. Our pro-
cedure also yields a direct description of the "simply connected" affine al-
gebraic group belonging to a given Lie algebra L such that L [L, L] in terms
of the universal enveloping algebra of L.

I wish to thank Calvin Moore for his helpful comments and suggestions
both, in direct conversation, and in Chapter I of his forthcoming paper [8].

2. Algebraic group coverings
Let F be an algebraically closed field of characteristic 0, and let G and H be

connected affine algebraic groups over F. Suppose that V" H -- G is a
surjective rational group homomorphism with finite kernel. Then we say
that (H, y) is a group covering of G. We call G simz)lu connected if every group
coveting of G is an isomorphism.

LMMA 2.1. Suppose that G is simply connected, and that K is a connected
normal algebraic subgroup of G. Then G/K is simply connected.

Proof. Let 7 denote the canonical epimorphism G -. G/K, and consider a
group covering H -- G/K. We must show that the kernel, A say, of is
trivial. Let us form the fibered product P H X (,.) G, i.e., the algebraic
subgroup of H X G consisting of all elements (h, g) such that v (h) 7 (g).
Clearly, K may be identified with a normal algebraic subgroup of P, and
P/K is isomorphic with H. Since H and K are connected, it follows that P
is connected. Now consider the canonical projection epimorphism p P -- G.
The kernel of p evidently coincides with the canonical isomorphic image of A
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in P, and (P, p) is a group covering of G. Since G is simply connected, the
kernel of p must be trivial, so that A must be trivial.

LEMMA 2.2. If G is simply connected then the radical of G is unipotent.

Proof. Here, an affine algebraic group is called unipotent if every finite-
dimensional rational representation sends it onto a unipotent group of linear
automorphisms. This will be the case provided only that there is some faith-
ful finite-dimensional rational representation of the group by unipotent linear
automorphisms. Now let R denote the radical of G, i.e., the maximum con-
nected solvable normal algebraic subgroup. This contains the unipotent radical
N, i.e., the maximum unipotent normal algebraic subgroup. We have the
standard semidirect product decomposition G N.P, where P is a fully
reducible connected algebraic subgroup of G [9, Th. 7.1]. Here, an affine
algebraic group is called fully reducible if every rational representation of it
is semisimple. This will be so provided only that the group has some faithful
fmite-dimensional semisimple rational representation.
By considering the Lie algebra of P and using the well-known structure

theorem of Jacobson for fully reducible Lie algebras of linear endomorphisms,
one sees that the commutator subgroup [P, P] of P is semisimple, and that
P [P, P]Q, where Q is the connected component of the identity in the center
of P. Clearly, [P, P] n Q is zero-dimensional, and thus a finite central sub-
group T of P. Moreover, Q is a fully reducible connected algebraic group, and
therefore is an algebraic toroid, i.e., a direct product of copies of the mul-
tiplicative group of our base field F [1, Prop. 7.4 & Remark 7.5(2)]. Since G is
simply connected and P is isomorphic with G/N, it follows from Lemma 2.1
that P is simply connected. On the other hand, it is clear from the above
that P is isomorphic with the factor group of [P, P] X Q rood a finite central
subgroup that is isomorphic with T. Hence we may conclude that T must
actually be trivial, so that P is isomorphic with [P, P] X Q. Now Q is iso-
morphic with P/[P, P] and hence, by Lemma 2.1, is simply connected.
Being an algebraic toroid, it must therefore be trivial. Thus P [P, P] and
is therefore semisimple. Since G N.P, it follows that R N, so that
Lemma 2.2 is proved.

The following theorem reduces the consideration of simple connectedness
to the case of semisimple groups.

THEOREM 2.3. Let G be a connected ane algebraic group over the algebraically
closed field F of characteristic O. Let R denote the radical of G. Then G is
simply connected if and only if R is unipotent and G/R is simply connected.

Proof. The necessity of the conditions has already been established by
Lemmas 2.2 and 2.1. Now suppose that the conditions are satisfied. Let
/ H --. G be a group covering, and let K denote the finite kernel of 7. Let R*
denote the connected component of the identity in /- (R). Then R* is a
normal connected algebraic subgroup of H, and V induces a rational surjective
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group homomorphism y’ of H/R* onto G/R. The kernel of y’ is the finite
group (KR*)/R*. Since G/R is simply connected, this kernel must therefore
be trivial, so that K R*. Now the restriction of y to R* is a group covering
of R with kernel K. We have a semidirect product decomposition R* N. P,
where N is unipotent and P is fully reducible. Since the image of a fully
reducible group by a rational homomorphism is fully reducible and since the
unipotent group R has no non-trivial fully reducible subgroup, we have P K.
But P is connected, and K is finite. Hence P must be trivial, so that R*
is unipotent. Therefore, R* has no non-trivial finite subgroup. Hence K
must be trivial, and Theorem 2.3 is proved.

THEOREM 2.4. Let P be a connected normal algebraic subgroup of the simply
connected ane algebraic group G. Then P is simply connected.

Proof. Let R denote the radical of G. Then P a R is a normal algebraic
subgroup of P, and P/(P a R) may be identified with the corresponding con-
nected normal algebraic subgroup of the semisimple group G/R. The Lie
algebra of P/(P a R) is an ideal of the semisimple Lie algebra of G/R. Hence
it is semisimple and a direct summand of the Lie algebra of G/R. As in the
proof of Lemma 2.2, it follows that there is a connected normal algebraic
subgroup Q of G/R such that G/R is isomorphic with the factor group of
(P/(P a R)) X Q rood a finite central subgroup T. Since G/R is simply
connected, T must be trivial, so that G/R is isomorphic with (P/(P a R) X Q.
Hence P/(P r R) is isomorphic with a factor group of G/R rood a connected
normal algebraic subgroup (isomorphic with Q). By Lemma 2.1, P/(P r R)
is therefore simply connected. By Lemma 2.2, R is unipotent, whence also
P a R is unipotent. Since P/(P R) is semisimple, P a R is therefore the
radical of P, and we have from Theorem 2.3 that P is simply connected.
This completes the proof of Theorem 2.4.

Note that the condition of normality in Theorem 2.4 is not superfluous.
For example, if C is the field of complex numbers, the subgroup SO (3, C)
of SL (3, C) is not simply connected, although SL (3, C) is simply connected.
By a universal group covering of the connected affine algebraic group G

G*we mean a group covering --. G with the property that, for every group
covering /" H --+ G, there is one and only one group covering /* G* -- Hsuch that/ y* . This is easily seen to simply that G* is simply connected,
and it is clear from Theorem 2.3 that G can have a universal group covering
only if its radical is unipotent. We shall prove that, if the radical of G is
unipotent, then a universal group covering for G actually exists, and we shall
construct it explicitly from the Lie algebra of G. In order to do this, we must
firs discuss the Hopf algebra structures that are associated with groups and
Lie algebras.

3. Hopf algebras
Throughout, we shall consider groups, associative algebras, and Lie al-

gebras over the fixed algebraically closed base field F of characteristic 0.
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All associative algebras will have identity elements, and all algebra homo-
morphisms will send identity elements onto identity elements.
By an ane Hopf algebra over F we shall mean the following structure.

There is given a finitely generated F-algebra H that is an integral domain.
Thus, in the usual terminology, H is an affine F-algebra. We denote by

F --. H the canonical injection, i.e., the unit of the F-algebra H. There is
also given a counit c" H F, i.e., an algebra homomorphism of H onto F,
so that c o u is the identity map on F. Furthermore, H is endowed with a
comultiplication " H -- H (R) H, which is assumed to be an algebra homo-
morphism and to be coassociative, in the sense that (i (R)
( (R) i) o where i stands for the identity map on H. Finally, it is assumed
that (c (R) i) o i (i (R) c) o.Here, if’H (R) H -. H denotes the
algebra multiplication of H, we identify F @ H and H @ F with H, via

o (u (R) i) and o (i (R) u), respectively.
The general notion of a Hopf algebra is obtained from the above by allow-

ing H to be an arbitrary F-algebra. Our notation is that of [7, II.3], which may
be consulted for more details on the formalism we use here, in the case where H
is commutative. A symmetry of a Hopf algebra H is a linear endomorphism
yofHsuchthato(y(R)i) o=uoc o(i(R))o. In all the cases we
shall meet here, the symmetries are actually algebra anti-automorphisms.
If a and are algebra homomorphisms H -* F then one defines their product
a by a (a @ ) o % This multiplication of homomorphisms is associative,
and has c as a neutral element. If there is a symmetry y, then this is actually
a group multiplication; the inverse of the homomorphism a is given by

--1
a a o y. Thus, if H is a Hopf algebra with symmetry, then the algebra
homomorphisms H -- F constitute a group, which we denote by G (H).
Now let G be a connected affine algebraic group over F. Then G determines

an affine Hopf algebra H (G) over F as follows. As an F-algebra, H (G)
is the algebra of all polynomial functions of the algebraic variety structure
of G. The counit c is the evaluation f -- f(1) at the neutral element 1 of G.
The comultiplication is given by identifying H (G) (R) H (G) with H (G G)
and putting "(f)(x, y) f(xy). This Hopf algebra has a symmetry
where (f)(x) f(x-). It is immediate from the definition of affine al-
gebraic group over F (as given, for example, in [1, 1.2], or in [2, Ch. II]) that
the map that associates with each element x of G the evaluation x at x, is
an isomorphism of G onto G (H (G)). Conversely, if H is any affine Hopf
algebra with symmetry over F then the group G(H), as defined above, is a
connected affine algebraic group, with H as the algebra of all polynomial
functions. Thus, the Hopf algebra H (G(H)) may be identified with the
given Hopf algebra H.
The Lie Algebra of the group G (H) may be identified with the Lie algebra

of all differentiations H F, by which we mean the F-linear maps H --* F
such that (fg) c (f) (g) -t- (f)c (g) for all ] and g in H. The Lie product
[, r] of two such differentiations is given by [, r] (
We shall say that a linear endomorphism a of H is proper if
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(i (R) z) o /. One verifies directly that the maps z --, c o z and --* (i (R) ) o /

are mutually inverse linear isomorphisms between the space dual to H and
the space of all proper linear endomorphisms of H. In particular, the Lie
algebra of G (H) may therefore be viewed also as the Lie algebra of all proper
derivations of H, and the group G (H) may be identified with the group of
all proper algebra automorphisms of H. If H is viewed as the function al-
gebra H (G(H)), then the proper linear endomorphisms of H are precisely
those linear endomorphisms which commute with the right translations
f -- f. x, where (f. x) (y) f(xy), that are effected by the elements x of G.
The verification of this fact is straightforward. In particular, G (H) thus
becomes the group of all left translations f ----> x.f, where (x.f)(y) f(yx),
and the Lie algebra of G (H) appears as the Lie algebra of all those derivations
of H that commute with every right translation.
Now let L be a finite-dimensional Lie algebra over F. Denote the universal

enveloping algebra of L by U (L). We recall that U (L) is a (non-commuta-
tive) Hopf algebra, the comultiplication, d say, being the algebra homomor-
phism U (L) -- U (L) (R) U (L) that extends the map x -- x (R) 1 - 1 (R) x of
L into U (L) (R) U (L). A linear functional f on U (L) is called a representative
function if it annihilates some two-sided ideal of finite codimension in U (L).
The comultiplication d on U (L) dualizes to a commutative and associative
multiplication of representative functions, with which the space U (L) of
all representative functions becomes an integral domain (for this, see [4,
Section 2], for example). Moreover, H (L) has a coalgebra structure

:H(L) --,H(L) (R) H(L),

with which it becomes a Hopf algebra. The comultiplication is characterized
by "(f)(x (R) y) f(xy), where we identify H(L) (R) H(L) with the cor-
responding algebra of linear functionals on U (L) (R) U (L) U (L L).
It is easy to see that this actually identifies H (L) (R) H (L) with H (L L).

Let denote the algebra anti-automorphism of U (L) that extends the
map x --* -x of L into U (L). Then is a symmetry of the Hopf algebra U (L),
and its dual y is a symmetry of the Hopf algebra H (L).
Now suppose that the radical, A say, of L is nilpotent. An element f of

H (L) is called basic if it annihilates some power of the ideal generated
by A. The basic representative functions are precisely the functions asso-
ciated with those finite-dimensional representations of L whose restric-
tions to A are nilpotent. These functions make up a Hopf sub-algebra
B (L) of H (L). It is known that B (L) is a finitely generated F-algebra
[4, Sections 5-7], so that, with the restriction of as the comultiplication, it
constitutes an affine Hopf algebra. Moreover, B(L) is stable under the
symmetry y of H (L), so that it is a Hopf algebra with symmetry. We call
B(L) the canonical basic 8ubalgebra of H (L). By [4, Th. 7], we have
H (L) C @ B (L), where C is the algebra of the trigonometric functions,
in the sense of [4]; these are the representative functions associated with the
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semisimple finite-dimensional representations of L/[L, L]. In particular,
B (L) H (L) if and only if L [L, L].
We shall write G (L) for G (B (L)). By what we have seen above, G (L)

is a connected affine algebraic group whose algebra of polynomial functions
may be identified with B (L), and whose Lie algebra may be identified with
the Lie algebra of all proper derivations of B (L).

THEOREM 3.1. Let L be a finite-dimensional Lie algebra over F whose radical
is nilpotent. Then the group G (L is simply connected, and its Lie algebra may
be identified with L. Moreover, if G is a connected ane algebraic group over F
with unipotent radical, and if is a surjective homomorphism of L onto the. Lie
algebra of G, then there is a rational group homomorphism + G (L G whose
differential coincides with .

Proof. Since the radical of L is nilpotent, L is an algebraic Lie algebra, and
the map that sends each element x of L onto the left translation effected by
x on B (L) is an isomorphism of L onto the Lie algebra of all proper derivations
of B (L) (see the end of [4]). Hence the Lie algebra of G(L) may be identified
with L. Since the action of the radical of L by left translations on B (L) is
locally nilpotent, it follows that the action of the radical of G (L) by proper
automorphisms on B (L) is locally unipotent. Hence it is clear that the
radical of G (L) is unipotent.
Now let G be a connected affine algebraic group over F with unipotent

radical, and let G denote the Lie algebra of G. Suppose that is a surjective
Lie algebra homomorphism of L onto G. Let us view G as the Lie algebra of
all proper derivations of H (G). Then a extends uniquely to an algebra
homomorphism of U (L) into the algebra of all proper linear endomorphisms of
H (G). Let us denote this extension of by the same letter a. Now we define
a map a of H (G) into H (L) by putting * (f) (a) a(a) (if) (1) for every
element f of H (G) and every element a of U (L). The standard formal facts
concerning rational representations and their differentials (see [2] and [3])
show that a* is a homomorphism of Hopf algebras.
The restriction of to the radical of L is a surjective Lie algebra homomor-

phism of the radical of L onto that of G. Since the radical of G is unipotent,
the action of the radical of G by proper derivations on H (G) is locally nil-
potent. One sees immediately from this that a* sends H (G) into the Hopf
subalgebra B (L) of H (L). Hence, by dualization, a* defines a group homo-
morphism a+" G (L) --* G (H (G)) G. It is clear from the definition that

is a rational homomorphism, and that its differential coincides with .
This proves the second part of Theorem 3.1. If this result is applied to a
group covering p G -- G (L), it shows that p is necessarily an isomorphism.
Hence G (L) is simply connected, and the proof of Theorem 3.1 is complete.

Note that Theorem 3.1 implies that every simply connected affine algebraic
group whose Lie algebra is isomorphic with L is, itself, isomorphic with G (L).
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It follows that simply connected groups have the expected lifting property for
rational homomorphisms, as expressed in the following corollary.

COROLLARY 3.2. Let ? H -- G be a group covering. Let T be a simply
connected ane algebraic group, and let r be a rational homomorphism of T
into G. Then there is one and only one rational homomorphism r’ T -- Hsuch that o r’ r.

Proof. By Theorem 3.1, we may identify T with G(T). The image r(T)
is a connected algebraic subgroup of G, and there is evidently a connected
algebraic subgroup K of H such that the restriction of y to K is a group covering
K -, r(T). Hence we may suppose that r is surjective which implies that
the radical of G, and hence that of H, is unipotent. Now the differential
y of V is a Lie algebra isomorphism H --. G, and (yo)- r is a surjective
Lie algebra homomorphism T -- H. Hence we may apply Theorem 3.1
to conclude that there is a rational group homomorphism r’ G(T) --, H
whose differential is (y)- o r. It follows that y o r’ r. This, and the
uniqueness of r’, are clear from the fact that a rational homomorphism of con-
nected algebraic groups over a field of characteristic 0 is determined by its
differential.

4. The affine algebra of a simply connected group
If B is a commutative ring and A is a subring of B hen we shall say that B

is unramified over A if, for every B-module M, the only A-linear derivation
of B into M is the zero map. If, moreover, A and B are affme F-algebras
(i.e., integral domains that are finitely generated as F-algebras), and B is
finitely generated as an A-module, then we call B an afiine unramified exten-
sion of A.

Let H -. G be u group covering of connected affine algebraic groups over
F. Then it is easy to see that H (H) is an affine unramified extension of H (G).
The proof of this is contained in the proof of [6, Th. 3.2]. We wish to establish
the following algebraic-geometric criterion of simple connectedness for affine
algebraic groups.

THEOREM 4.1. Let G be a connected ane algebraic group over the algebraically
closed field F of characteristic O. Then G is simply connected if and only if
H (G) has no proper ane unramified extensions.

Proof. By our last remark above, he condition is sufficient. It remains
to be shown that if G is simply connected then H (G) has no proper affine un-
ramified extensions. In order to do this, we transfer the problem to the case
where the base field F is the field of complex numbers, in which case we may
apply topological considerations in order to obtain the result.

Suppose that G is simply connected, write P for H (G), and let Q be an affine
unramified extension of P. We must show that Q P. Choose a finite
system of F-algebra generators for P, and a finite system of P-module genera-
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tors of Q. The products of pairs of elements of the system of P-module gen-
erators of Q, and the images of the F-algebra generators of P under the co-
multiplication, may be written so as to involve, altogether, only a finite set of
coefficients in F. Let F0 denote the algebraic closure in F of the field ob-
tained by adjoining this finite set of coefficients to the prime field of F. Let
P0 be the F0-subalgebra of P that is generated over F0 by our system of F-
algebra generators of P, and similarly define the F0-subalgebra Q0 of Q. Then
P0 and Qo are affine F0-algebras, and Q0 contains P0 and is finitely generated
as a P0-module. Moreover, the comultiplication ofP sends P0 into P0 (R) F0 P0,
so that P0 has the structure of an affine Hopf algebra over F0. We
have P P0 @ F0 F and Q Q0 (R) r F. Since Q is unramified over P, it
follows that Q0 is unramified over P0 [6, Section 2]. Thus Q0 is an affine
unramified extension of P0.

Since F0 is an algebraic closure of a finitely generated extension field of the
field of rational numbers, we may regard it as a subfield of the field C of com-
plex numbers. LetP1 Po (R)C and Q1 Qo @C. ThenPis an
affine Hopf algebra over C, Q is an affine C-algebra containing P, and Q
is finitely generated as a Pl-module. Moreover, since Q0 is unramified over P0,
we have that Q is unramified over P [6, Section 2].
Now i will suffice to show that the algebraic variety whose algebra of

polynomial functions is P is simply connected in the topological sense. For
then it follows from a simple topological consideration that we must have
Q P1 (see [6, end of Section 2]), whence Q0 P0, and Q P.

Since G is simply connected, we have P H (G). Since P0 is finitely
generated as an F0-algebra and P Po (R) ro F, it is clear that, as the Lie al-
gebra of all differentiations P --, F, G appears in the form L (R) 0 F, where L
is the Lie algebra of all differentiations P0 - Fo. Hence we have
B (L) (R) F B (G), and we know from Section 3 that P may be identified
with B(G). It follows that the canonical map P0 --* B(L) is an isomorphism,
so that we may identify P0 with B (L). Tensoring with C relative to F0,
we see from this that P may be identified with B (L (R) r C), which shows that
G(P) is simply connected as an affine complex algebraic group. But this
implies that G (P1) is simply connected also in the topological sense, and our
proof is now complete.
Our results so far contain a characterization of the affine Hopf algebras

arising from Lie algebras with nilpotent radical. This may be stated as fol-
lows. Let (H, , u, % c) be an ane Hopf algebra with symmetry over the
algebraically closed field F of characteristic O. Then this is the Hopf algebra B (L
of a finite-dimensional Lie algebra L over F with nilpotent radical if and only if
the ane F-algebra H has no proper ane unramified extensions.

If (H, , u, , c) is any affine Hopf algebra with symmetry over F then the
algebra units of H are precisely the non-zero scalar multiples of the rational
homomorphisms of G (H) into the multiplicative group of F, by [5, end]. On
the other hand, one sees easily from the proof of Lemma 2.2 above that a
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connected affine algebraic group over F has no non-trivial rational homomor-
phism into the multiplicative group of F if and only if its radical is unipotent.
Hence, if H has no units other than the scalar multiples of the identity ele-
ment, then G (H) has unipotent radical, and therefore has a universal group
covering. If L is the Lie algebra of all differentiations H --, F, there is
therefore a finite abelian group A of algebra automorphisms of B (L) such that
H may be identified, by the canonical map H --, B (L), with the A-fixed part
B (L) of B (L). The group A is the kernel of the universal group cover-
ing of G(H), i.e., the fundamental group of G(H).

5. The universal enveloping algebra
Let L be a finite-dimensional Lie algebra over a field F of characteristic

0 (we need not assume here that F is algebraically closed). We recall a
basic result due to Harish-Chandra, according to which the elements of U (L)
are separated by the finite-dimensional representations or, equivalently, by
the functions belonging toH (L). The proof is as follows. By Ado’s theorem,
L has a faithful finite-dimensional representation. Adjoining a suitable 1-di-
mensional L-module as a direct summand to the representation space of such a
representation, we obtain a finite-dimensional faithful L-module V such that
every element of L acts on V as a linear endomorphism of trace 0. Choose a
basis (x, x) of L over F, and let e, e be the corresponding linear
endomorphisms of V. Since these are linearly independent and of trace 0,
we can complete this set to a basis (e0, e, ..., e) of the space E (V) of all
linear endomorphisms of V such that e0 is the identity map on V and each e
with i 0 has trace 0. For every non-negative integer r, let V ( denote the
rth tensor power of the L-module V. Then E (V ’) has a basis consisting of
the r-fold tensor products of the e’s. Now let u be an element of U (L), and
suppose that, when written as an ordered polynomial in the x’s, u is of degree
r. Then we have u v p, where v is a non-zero homogeneous ordered
polynomial of degree r in x, , x, and p is an ordered polynomial of degree
less than r. Now one sees directly that the canonical image of u in E (V ’))
is a sum v* -t- q, where v* is the tensor polynomial in e, ..., e that is ob-
tained from v by replacing each x with e, and then applying all permutations
of the tensor factors and adding up, while q is a tensor polynomial in
e0, e, ..., e each term of which has at least one factor e0. Clearly, this
implies that the image of u in E (V )) is different from 0 whenever u 0,
so that the proof of Harish-Chandra’s result is complete.
Now we topologize U (L) by making the two-sided ideals of finite codimen-

sion a fundamental system of neighborhoods of 0. Then, if F is given the
discrete topology, H (L) consists precisely of the continuous linear functionals
on U (L). Harish-Chandra’s result above means that our topology on U (L)
is a Hausdorff topology. The tensor product algebra U (L) (R) U (L), which we
may identify with U (L L), is topologized in the same way. Then both the
multiplication, and the comultiplication d, of the Hopf algebra U (L) are con-
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tinuous. Hence they extend to yield the structure of a topological algebra
on the completion U (L)* of U (L), and a topological algebra homomorphism
d* U (L)* --, (U (L) (R) U (L))*. Moreover, the tensor product
U (L)* @ U (L)* may be identified with a subalgebra of (U (L) @ U (L))*, in
the obvious fashion.
We may view H (L) also as the algebra of all continuous linear functionals

on U (L)*. With this understanding, we claim that the map that sends each
element u of U (L )* onto the evaluation f f(u of H (L at u is a linear iso-
morphism of U (L )* onto the dual space of H (L ).

In order to prove this, note that U (L)* may be regarded as the projective
limit of the system of the factor algebras U (L)/I, where I ranges over the
two-sided ideals of finite codimension, with the canonical epimorphisms
U (L)/I U (L)/J for I J; by Harish-Chandra’s result, the intersection of
the family of these ideals is (0), so that the canonical map of U (L) into U (L)*
is injective. If u is any non-zero element of U (L)*, there is a two-sided ideal
I of finite codimension in U (L) such that the canonical image of u in U (L)/I
is different from 0. Hence there is a linear functional f on U (L)/I such that
f (u) 0. Now f defines an element f of H (L) that vanishes on I, and we
have f(u) f (u) 0. Thus our above map is injective.
Now let r be any linear functional on H (L). For every ideal I of finite

codimension in U (L), let H (L) denote an annihilator of I in H (L). Then
H (L) is finite-dimensional, whence there is an element rr in U (L) such that
f(r) r(f) for every element f of H(L). Clearly, the coset r I is
uniquely determined by r and I. Now one sees easily that the family of
these cosets, as I ranges over the family of all two-sided ideals of finite codimen-
sion in U (L), defines an element r* of U (L)* such that f(r*) r (f) for every
element f of H (L). This shows that our above map is also surjective, so
that our assertion is proved.

Since U (L) (R) U (L) may be identified with U (L L) and H (L) (R) H (L)
may be identified with H (L L), we can show in exactly the same way that
(U (L (R) U (L * is isomorphic with the dual space of H (L (R) H (L ).

PROPOSTIO 5.1. A linear functional r on H (L) is a differentiation if and
only if the corresponding element r* of U (L)* lies in LU (L )* and satisfies
d* (r*) r* (R) 1 -{- 1 (R) r*. The linear functional r is an algebra homo-
morphism into F if and only if r*e 1 LU (L * and d* (r* r* @ r

Proof. This follows immediately from the above and from the definition
of the multiplication on H (L).

The elements u of U(L)* such that d*(u) u (R) 1 - 1 (R) u are called the
Lie algebra-like elements of U (L)*; necessarily, they lie in LU (L)*. The
elements u in 1 - LU (L)* such that d* (u) u (R) u are called the group-like
elements. The group-like elements constitute a subgroup of the group of
units of U (L)*, and the map to the dual space of H (L) is a group isomorphism
of the group of the group-like elements onto G (H (L)). Similarly, the Lie
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algebra-like elements constitute a Lie subalgebra of U (L)*, and the map to
the dual space of H (L) is a Lie algebra isomorphism of this Lie algebra onto
the Lie algebra of all differentiations of H (L).

It is interesting to note that the only group-like element in U (L) is the
identity element. For, suppose that u is a group like element in U (L), and
write u 1 W v, with v in LU (L). Then we have

d(v) =v(R) 1A- 1 (R)v-4-v(R)v.

If v is written as an ordered polynomial in given basis elements of L then d (v)
is seen to be a linear combination of elements x (R) y, where x and y are ordered
monomials in the given basis elements, and the sum of the degrees of x and y
is no greater than the degree of v. Hence, if v is different from 0, then the
terms of highest degree of v (R) v cannot appear in d(v), which proves our
assertion.
The most interesting case is the case where L [L, L]. Then we have

H (L) B (L), so that the group of the group-like elements of U (L)* may be
identified with the simply connected ane algebraic group whose Lie algebra is
L [L, L]. Moreover, in this case, we have that the only differentiations of
H (L) are the evaluations at the elements of L. Hence, if L [L, L], then
the only Lie algebra-like elements of U (L )* are the elements of L.

6. Some representation-theoretical facts
The purpose of this section is to display the significance of certain known

facts concerning the representations of Lie algebras and algebraic groups for
the structure of the Hopf algebras treated above.

THEOREM 6.1.
characteristic O.

Let L be a finite-dimensional Lie algebra over the field F of
Then the following five properties are mutually equivalent.

(1) L= [L,L].
(2) The image of every finite-dimensional representation of L is an algebraic

linear Lie algebra.
(3) The canonical map of L into the space of all differentiations of H (L) is

surjective.
(4) H (L is finitely generated as an F-algebra.
(5) Every unit of H (L is an F-multiple of the identity element.

Proof. It is a standard result that the commutator subalgebra of every
linear Lie algebra is an algebraic linear Lie algebra [2, p. 177, Th. 15], so
that (1) implies (2). On the other hand, if L [L, L], then one can easily
write down a representation of L/[L, L], and so of L, whose image is not an
algebraic linear Lie algebra. In order to do this, it suffices to exhibit a one-
dimensional Lie algebra of linear endomorphisms of a finite-dimensional
F-space that is not an algebraic linear Lie algebra. For example, the Lie
algebra consisting of all F-multiples of the matrix ( ) is not algebraic,
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because the semisimple and nilpotent components of this matrix are (] )
and( ), respectively, and these would have to belong to the Lie algebra if the
Lie algebra were algebraic. Thus (1) and (2) are equivalent.
The equivalence of (1) and (4) is known from the structure theory of H (L)

[4, Section 5 and Th. 5]. The equivalence of (1) and (3) follows from
Theorems 5 and 6, loc. cir., upon applying the isomorphism between the Lie
algebra of all differentiations of H (L) and the Lie algebra of all proper
derivations.

Finally, by [5, Th. 5], the units of H (L) are the non-zero F-multiples of the
F-algebra homomorphisms U (L) --* F, and one sees easily that there are such
homomorphisms other than the canonical projection if and only if L [L, L]
(see [4, p. 518]). Thus (1) and (5) are equivalent.

THEOREM 6.2. Let L be a finite-dimensional Lie algebra over the field F of
characteristic O. Then L is semisimple if and only if there is a linear functional
J or H (L) such that J o u is the identity map on F, and u J (J (R) i) o %
where u is the unit of H (L ) and / is the comult@lication.

Proof. First, suppose that L is semisimple. Consider H(L) as an L-mod-
ule, with L operating by proper derivations on H (L). Then H (L) is a locally
finite and hence semisimple L-module. Hence there is an L-module pro-
jection of H (L) onto its L-annihilated part, which is u (F). Let J denote the
composite of this L-module projection with the counit c. Then J o u is evi-
dently the identity map on F. The canonical L-module decomposition of
H (L) that corresponds to J is H (L) u (F) L.H (L). Hence, if is any
element of U (L), and f is any element of H (L), we have

J (t.f) u (1) (t)J (f).

Write v (f) g (R) h. Then t.f h (t)g. Hence

J (t.f) h (t)J (g),
so that

(] (R)

Since (u o J) (f) J (f)u(1), this shows that u o J (J @ i) o .
Conversely, suppose that there is a linear functional J satisfying the con-

ditions of the theorem. The first part of this proof has shown that these con-
ditions mean that J is a U (L)-module projection H (L) --* F. By elementary
representation theory, this implies that, for every finite-dimensionalU (L)-
module M, there is a U (L)-module projection of M onto its L-annihilatedpart
M. In turn, this implies that every finite-dimensional U (L)-module is semi-
simple (the group analogue of this is carried out in [7, II.2]; see also [7, XI.2] ).
Thus L is semisimple, and Theorem 6.2 is proved.
One calls a linear functional J on a Hopf algebra (H, , u, % c) such that

J o u is the identity map on F and u o J (J @ i) o v a gauge of the Hopf
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algebra. Proceeding in the same way as in the proof of Theorem 6.2, one
finds that an ane algebraic group is fully reducible if and only if its Hopf
algebra of polynomial functions has a gauge.

In the case of semisimple Lie algebras, and in the case of fully reducible
algebraic groups, one has orthogonality relations for representative functions,
exactly like those for compact groups (see [7, Ch. II, Ths. 2.4 and 2.5]), with
the gauge J taking the place of the Haar integral.

If L is a finite-dimensional semisimple Lie algebra over the field F of charac-
teristic 0, then one can obtain an explicit description of the gauge J on H (L)
as the evaluation at a certain element of U (L)*, as follows.

Let denote the Casimir element of U(L) that is associated with the adjoint
representation of L (see [7, XI.2]). Then lies in the center of LU (L) and
has the following property. If M is any finite-dimensional non-trivial simple
L-module then the linear endomorphism of M that corresponds to is a posi-
tive rational multiple of the identity map (if F is algebraically closed, this can
be written down explicitly in terms of the highest weight of M and the positive
roots of L). Now let I be any proper two-sided ideal of finite codimension
in U (L). Then U (L)/I is a finite-dimensional semisimple algebra over F. It
follows that I P1 n a Pk, where the P’s are all the maximal two-sided
ideals of U (L) that contain I. Each P is the kernel of a simple representa-
tion p of U (L), namely the representation of U (L) on a minimal left ideal of
U (L)/P. The representation p is trivial only if P LU (L). Hence, for
each i such that P LU (L), p(t) is the scalar multiplication by a positive
rational number P i. Hence the element 1 P -I of the center of
U (L) belongs to the kernel P of p. We define an element u of the center of
U (L) by putting ux IXP,u() (1 P, 1-1 t).

Let I’ be another two-sided ideal of finite codimension in U (L), and suppose
that I’ c I. Then we have I’ I n K, where K is the intersection of a
finite set of maximal two-sided ideals distinct from the P’s and of finite
codimension in U (L). Hence u, ux u, and u, u u(u 1).
Since u 1 eLU (L), we see from this that u, ueI. It is clear from this
that, as I ranges over the two-sided ideals of finite codimension in U (L), the
family of u’s defines an element u* of U (L)*. It is readily seen from this
construction that the evaluation of H (L) at u* is an L-module projection
H (L) --* F, and thus is the gauge of H (L).
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