
Q-SIMPLICIAL SPACES’ ’

The quasicomplexes of Lefschetz have proven useful in investigating the
fixed point properties of exotic spaces [1], [3], [11]. The purpose of this paper
is to report a simplification of Leftschetz’s quasicomplexes which is used to
give a unified treatment of several forms of the Lefschetz fixed point theorem,
including that part of the Schauder-Leray theory to which the Leftschetz
theorem is pertinent. No attempt is made to consider ramifications of the
related concept of the local degree theory of Leray, for my spaces will not
always be locally connected.
In this study, I adopt the point of view apparently taken by Lefschetz [5]

when he defined quasicomplexes" the key step in the classical proof of the
Lefschetz theorem for simplicial complexes involves the subdivision operator,
and if one is to extend the classical result he could do so by looking for a substi-
tute for this step. The result of such an effort is the concept of "Q-simplicial
spaces". Here the Q stands not for "quasi" but for the coefficient field of
which the Lefschetz number is member. Q-simplicial spaces enjoy some
advantages over the quasicomplexes defined by Lefschetz [5], and the weak
semi-complexes of Thompson [13]. Their definition is syntactically simpler.
They are not necessarily compact" a locally convex topological vector space
is Q-simplicial. Open subsets of, retracts of, and infinite products of Q-sim-
plicial spaces are all again Q-simplicial.
The principal technique used to derive these properties uses the fact that the

category of Q-simplicial spaces and continuous maps has a certain class of
infinite limits. My formulation of this class of limits is not categorical, how-
ever, it being simpler and more direct to define these limits in topological
terms. The formulation is more in keeping with the concept, introduced by
Klee [8], of "approachable sets," and so I have adopted that terminology for
describing my limits.
The proof of the Lefschetz theorem itself for Q-simplicial spaces is con-

ceptually simplified in that no reference to chain homotopies is necessary;
instead, use is made of the continuity axiom for Cech theory.
The last section is concerned with examples which show (1) Q-simplicial

spaces do not have a local characterization, (2) the class of Q-siraplicial spaces
depends in an essential way upon the characteristic of Q.
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1. Preliminaries
I will generally follow the conventions and notation of Spanier [12], other

conventions to be made explicit. In particular I will mean by chain complex
a chain complex C, over a field Q which is non-negative and is equipped with
an augmentation : Co --* Q. Any chain map in this paper, C, -- C’,,
will be assumed to preserve augmentation" 0 r. Let , be the reduced
chain complex of C,, and let , --* ’, be induced by . Let/q (C,)
Hq(,), q >_ 0. If K is a simplicial complex, then C,(K) is the oriented
chain complex of K, with coefficients in Q. An element of C, (K) is a chain
on K. If s is a simplex of K, let be the simplicial complex formed by the
faces of s.
A carrier r K C, of a simplicial complex K into a chain complex C, is a

function which assigns to each simplex s of K a subcomplex F (s) of the chain
complex C, such that for a face of s e K, 1 (t) is subcomplex of F (s). 1 is
acyclic if/ (1 (s)) 0 for s e K. A chain map C, (K) --* C, is carried by
1 if (C,(s)) c r(s) for seK. The classical theorem on acyclic carriers
states that if F is an acyclic carrier, then there exists at least one chain map
carried by F and any two chain maps carried by F are chain homotopic. The
derived complex, K’, of a simplicial complex, K, is the simplicial complex of
all finite sets {So, sl, s} such that So c sl s, e K.
A family a of subsets of a set Y is any set of subsets of Y. Let [J a (re-

spectively, l a) denote the union (intersection) of the sets of a. If X c Y,
let st. (X) be the family

st. (X) {A :A nX 0, A ea}.

Let St.(X) [Jst,(X), and letaIX be the family {AnX:Aea}. If
f Y’ Y is a function, let f-a {f-A A e a}. If is a family of subsets
of Y, refines a ( > a) if for each B e there exists As e a such that B As

strongly refines a ( >> a) if for B e , As e a may be chosen so that
St. (B) c As.
For a family a of subsets of a set Y and subset X of Y, I will need to consider

the following two simplicial complexes.

1.1. X. is the simplicial complex formed by the finite nonempty subsets
s X such that s A for some A e a.

1.2. N (a) is the nerve of a: the simplicial complex of all finite nonempty
subsets s of a such that l s 0.

Note that if W c X, then C, (W.) c C, (X.). If c is a chain in C, (X,), let
sup (c) be the intersection of those sets W X such that c e C, (W.). If c
is a chain in C, (N (a)), let sup (c) be the union

sup (c) [Jcar (c)

where car (c) is the intersection of those subfamilies of a such that
cC,(N()).
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The important relationship of X to N() is thatX and N( X) have he
same homology, according to the following theorem of Dowker [2].

1.3 THEOREM (Dowker). Let a be a family o/ubsets o] X. Then ther ar
chain maps

,(N()) V, (Z)

r: ,(Z) C,(Y())

which are chain homotopy inverses to each other and which satisfy $he following:
1.3.1. For a chain c on N (a),

sup (k (c)) sup (c)

.1.3.2. For a chain c on X
sup (l" (c)) St, (sup (c))

2. Q-simplicial spaces and the Lefschetz theorem
Throughout the remainder of this paper Y is a regular Hausdorff space, and

X is a subset of Y. A family a of subsets of Y is a covering of X if X [J a.
Let Covr (X) be the class of all coverings of X by families of open subsets of
Y, and for Y X, Coy (Y) means Covr (Y). Suppose that W is another
subset of Y and that and are families of subsets of Y. A chain map

--,

is subordinate to a family a of subsets of Y if for a chain c on X.,
sup ( (c)) St (sup (c)).

2.1 DEFO. A regular Hausdorff space Y is Q-simplicial at a compac$
subse X if for any a e Coy (Y), there exists an a a (X) e Covr (X) such
that a > a, and such that for every , e Coy (Y) there is a chain map

0 C, (X) --, C, (Y)

which is subordinate to a. Y is Q-simplicial if it is Q-simplicial at every com-
pact subset.

Evidently a quasi-complex Y of Lefschetz [5] is Q-simplicial for every Q. As
with Lefschetz’s definition of quasi-complex, Q-simplicial spaces could have
been defined in terms of nerves of open coverings. To see this one need only
to apply to the theorem of Dowker. The reason for my preference of X
over N (niX) is that if > a, then X is a subcomplex of Y. Let

denote the inclusion.
The proof of the next lemma is a straightforward argument involving acyclic

carriers.



2.2 LEMMA. Suppose X is a compact subset of a regular Hausdorff space Y;
then for any a Cov (Y), there exists a . Covr (X) such that " >> a. If
refines such a covering "r of X, then any augmentation preserving chain map

c,(Y.)

which is subordinate to % is chain homotopic to r
Now I want to show that the Lefschetz fixed point theorem generalizes to

Q-simplicial spaces if, roughly speaking, one takes care to consider only maps
which have relatively compact image, and for which the Lefschetz number is
defined as an element of a coefficient ring. It turns out that the choice of this
coefficient ring can be crucial, and that the integers are not always the best
choice.
Throughout, let P be a principal ideal domain, and let Q be the field of

rationals of P. If h" M --. M is a P-module endomorphism, let h h, let
h+ h o h", for n >_ 1, and let N (h) be the union of the kernels of h, n _> 1.
h is of finite type if M/N (h), modulo its torsion subgroup, is a free P-module of
finite rank. In such a case let tr (h) be the trace of the automorphism of
(M/N (h)) (R) Q which is naturally induced by h. This definition is due to
Leray [7], and its usefulness is a consequence of the next proposition of Leray.

2.3 PROPOSITION. Let h M M be a P-module endomorphism of finite
type. If h hi o h2 then h o hl is offinite type and

tr (h o hi) tr (h).

Furthermore if P Q, and M is a finite-dimensional vector space over Q, then

tr (h) trace (h).

2.4 DEFINITION. Suppose f Y --* Y is a map. Then f has finite type over
P if the ech cohomology homomorphism induced by f,

(f*)" H’(Y; P) H"(Y; P),

has finite type for n _> O, and is non-zero for at most finitely many values of n.
The Lefschetz index in P of such a map f is defined as

Ae (f) _>0 (-- 1 ) tr (f*).
This is an element of P and by the universal coefficient theorem for (ech
cohomology theory there is the proposition:

2.5 PROPOSITION. If f Y --* Y is a map which has finite type over P, then
f has a finite type over Q, and

2.6 DEFINITION. If f Y -* Y is a map, a Q-admissible image of f is a com-
pact subset X of Y such that X f(Y) and such that the corestriction of f,



44 R.J. KNILL

fx" Y --* X, defined by f(y) f(y), induces a ech cohomology homo-
morphism

(f*)" H"(X; Q) .--- H"(Y; Q)

which has a finite-dimensional image for all values of n, and which is zero for
all but finitely many values of n.

2.7 THEOREM. Suppose that Y is a regular Hausdorff space and f" Y Y
has finite type over P. If f has a Q-admissible image X c Y, such that Y is
Q-simplicial at X, then h, (f)e P and if Ae(f) 0, then f(x) x for some
xeX.

Proof. Since (f*)" H" (Y; P) --* H" (Y; P) is of finite type over P, then
tr (f*)ne p, for n >_ 0, and so Ap (f) e P.

Since X is compact, the universal coefficient theorem for Cech theory with
field coefficients applies and so the induced Cech homology homomorpgism

((fx),) H,,(Y; Q) H,,(X; Q)

has a finite-dimensional image for n _> 0, it is zero for all but finitely many
values of n, and

tr (f.) tr (f*),
where

(f,), H.(Y; Q) -, H,(Y; Q)

is the ech homology homomorphism induced by f. Thus

Ap(f) -:>0 (--1)" tr (f,)

n>_0,

that

(ii)

be the chain map induced by this simplicial map.
Now choose a Covr (X), Covr (X), Covr (X) and Coy (Y) so

St.(f(A))nA forAea.
The natural projection

(,), H,(X; Q) H,(X. ;Q)

is monic on the image of (fx), H,(Y; Q) --* H,(X; Q).
(iii) Let 7 Covr (X) be such that >> a, and choose Covr (X) so

that it refines both and (f-).
(iv) Let e Coy (Y) be such that > f-l and image (]), image

Suppose that fx x for all x e X. The remainder of the proof is concerned
with showing that Ae (f) 0.
For any e Covr (X), and for any > f-l, f defines the simplicial map
Y --, X which takes a simplex s e Y to the simplex f(8) e X. Let
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Then there is the following diagram of transformations of vector spaces
over Q.

H,(X; Q)
i,

H,(Y; Q) ()*) H,(X; Q)

(]i), U,(Xa; Q)H,(X ;Q) H,(Y;Q)

(r]_x), ", (I) (IV)

H,(Y]-I,, Q) H,(X,, Q)

The vertical arrows are the natural projections, i, is induced by the inclusion
X Y, and o, is induced by a chain map

C, (Z) -, , (Ys)

which is subordinate to f-7. All of the numbered subdiagrams are commuta-
tive except for (II), diagram (I) being commutative as u consequence of
Lemma 2.2 with a in that proposition replaced byf-a and in that proposition
replaced byf- in the diagram. My first step in showing that h (f) 0 is
to show that

(v) tr (f,). tr

Let
r, H,(X., Q) -- H,(X; Q)

be any linear transformation such that

r,

Since (), is monic on the image of (f), then

(r,(v.),(f:),). ((f),).

From the commutativity of diagrams (I), (III), and (IV), and from

it follows that
(r,(r),(fx),). (r,(),(/),,(),)..

So
tr (f,). tr (r,0r.),(f), ,(r),).

and from Proposition 2.5, this becomes

tr (f,). tr ((v),r,(4),).((f),)..
However, image ((f),). image ((v),(fx),)., and ((),r,(r),). is
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the identity on the image of (), (f),, so (v) holds’

tr (f,) tr ((f ),).
From Dowker’s theorem, it follows that for ’ =/IX,

tr ( ),), tr ((k’l’f),),
tr ((l’f k’),).

So from the Hopf trace formula one has

l’
where

z ’). (y(’)) c(y( )).

However from (i) one may show that for any oriented simplex on N (fl),
(l’ k’) () is zero, so A if) 0.

3. Q-simp]ic]a] spaces
The purpose of ts section is to develop properties of Q-simpficial spaces

wch do not depend on the choice of Q.
In [8], Klee defined the notion of an approachable subset of a topolocal

vector space, and used it to develop a locM degree theory. The concept itself
has been around a long time, one of the earliest users of it hang been Leray
and Schauder to extend Brouwer degree and its appfications to Banach spaces.
The next definition is an extension of the concept of Klee [8].

3.1 DFwo. Let be a class of pairs of spaces (W, V) such that
V W. A compact subset X of a space Y is approachable by if for eve.
a e Covr (X), there ests a pair (W, V) e e and maps

f’XV, g’WY

such that for x e X, g o f(x) and x are in a common set A e a. If is a class
of spaces we say that X is approachable in Y by if it is approachable by the
class of pairs (W, W), such that W e .

3.2 DFNWO. For a field Q, let be the class of pairs (W, V) such
that W is a regular Hausdo space, V is compact, and W is Q-gmplicial
at V.

3.3 THEOREM. If Y is a regular Hausdorff space and X is a compact subset
of Y, then Y is Q-simplicial at X if and only if X is approachable by Y is
Q-simplicial if and only if every compact subset is approachable by a class of
Q-simplicial spaces.

Proof. If Y is Q-simplicial at X, then (Y, X)e and, a fortiori. X is
approachable by . Conversely, suppose that X is approachable in Y by. If a e Coy (Y), then let/ >> f’ >> a be a sequence of coverings in



Covr (X), and let (W, ) eo be such that there exist maps

such that for x, go#(x) and z are in a common set R. Then
--1g ()Cov (f(X)). Let

() {wkf(z)}
nd le a a (X) be defined s

=/-((’) ()).

If Covr (X), then let ,’ -g (,) and define a chain map

c,(x ) --, c, (r)
as the composition

C,(X,)
f’)" ’ " C,(Y,)C,(V(,,)) C, (W,)

where is subordinate to a. Then is subordinate to a, for one may com-
pute that

sup (c) St (St (sup (c))) St (sup (c)).

The second part of the theorem follows from the first part.

3.4 COROLLARY. Suppose that X is a compac subse of a regular Hausdorff
space Y. Then Y is Q-simplicial a X if either

3.4.1. Y is Q-simpliciaI a a compact se X’ which contains X,
3.4.2. Y’ is Q-simplicial at X, for some subspace Y’ of Y,
3.4.3. here is a finer opology on Y, which induces he same topology on X as

he original, and in which Y is Q-simplicial a X.

3.5 COROLLARY. Any neighborhood retract of a Q-simplicial space is a Q-sim-
plicial space.

Proof. From 3.3, it follows that any retract of a Q-simplicial space is Q-sim-
plicial. To complete the proof, it suffices to observe that if Y is Q-simplicial at
X then every neighborhood U of X in Y is Q-simplicial at X, for if a Coy (U),
one may let a a {Y\X} and choose a as (a’) (X) U.

3.6 COROLLARY. Eery convex subse Y of a locally convex opological vector
space is Q-simplicial.

Proof. Every compact subset X of Y is approachable by the class of
Euclidean spaces.

3.7 COROLLARY. Every neighborhood extensor, Y, for the class of compact
spaces is Q-simplicial. In particular every absolute neighborhood retract for
normal spaces is Q-simplicial.
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Proof. Every compact subset of Y is approachable by the class of compact
convex subsets of locally convex topological vector spaces.

Comment. The nature of these results seems to indicate that the property
of being Q-simplicial is a local property. Not so. If Y is a space such that
every point has an open Q-simplicial neighborhood, then Y is not necessarily
Q-simplicial as Example 4.1 will show.

3.8 CoIoLa. Every totally disconnected regular Hausdorff space Y is
Q-simplicial.

Proof. Every compact subset of Y is approachable by the class of finite
Husdorff spaces.

Suppose thut X, X are compuct subsets of regular Hausdorff spaces Y
and Y, and a, a are families of subsets of Y and Y. Let a a X a be
defined by

and let X X X X. Then the Eilenberg-Zilber theorem [4] yields as a
special case-

3.9 TI,Ol,M. There are natural chain equivalences

u: c,(x) c,((x),) (R) c,((x..)),
: c,((x(,) (R) c,((x..).) --, c,(x)

where by "natural" is meant that for W W X W,. a subset of X,
u(C,(W)) ,((w),) (R) c,((w..)),

(c,((w).,) (R) c,((w,.))) c c,(w.).

3.10 CoRormav. If X is Q-simplicially imbedded in Y for i 1, 2, then
X X, X X,. is Q-simplicially imbedded in Y

Proof. If a e Covr (X), there are coverings

a e Covr (X) and a. Covr (X)

such that a X a, refines a. Then we may choose a a (X), as

a ai X a.
3.11 Coor.ia. If [Y]a is an indexed set o/Q-simplicial spaces then their

product space, Y II Y is a Q-simplicial space.

Proof. It suffices to observe that every compact subset of Y is approach-
able in Y by the class of product spaces of finite subfamilies of [Y]a, and by
3.10, these products are Q-simplicial spaces.

Comment. In general though the Lefschet fixed point theorem may hold
for two compact spaces, it need not hold for their product [9].
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4. Examples
I give two examples in this section. The first amounts to the observation

about an example of Wilder [14]. The second shows that the class of Q-sim-
plicial spaces depends on the characteristic of Q.

4.1 Example. Suppose that X S u $2 u A, is the compact subspace of
the complex plane defined by letting S and S. be the circles of radii 1 and 2,
respectively, and letting A be the spiral whose points z are of the form,

Then the cohomology of X is given by

H(X;Q) Q, g(X;Q) Q Q

and the Lefschetz number of the map f:X X defined by rotating X in
itself one-half revolution is homotopic to the identity, so,

h (f)

Thus X is not Q-simplicial for any Q, although it is locally Q-simplicial for
every Q since every point has a neighborhood homeomorphic to a product of an
interval with a totally disconnected space.
Now, let T be the additive group of reals modulo the integers, T R/Z,

with the quotient topology. For x R, let [x] denote the equivalence class
of x, and for any integer n, let n[x] [nx]. Let N be the set of natural
numbers, directed by the relation n divides m (denoted n lm). In this rela-
tion, m is regarded as larger than n. Let be the inverse system of compact
groups and group homomorphisms defined by letting

) [X p]..

where X, T for n e N, where m nq, q, n N, and where

hq p" Xm Xn
is defined byp(t) qt, T. The solenoid S is the inverse limit S lim._ ).
For each n e N, let

p, S---- X,, T
be the limit homomorphism.

4.2 PROPOSITION. S is Q-simplicial if Q is any field of characteristic zero.

Proof. It will suffice to find a cofinal sequence a, a, ..., a., in
Coy (S) which satisfies

1. For m nq, ,, a,, and the family {a "m nq, q 1, 2, ...} is
cofinal in Coy (S).
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2. If m nq, there is a chain map.

c,
such that is subordinate to

For n 1, 2, ..., we let

a, {A(k, n)" k 1, 2, ..., n}
where

A(k,n) pl({[t]. (k- 1)/n < < (k - 1)In})

fork 1,2, ...,n. Form nq, then p, p,p, and for [t] T,
(p)-l[t] {[t -t- in/m] i 1,..., q}

Thus, for each xeA(k, n), and for i 1, ..., q, there is a unique
x ) e A (k - in, m) such that p (x ) p (x).
We define

C, (S..) --, C, (S)

by letting, for (x0, x,) e C. (S,.),
o (a) (l/q)- (x0(), z’), x(,’)

If sup (a) A, then sup 0 (a) A, and so a is subordinate to

4.3 ToaM. The solenoid S has the following propvrties"

4.3.1. For any rational number r, there is a function f’S -- S such that
A (f) r, when Q is the field of rationals.

4.3.2. If the characteristic of Q is non-zero, then there is a function f" S -- Ssuch that A (f) 1, but such that f(x) x for all x S.
.3.3. S is Q-simplicial if and only if the characteristic of Q is zero.

Proof of 4.3.1 (See [15, exercise f, p. 296]). Let Q be the field of rationals.
ThenH0(S;Q) Q H(S;Q) andH,(S;Q) 0forn0,1. For any
rational number p/q, p and q integers, and any a S, the equation

px qa

has a unique solution x x, and the function f(a) x is a continuous func-
tion such that the induced homomorphism

(f.) "H (S;Q) --. H (S;Q)
satisfies

(f.) (Z) (p/q)Z, Z S (S; Q).

Thus h (f) 1 p/q, so if r is a preassigned rational number choose p and q
so that r 1 p/q.

Proof of 4.3.2. If Q is a field of characteristic q 0, note that if any n e N,
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nd m qn, then
0 ((p).) :H (T; Q) --* H (T; Q),

so that ((p.).) 0 for all n e N. Thus

H(S;Q) 0,

and for any map f S --, S, h (f) 1. Choosef to be a translation to obtain
that f(x) x for x e S.

Proof o 4.3.3. This is immediate from 4.3.1 and 4.3.2.
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