
ON 8 .-COBORDISM

BY

V. GABAVO
Since Lashof [7] pointed out that one could obtain a cobordism theory with

respect to any system Y of maps f Y -- BO, Y -- Y+, satisfying
the obviously compatibility condition with respect to the canonical map
PO -- PO+,, many people have considered various forms of these theories.
See e.g. [3] and []. See also Ston [14] for a very eneral treatment of the
subject.

In this note we consider the cobordism theory associated to the 7-connected
covering BO of PO. The algebraic structure is complicated and results
are given in low dimensions. The cohomoloy of the Thorn space MO8 is
examined, and its homotopy is partially calculated. The introduction of the
relative theory ]<>,s, permits the determination of some differentials, and
the 2 primary part of .(MO(8}) is given in dimensions _16. In the final
section the corresponding 3-torsion is calculated, and it is shown that there is
no p-torsion, for primes p > 3. Straightforward but complicated computa-
tions are not reproduced.
The results are partially contained in the author’s thesis (MIT, 1966).

1. Definitions
The term manifold will be used for compact C manifolds, with or without

boundary. BOk is the classifying space for k-dimensional vector bundles,
and /, the urdversal R{ k bundle over BO,. Let BO(8} denote the 7-connected
covering of BO, and p BO(8) BO, the canonical projection, i.e., p is a
fibration, BO(8} is 7 connected, and the homomorphism

p r(BO(8)) -- ’,(BO)

is n isomorphism if i >_ 8. An n-dimensional mnifold M embedded in
R{+ is sid to have n (8} structure if the mup v M BO clssifyingthe
normal bundle has lifting M - BO(8).
The "inclusion" i’BO BO+ lifts to mp" BO(8) -- BO(8)+

which is unique up to homotopy (and which my be chosen specifically).
Since the diagram

// p+

BO BO+
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is commutative, on (8) structure on M induces an (8)+1 structure. Thus we
obtain a sequence of (8)r structures, r /c,/ + 1, .... Two such sequences
are identified if they are the same for some r. A manifold has an (8) structure
if it has an (8) structure for some k. Letting BO(8) lim B0(8)k, we can
reformulate this as follows.

DEFINITION. A manifold M is said to have an (8)-structure if the classify-
ing map v" BO of its stable normal bundle admits a lifting
v M --+ BO(8). Note that this is equivalent to requiring that the first two
Stiefel-Whitney classes vanish (implying that M is a Spin manifold), and

Hthat v(W4) 0, where W4 e (BSpin, Z) is a generator, vl being any lifting
of v to BSpin. An (8)-structure on M is a homotopy class of such liftings
A mafifold with an (8)-structure will be called an (8)-manifold. A cobordism
relation ((8)-cobordism) is defined as usual" Two n-dimensional (8)-manifolds
are cobordant if there is an (n + 1)-dimensional (8)-manifold W such that

1. the boundary of W is the disjoint union of M1 and M., and
2. for each i 1, 2, the following diagram is commutative"

w BO(8)

M- BO.
VMg

.<8>Let be the set of equivalence classes of n-dimensionM (8>-manifolds with
respect to the above relation, and (.8) the associated graded group. Then
we have the following result.

.-.8) is a graded ring with operations induced by disjoint unionTHEOI 1.1. ,
and cartesian product. Moreover

(8> r(MO(8)) lim +(MO(8)).

Proof. The proof that f, is a graded group isomorphic to r,(MO(8)) is
special cse of theorem of Lshof [7]. To complete the proof, note that the
map BO BO BO induced by Whitney sum has a unique (up to homotopy)
lifting BO(8) BO(8) --+ BO(8). This gives unique (8) structure on the
product of two (8) manifolds.

A simple surgery rgument [7] shows that every (8)-mnifold of dimension
>_ 16 is (8)-cobordnt to 7-connected mnifold. Hence ,n >_ 16canbe
considered as the cobordism group of n-dimensional 7-connected manifolds.

2. The E term

In this section the E. term of the Adams spectral sequence for the 2-primary
part of z.(MO(8)) is computed. Here, and in 3, all homotopy and coho-
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mology will be with coefficients in Z2, and will denote the 2-primary part
of the ith homotopy group. A will be the moO. 2 Steenrod algebra, and A+

the ideal of terms of positive degree in A.
In order to compute the E. term, we need the cohomology of MO(8) a

module over the Steenrod algebra. The following lemma is the first step.

LEMMA 2.1. H*(BO(8)) is a polynomial algebra with generators

w e H(BO(8})
such that i 1 has at least three ones in its dyadic expansion. Moreover each
w is the image of the ith Stiefel-Whitney class in H(BO) under the map p,
induced by the projection.

Proof. This is Theorem A of Stoag [13].

Since H*(MO(8}) is isomorphic as graded group to H*(BO(8}), we have
only to compute the A-module structure in H*(BO(8}). But this is a quotient
of H*(BO), and one can compute the action of A on any element of H*(MO(8})
with the Cartan and Wu formulas, and the fact that Sq(U) w U, U be-
ing the Thorn class in H(MO) or H(MO(8}). As an example we have the
following lemma"

LEMMA 2.2. Let A2 be the Hopf-subalgebra of A generated by the elements
Sq, Sq1, and Sq. Let A+ be the ideal in A2 of terms of positive degree. The
map

e A//AA+ H*(BO(8})
given by e(x) xU is a monomorphism.

Proof. Since A2 is a Hopf-subalgebra of A, AAA+ is a coalgebra, e is
a map of coalgebras, and hence it suffices [12, Prop 3.9] to prove that e is a
monomorphism on the primitive elements of A//AA+. To compute the
primitive elements, recall that they correspond under duality to the indecom-
posables in the dual. A* is isomorphic to the polynomial ring Z2[1, ,
with generators of degree 2 1, and (A/AA+)* is isomorphic to the sub-
ring Z[, ., , , ]. Hence there are primitives only in degrees 8, 12,
14, and 2 1 for i >_ 4, and there is only one primitive in each of those
degrees. The first three are the classes of Sq, SqTM, and Sq-the only nonzero
elements iu those degrees, and the others are the projections of the primitives
in A, usually denoted by Q, i>_4. To complete the proof note that

SqU w. U 0, j 8, 12, 14
and

Q U w i_1 U - (decomposables) U.

But w i_ 0 in H-(BO(8}) if i >_ 4.

CoRollarY 2.3. As a module over the Steenrod algebra in dimensions <20,
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H*(MO(8)) is isomorphic to the direct sum of two copies of AAA+ one start-
ing in dimension O, the other in dimension 16.

Proof. In this range there are only six elements in H*(MO(8)); call them
the images under the Thorn isomorphism of W, for i 8, 12, 14, 15, 16, and
the image of w. All but the class corresponding to w are in the image of e,
and Sq(ws) 0 for i < 8.

In dimensions 50, one can compute the structure of H*(MO(8)) by brute
force. The results are given below. In these dimensions H*(MO(8)) is the
direct sum of cyclic modules of six different types. The modules, together
with the dimensions in which A generators for them appear, are as follows
(repeated integers indicating more than one summand of a given type with
generators in the same dimension)"

AAA+ 0, 16, 32, 32, 48, 48, 48

AA(Sq, Sq, Sq, qqia) 20, 36, 36

AlIA S,I, Sq) 40

AlIA Sq, Sq) 44

AlIA Sq, SqSq1) 46, 46

AlIA qi, q.) 48

We now compute the E term of the Adams spectral sequence up to dimen-
sion 17, i.e., Ext(AAA+, Z) for s < 17. But Exta(A//AA+, Z,.)
Ext(Z, Z_) (Liulevicius [9, Theorem 1.5]). Now Ext,(Z., Z) was com-
pletely determined by the author in his thesis using the results of Peter May
[10], and independently, using other methods, by N. Shimada and A. Iwai
[6]. We refer the reader to either of these sources for complete results and de-
tails of the methods of computation.

THEOREM 2.4. As an algebra, ’Ext(Z, Z), in the range s < 17, has
9 generators: ho, h, h., Co, o, r, do and . The gradings can be read off of
Figure 1. There are the following relations" h h,_,, h + ho h, h ho h Co,
h co, h co, h Co, h r, h r - ho ., h , ho - h do, h do - ho Co, h do + h o.

Moreover, each element denoted by a latin letter is the image of the corresponding
element of Exta(Z, Z), and oo corresponds to the periodicity [10]. Figure 1
gives Ext.(H*(MO(8)), Z). The elements x, hg x, and h x come from the
second summand of H* MO(8)).

3. Differentials

An inspection of Figure 1 yields that the only elements which may not be
permanent cycles are r, , e0, x and their multiples with h0. We will show
that x is the only cycle among these four. This follows from the following
theorems.
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co

htco hot do ho eo
h h co

ho h h h box hx
0

0 10 11 1 1 14 1 17

NxCi (*(0(8), Z), Z) for 17

THEOaV,M 3.1. 14 Z.
TunoanM 3.2. ,, Z.
These will be proved at the end of this section.

(8)TnonM 3.3. In the Ams spectral sequence for
d u ho do d r h

(ii) d(x) O for all r,
(iii) d(e0) co.

Furthermore, these determine all different in the range s 17.

Proof. To prove (i), we use Theorem 3.1. Since d0 is a permanent cycle
so are ho d0 and h do. But) Z, hence two of these three elements must
beboundaries. Hence () h0 d0. Now d(h0 ) h d0, but h
and hence d(h ) h d0 h . Hence d(r) h and this proves (i).
For dimeional reasons all other d2’s are 0. Consider E3. By 3.2, is
Z, and there is oy one element in E in dimension 15, namely the class of
h , this must remain to E. Hence there is no candidate for d(x), and it
must be 0 for all r.
To see (iii), note that the canonical map S MO(8) induces a map of

spectra, and hence a map of spectral sequences from the Adams spectral se-
quence for the homotopy of the sphere spectrum S to that of MO(8). Fur-
thermore both c0 and e0 are in the image of this map. If we denote the pre-
images by the same letters, then according to May [10] we have d(e0) c0 in
the spectral sequence for the sphere. Naturality gives the desired result, and
the proof of the theorem is complete.
From E (Figure 1) and Theorem 3.2 one obtai the E term. Recall that

multiplication in E with ho corresponds to multiplication by 2 in the homo-
topy. This fact gives all the eensions except in mensions 8 and 9. In
dimension 9, we have 2[h c0] 2([h][c0]) (2[h])[c0] 0. To see that the
extension in dimeion 8 is trivial, note that c0 (and [c0]) are in the image of the
map induced from the canocal map S MO(8), and hence [c0] has order 2.
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.<8)The following tables gives the two primary components of t for n < 16.

n 0 1 2 3 4 5 6 7 8 9

2<s) Z Z Z Z8 0 0 Z 0 Z (R) Z Z Z

n 10 11 12 13 14 15 16

t( Z 0 Z 0 Z,. Z: Z @ Z

We return now to the proof of Theorem 3.1. To do this we introduce the
relative cobordism theory <s>.spin, which will be defined as follows" Let

r MO(8) ---. MSpin

be the map induced by the canonical projection p BO(8) -- BSpin BO(4).
Let R denote the mapping cone of z. From the Puppe Sequence for p one
obtains an exact sequence-- r(MSpin) - z(R) -- z_l(M0(8} -- ....
Denote by 11<8)’spi the group (R). The proof of Theorems 3.1 and 3.2 fol-
lows from the following two lemmas.

LEMMA 3.4. r4(MSpin) z(MSpin) Z.

Proof. See Anderson, Brown, nd Peterson [1].

o.
Proof of Theorem 3.1. We have the exact sequence

and by Lemmas 3.4 and 3.5, this reduces to

0 + e) -* Z - 0.

Proof of Theorem 3.2. From 3.5, we have the exact sequence

and hence there is an epimorphism ) Z. By Theorems 3.1 and 3.3 (i)
however, d=() h0 d0 and d=(ho ) h do. Hence there is at most one
nonzero element surviving to E in dimension 15.

Proof of Lemma 3.5. The proof uses the unsatisfactory techaique of very
primitive calculation, which in the required dimensions is not difficult. We
need the following lemma.

LEiVIMA 3.6, As a module over the Steenrod Algebra, H*(R) in dimensions
_<15 is the direct sum of 3-cyclic modules" AA(Sq, Sq), AAA+ and
AA Sqa). The generator for the first type appears in dimension 4, for the
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second in dimension 8, and for the third in dimension 10, i.e.,

H*(R) (AffA(Sq1, Sq4))4 + (A/ffA(Sq, Sq2))s + (AA(Sqa))o.

Proof. There is a long exact sequence
,

---+ Hk(R) --+ H(MSpin) rr HA H+(R ....(M0(8)) -- --But Lemma 2.1 implies that r is aa epimorphism, hence we h.ve a collection
of short exact sequences

0 -+ Hk(R) H(MSpin) -- H(MO(8) --> O.

Since H*(R) is embedded in H*(MSpin) as an A-submodule, one easily mkes
the required computation.
To prove Lemma 3.5, one constructs resolutions of the three modules above.

This has in part already been done [9]. The case Ext]t(AA (Sq, Sq) Z),
which hs not ppered in print, is not difficult (nor are the other cases) ia the
required dimensions, and the construction is left to the reder. One notes
the following relations"

Ext](AA(&, S); Z) 0 if s 10, 11;

Ext](A//A (Sq, Sq) Z) 0 if s 5, 6, 7;

Ext]t(AA(&) Z) 0 if s 4, 5.

Hence, putting this together we see that Ext]t(H*(R), Z2) 0 if s 14,
15, i.e., the E term of the Adams spectral sequence vanishes. Hence
7/’14 (R) 71"15 (R) 0 and the lemm is proved.

4. Odd torsion

The methods for p odd are essentially the same as for p 2, except that
most of the work has been done. Let p be a fixed odd prime, A the mod p
Steenrod algebra. We apply the following theorems from [4].

LEMMA 4.1.

H*(BO(8}, Z,) Z,[ae [2i # pJ q- 1] (R) [i i 1, 2, ...]

H=(,i+)where aei e Hi(BO(8}; Z,) and e (B0(8}; Z,).

LEMMA 4.2. If p > 3, H*(MO(8}; Z,) is a free module over the subalgebra
’A, of A, generated by the reduced power operations.

Proof. The first statement is Theorem 1, the second Corollary 1 of [4].
These two lemmas, together with the results of either Milnor [11] or Brown-

Peterson [2] yield the following corollary.
"() has no p-torsion for p > 3. Thus we have determinedTnEOR 4.3.

(s) in low dimensions up to elements of order a power of 3.the structure of.
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It seems to be quite difficult to determine the 3 primary part of ft(8) The,
mp e of Lemm 4.2 is no longer monomorphism.

e((P1) (p1 (Thom class) e H4(MO(8); Z) O.

Moreover, H*(MO(8); Z,) is not the direct sum of cyclic modules. To see
this, consider the element

(P U H(MO(8}; Z,) Z3,

where U H(MO(8}; Z,) is the Thom class. By Milnor [11] (P3U =i=5C3 U.
NOV(

U Hs(MO(8); Z)
and we claim (e(h U) +/- U. This is true also in BO(8), i.e.,
(h =t=SC. One can see this geometrically, or note that the projection

BO(12) BO(8)

carries , to 0, where upon a cursory inspection of the Serre spectral sequence
for the fibrtion p gives the result.
One can, however, make the computation in some dimensions.
To do this we introduce the bordism groups 2(s)’ of (8)-manifolds with

framed boundary. These groups can be described algebraically as follows:
Let a S -- MO(8) be the inclusion of the sphere spectrum into MO(8). Let
X be the cofibre of a. Then the stable homotopy of X is just the bordism
group 2. See [13] for details.

LMM 4.4. For n <_ 18, 2)’t has no 3-primary torsion, and

’ (R) Q 0
unless n 0 rood 4.

Proof. Look t the exact cohomology sequeace of the cofibration defining
X. Then siace H(S) 0 if q > 0, we have H(X) H(MO(8)) for
q > O, H(X) 0. Using Z coefficients, we have for q _< 18,
H*(X; Z) Z[I, 03,04]. Now (11 "+’0 nd 60 +/-0 so in these
dimensions H*(X; Z) is free module over ’A. Hence r(X) has no 3-torsion
for q < 18.

The second statement follows from the facts that the statement is true for
MO(8), nd that v(S) (R) Q is 0 if q > 0.

TaEOaEM 4.5. For i < 18, i # 3 rood 4, the map -. ) is a mono-
morphism onto the 3-torsion.

Proof. This follows immediately from Lemma 4.4 and the exact sequence

n--1 n--1 --’> n--1

obtained by applying the stable homotopy function to the cofibration
S MO (8)--)X.
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THEOaEM 4.6. s) Z3 4k- 0 for ]c 2, 3, 4.

Proof. We have fl- - 0. Now 0, so

Accordin to arfis [5], there s a commutative diagram
(8),fr fr.-i -i

//
:.(o(s)) + :.(BO)

frsuch that the map ,(BO)

_
is just the J homomorphism, and the map

,(BO(8)) + (BO) is induced by the projection. But for n 8, 12, or 16,
(8) fr frthe J homomorphism is onto the 3 component, hence he mp

_
+ _x

is onto the three torsion.
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