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Introduction
Let K be a number field, O the ring of integers of K. Suppose we are given

a projective curve Z, and a morphism :Z - pr(C) (where pr(C) is the
projective line) such that and Z are both defined over K. We denote by
K(Z) the field of functions of Z defined over K, and from this data we obtain
a permutation representation T of the Galois group G(K(Z)^/K(Pr(C)))
(where K(Z) is the normal closure of K(Z) over K(Pr(C) ).
In Section 1 we investigate (for our needs) the combinatorial and group

theoretical aspects of the situation where

(.) G is a group equipped with two (permutation inequivalent) doubly
transitive permutation representations T T and T which are equivalent
as group representations.

Such groups arise, for instance, as the group of Projective linear transforma-
tions on the points (respectively hyperplanes) of a projective space over a
finite field.

Section 3 contains the arithmetic results. Assume (,) holds for

G G(K(Z) ^/K(P’(C))),
and also assume that

(**) the (ramified) cover Z -- P(C) has one totally ramified place.

As a particular case of Theorem 2 we obtain the fact that Z cannot be defined
over Q(K Q is impossible). Proposition 8 describes another general
situation where K Q is impossible.

In Section 2 we develop the theory of the reducibility of polynomials of
form g(y) h(z) for g(y), h(y) e K[y]. This problem was considered by
many authors including Cassels [2], Schinzel [17], et al. [4], [5], [6]. The case
where g and h are rational functions may be treated in a similar manner,
although the theory would not yield such decisive results. In Theorem 1 we
assume that g is not the functional composition of non-linear polynomials of
lower degree. We exclude the trivial situation (where h g(m(y)) for some
polynomial m(y) to obtain: if g(y) h(z) is reducible, then g(y) x
f(x, y) (where x is a generator of K(P’(C)) defines a curve Z --, lab(C)
satisfying (,) and (**), and the Riemann surface for f(x, y) over the x-sphere
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has at most three finite branch points. This immediately gives strong condi-
tions on the degree of g, shows that K Q is not possible (Theorem 2) and
(modulo a well-known conjecture from finite group theory on the situation
described by (.) allows us to write out (explicitly) the complete list of poly-
nomials g of degree 7, 11, 13, 15, 21, 31 (respectively) for which g(y) h(z)
is (non-trivially) reducible, for some polynomial h. For these latter compu-
tations see [12].
While our main desire is to put an emphasis on a general situation where our

arithmetic setup has application, we wish to point out here that the particular
problem considered in Section 2 is a convenient tool for investigation of many
problems in number theory, combinatorial theory, and group theory. This
problem, for instance, arises whenever we consider an irreducible polynomial
(x, y) K[x, y] and we investigate the condition that the set

R {x0 e 9K (x0, y) K[y] is reducible as a polynomial in one
variable}

is an infinite set. See [10] and [11] for this and other problems related to
Hilbert’s irreducibility theorem. Schinzel has treated a different type of
reducibility theorem in several papers. See [13] for results that can be ob-
tained from a combination of our techniques. In combinatorial theory, the
technique of this paper can be used to show that for any even integer k, there
are only finitely many possible Moore graphs of rank k.
The results of this paper were obtained during the academic year 1968-69

while the author was a member of the Institute for Advanced Study. Delay
in publication corresponds to delay in publication of the applications (for
which we’d like to thank the editors and referees of several journals). Com-
panion to this paper is [12] which considers the problems treated in this paper
as a part of the general theory of diophantine equations, and in particular
discusses some examples relevant to this paper.

In addition, we’d like to thank Tom Storer for his contribution to the
proof of Lemma 5.

1. Facts on permutation representations

Much of the material of this section is folklore. The pair (G, T) desig-
nates a finite group G with a faithful permutation representation T. Unless
otherwise stated, all permutation representations will also be assumed to be
transitive. For e G, if T() 1 Bi is the decomposition of z into a
product of disjoint cycles ti (of length s(z, i) then we define

(1.1) tr (T(z)) of integers i s(z, i) 1},

(1.2) ind (T(z)) 1 (s(z, i) 1).

Sometimes we abuse notation and write T(z) (s(z, 1)) (s(z, k,)).

DITION 1. Let (G, T1) and (G, T) be two permutation representa-
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tions of G of the same degree, deg T1 deg T n (so T1 G Sn where
Sn is the symmetric group on n letter, for i 1, 2). We say (G, T1) is per-
mutation equivalent to (G, T2) if there exists z e Sn such that

(1.3) . TI(r). -1 T2(r) for each r G.

We say that (G, T) is equivalent to (G, T) if

(1.4) tr (Tl(z)) tr (T(z)) for each e G.

LEMA 1. Let G be a finite group with permutation representation T1 and T
of the same degree such that (1.4) holds. Then, if TI(z) is a product of disjoint
cycles of length s(1), s() then so is T(), for all e G.

Proof. We must show that for each integer l, Tl(z) and T.() contain the
same number of disjoint cycles of length 1. For any positive integers

(1.5) tr(T(8)) lsn,,(z)’d, for i 1,2,

where n,(z) number of disjoint cycles of length d in T(z). Assume
that is the smallest integer for which there exists some element z e G such
that na() n.(). However, n,() na() for d ll and d < l, so
this contradicts (1.5) when s, since

(1.6) tr TI() tr T.(). |

LEMMA 2. Let ( G, TO, i 1, 2, be two doubly transitive permutation repre-
sentations of the same degree such that

(1.7) tr (TI())

Then (G, T1) and (G, T2) are equivalent.

Proof. From [15, Theorem 16.6. 15, p. 284] a doubly transitive permuta-
tion representation is the sum of the identity representation and an irreduciblc
representation. Thus

(1.8) tr(T()) 1 + t,() for i 1,2

where is the character of an irreducible representation. The representa-
tions T1 and T. are equivalent if and only if 01(z) t(z) for all z e G.
But th t if and only if

(1.9) 0

(see [15, Theorem 16.6.5, p. 279]). Since 01 and O,. take on integral values
>_ 1,andOl(a) l if and only if #.(a) -1, we must have (01, ) > O.
Thus T, is equivalent to T.. |

LEMMA 3. Let G be a finite group with permutation representations T1 (on
the letters x(1), x(n) and T (on the letters z(1), z(m) ). Assum
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that expression (1.7) holds for T T1, and T. Then

(1.10) G(1) (stabilizer of x(1) in G) is not transitive on z(1),..., z(m)
and Gz(1) is not transitive on x(1), x(n).

Conversely, if TI and T. are doubly transitive representations and (1.10) holds,
then

(1.11) (G, T) and (G, T.) are equivalent representations.

Also, if we assume only that deg T deg T2 p for some prime p, then (1.10)
holds.

Proof. Condition (1.7) implies that

(1.12) G() C uim= Gz(i)

Thus, if G(1) is transitive on z(1), z(m), then the conjugates of the
subgroup Gx() n G() (denoted H) of G(), make up all of G(1) That is
Ua(1) alia- G(). However, as is well known, the conjugates of
proper subgroup of a group cannot cover the whole group. Thus (1.10)
must hold.
Now, suppose (G, T1) and (G, T.) are doubly transitive representations and

(1.10) holds. It is known (see [1, p. 163, exercise 14]) that a doubly transi-
tive group G (with representation T.) does not contain an intransitive sub-
group (say G)) of index (G G,()) n) less than its degree (deg T m).
Thus, n m, similarly, m _> n, or deg T deg T.. Consider the vector
space over C generated by/X}=. The representation T1 is obtained by

(1.13) a -- A (a)

where
A(a) (X,) X. if T(a) (x(i)) x(j).

Let G(1) be transitive on x(1), x(o(2)),..., x(o()). Then

Z X + X,(.) + +
has n conjugates (under the action of G) and we denote these by
It is easy to see that the representation T is obtained from the
Thus, T and T. are equivalent representations, since they are obtained from
each other by a change of basis of a representation module for G.
Now assume only that degree T degree T p for some prime p. Then
G() is not divisible by p, so G1) cannot be transitive on z(1), z(p).

This concludes the proof of the lemma. |

DEFINITION 2. Let F be a finite ring. A set of distinct elements
D Ida,’", d] form a difference set of multiplicity r if the differences
d d. for i J/run over all values of F -/0/exactly r times. If F n
we say we have an In,/, r] design. Our notation differs slightly from standard
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notation. If F is the integers Z modulo n (or Z/(n)), then D is said to be a
cyclic difference set. In the latter case, an element e Z/(n) is said to be a
multiplier of the difference set D if

{dl, ..., dk} {dl + t, ..., dk - t} D +
for some integer t. The sets D, D - 1, D (n 1) are the blocks of
the design.

From Lemma 4 we see that difference sets are relevant to our special as-
sumptions. According to T. Storer the fact that --1 is not a multiplier is
an old chestnut in the theory of difference sets. He has provided us with a
simple proof of this fact, upon which we base the proof of Lemma 5.

LE. 4. Let (G, T), i 1, 2, be doubly transitive permutation repre-
sentations such that
(1.14) condition (1.7) holds, and
(1.15) there exists (r e G such that T(a) is an n-cycle.

In the notation of Lemma 3, assume we have labeled

{x(1), ..., (n)}, {z(1), ..., z(n)}

so that T((r) (x(i) x(i + 1), i 1,..., n and T2() (z(i) z(i - 1),
i 1,...,n. Then,

(1.16) if Gx(1) acts on z(1), z(a(2)), ..., z(a(k)) transitively, the integers
1, a(2), a(]c) form a difference set modulo n.

Proof. From Lemma 3 our hypotheses imply that there exists a set

{z(), z(()), ..., z(())}
with ]c < n as in (1.16). The argument of Lemma 3 shows that the n sets

R {(z(1), z(()), ..., z(())},
R {z(2), z(() + ), ..., z(() + 1)},

R, {z(n), z((2) + n- 1), ..., z(() + n- 1)}

(these sets are conjugate by the n cycle a) provide a representation of G that
is the same as T. The number of times an integer u modulo n appears as a
difference from the set {1, a(2), a(]))} is the same as the number of
times the pair {z(1), z(u 1)} appears in the sets R1, R,. But since
T. is a doubly transitive representation of G, the number of times the pair
{z(1), z(u + 1)} appears in the sets R1, R, is independent of u for
u 1,..., n 1. Thus, every non-zero integer modulo n occurs as a
difference from the set {1, a(2), a(/c)} the same number of times, and
this set is a difference set. |
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LEMA 5. Let D {d d} be a difference set modulo n. Let be the
group of multipliers of D. Then 1 and 1 + n/2 (if n is even) are not
multipliers if k O, 1, n 1, n (the trivial cases).

Proof. Given an element m e 9, some block of the difference set is fixed by
m (see [16, Theorem 11.5.3]). Thus we assume in each case that

D {dl,...,

is fixed by m. We consider m 1 and m 1 + n/2 separately. First,
let m 1.
Suppose a is an integer such that a 2d for i 1, It. Since --1 is a

multiplier the representations for a as differences come in distinct pairs;

(1.17) a d- d and a -d- (-d,).

Thus, r (the multiplicity of the difference set) must be even. Now suppose
a 2d for some i 1, ..., It. In order for a to be represented as differences
an even number of times there must exist j i such that a 2d]
d--(-d.). But this implies that 2(d--dj) 0 modulo n or d.
di + n/2. Thus, for each i, di + n/2 e D, i 1, ,/. This implies that
n/2 can be represented as a difference in at least ] 1 ways. However, one
of the simple combinatorial formulas relates r,/c, n by r(n 1) ](] 1).
Therefore we see that r _> k 1 is impossible except in the cases/ 0,
1, n 1, n.
Now we consider the case m -1 - n/2. Let a be an integer such that

(1.18) a is even, but a -2di - (n/2)d for i 1, ,/.

A simple argument shows that a exists. In this case the representations
of a as differences occur in distinct pairs.

(1.19) a d d (--1 + n/2)d (-1 - n/2)d.

Note that a even is important. Thus r is even. Now assume

a -2di+ (n/2)d for some i 1,...,/.

Then since r is even, the number of representations of a in this form must be
even. So there exists j i such that

(1.20) -2d - (n/2)d (-1 + n/2)d d (-1 - n/2)d d
Equivalently(-2 + (n/2))(di d) 0 modulo n. However, we have
((n-4)/2, n) 2orl (asnis, or is not divisible by 4). So again we
deduce that for each i, d + n/2 D. The final contradiction proceeds as in
the case m --1, and therefore -1 + n/2 is not a multiplier.

Remark 1. LetD, D+ 1,...,D+ n- l be the blocks of an (n,k,r)
design (see Definition 2). Each of the blocks are a difference set. We say
that two difference sets D1 and D. are equivalent if they are blocks of the same
design.



Let (n, k, r) be a 3-tuple of integers such that"

(1.21) r(n- 1) -/c(/c- 1),
(1.22) there exists a difference set D modulo n with parameters (n, k, r)
(note that 1.22) implies 1.21)) and,
(1.23) the group G(D) Ia e S, (symmetric group on n letters) a per-
mutes the blocks of the design} is a doubly transitive permutation group.

We list some facts and observations about these conditions.

Fact 1. The subgroup of multipliers of the group G(D) is not a transi-
tive group.

Fact 2. (Conditions of Chowla and Ryser [3, Theorems 3, 4, 5]). If n is
even, and a difference set modulo n with parameters (n, k, r) exists, then
k r is a square. If n is odd, and a difference set with parameters (n,/c, r)
exists, then

(1.24) z r x -- (--1)(n-1)/2y has a non-trivial solutioninintegers
x, y, z.

These conditions are believed to be both necessary and sufficient for the
existence of a difference set modulo n with parameters (n, k, r). For the
integers n

_
31 such that there exists {It, r} satisfying (1.21) (that is, n 1

is not a power of a prime) with 1 < /c < n 1 (these are the integers 7,
11, 13, 15, 16, 19, 21, 22, 23, 25, 27, 29, 31), n 22 and n 23, 27 do not
satisfy (1.22).

Fact 3. Up to equivalence, the only difference sets modulo 7, 11, 13 are,
respectively"

(1.25) D {1, 2, 4}; {1, 2, 4, 9, 10}; {1, 2, 4, 10} and {1, 2, 5, 7}, and their
negatives.

Modulo 21 and 31, respectively, D 1,2,7,9,19} and D 1,2,4,9,13, 19}
ae difference sets.

Fact 4. Let >_ 2 be an integer, and q p where p is a prime. Let D(q)
be the design whose points are the points of/-dimensional projective space
over the finite field of q elements and whose blocks are the hyperplanes of this
space. The automorphism group of D(q) is denoted PrL+(q). Then
D(q) is a

((q+-- 1)/(q- 1), (q-- 1)/(q--1), (q--- 1)/(q- 1))

design, and PFL+x(q) contains a (q+ 1)/(q 1)-cycle and is a doubly
transitive group on the points of D(q). Also, there exists an (11, 5, 2) design,
denoted by H(11) whose automorphism group is PSL.(11) for which (1.22) and
(1.23) hold. It is not known if any other doubly transitive cyclic designs exist.
We add to these facts a theorem of W. Felt.
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PROPOSITION 1. Let ) be any symmetric, balanced, incomplete block design
[16, Chaper 11]. Then any non-identity automorphism of ) moves at least half
the points [7, Theorem 3].

2. Reducibility of polynomials
Let K be some subfield of C, and assume f(x, y) e K[x, y]. Then we denote

by ] the splitting field of f(x, y) over K(x). We shall be primarily con-
cerned with the case

(2.1) f(x, y) h(y) h(y)x

where h(y), h(y) e K[y] are relatively prime polynomials. As a matter of
course, we use the ratio h(y)/h(y) h(y), and we sometimes abuse notation
by writing h(y) x instead of f(x, y) as in (2.1). The degree of h is the in-
teger, max (degree h, degree h).

DEFINITION 3. Let h(y) K(y). We say h(y) is decomposable over K if
h(y) h(1)(h()(y)) where degree h()(y) > 1 for i 1, 2. If h() and h() do
not exist, then h(y) is indecomposable over K.

Question. When can there exist a pair of rational functions h, g e K(y) such
that

(2.2)

or such that

(2.3) h(y) g(z) is reducible as a rational function in two variables;

or such that

(2.4) [J, G(/K(y) Uz G(/K(z)

where _._, G(/K(x)) is the Galois group of the field over
K(x) and/Y, Y} (respectively {z, z}) are the zeros of h(y) x
(respectively g(z) x) ?

DEFINITION 4. If h(y) and g(y) are related by

h(y) g( (ay - b)/(cy - d)

for some a, d, c, d e K we say, h and g are linearly related. When h and g are
linearly related, then conditions (2.2), (2.3) and (2.4) are easily seen to be
satisfied.

LEMMA 6. Wigh the preceding notation, if h, g e K y) then h and g are linearly
related if and only if there exists an integer i such that

G(/g(y.) G(/g(z) ).

Proof. From the fundamental theorem of Galois theory,

G(/g(y) G(/K(z) if and only if K(y) g(z,),
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an equality between genus zero function fields. By simple field theory

z (ayl - b)/(cyl - d)

for some a, b, c, d e K. This is equivalent to the relation

h(yl) x g( (ayl - b) /(cy - d) ).

The lemma now follows easily. |

LEMMA 7 [8, Proposition 2.3]. Let h(y) K(y) and assume y is any zero of
h(y) x. Then, there is a one-to-one association between subfields of K(y)
containing K(x) and composition factors of h(y). Namely, for

K(x) c M K(y), M K(h()(y))

where h2 K(y) and h h(h>).
PROPOSITION 2. Let h(y), g(y) K(y), where h hl/h., g g/g as in

(2.1). Assume

(2.5) (h(y) g(z) )h.(y)g(z) is a reducible polynomial in K[y, z].

Then there exist rational functions h, h, gl), g K(y) such that

h h(1)(h()), g g()(g()),
h(1)_ ()_ denoted *

(2.6)

(2.7)

and

(2.s) the irreducible factors of (h(y) g(z) h(y)g.(z) (over K) are in one-to-
one correspondence with
(2.9) the transitivity classes of G(fl/K(yx )) on the letters zx ..., z. where
* i 1, n* * m*thezerosofy are the zeros of h()(y) x; z j 1,

g() (z) x.

Remark 2. The members of (2.9) will be shown to be in one-to-one corre-
spondence with the irreducible factors of h()(y) g()(z) (over K). Also,
if h and g are polynomials satisfying condition (2.2), the degree of h can be in-
terpreted as the order of the inertial groups for places of fl_ lying over the
place at on the x-sphere. Proposition 2 therefore implies that in consider-
ing the reducibility of polynomials of the form h(y) g(z), we may assume
without loss that deg h deg g and h_ fl_.

Proof. Let ,_, 2_. Since y is an indeterminate over K, the
irreducible factors of h(y) g(z) are in one-to-one correspondence with the
irreducible factors of h(y) g(z) over K. The latter are, as an im-
mediate consequence of Galois theory, in one-to-one correspondence with

(2.10) the transitivity classes of G(/K(yl)) on the letters z, ..., z.
We now show that the elements of (2.10) are in one-to-one correspondence
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with the transitivity classes of G(_x/K(y) on zl, ..., z,, where K(y)
K(yl) ’1 gt_x. Use Lemma 7 to find h’ such that h’(yr) x. From the
theorem of natural irrationalities,

G(_/ (y ) G(K(y) _/K(y)

Since every automorphism of K(y)._/K(y) extends to an automorphism
of , G(K(y) ._/K(y) has the same transitivity classes on z, ..., z as
does the group G(/K(y)).
Now let h’ play the role of g, and g the role of h in the above argument. We

conclude the existence of a rational function g’ such that ,_ ,_, and
the irreducible factors of h(y) g(z) are in one-to-one correspondence with
the transitivity classes of G(,_/K(z)) on the letters y, ..., y, where
h’" n.(y) x, i 1, ..., Continuing this process we eventually obtain
rational functions h(), g() satisfying (2.7) and (2.8).

The next lemma is a consequence of the theorem of natural irrationalities,
and the technique of proof is well known.

LEMMA 8. Letf(y) e K[y] be an irreducible polynomial. Let be the splitting
field of f over K, and let M be any Galois subfield of containing K. Also, let
y, ..., y, be the zeros of f(y). Then, any element of G(M/K) which leaves
L K(y) M elementwise fixed, can be extended to an element of G(/K(y) ).

If, in addition K(y) M K, then

(2.11) G(/M) G(/M.K(y) is not empty.

PnOeOSITON 3. Let h(y), g(y) e K[y] (that is, h and g are polynomials).
Tn condition (2.4) implies conditions (2.2) and (2.3). Infact, if h h) (h(:)),
then (2.4) implies there exist polynomials g(), g() e K[y] such that g g()(g())
and

(2.12) ()_ ()_
(2.13) the pair h(), g() satisfies (2.4); and
(2.14) h(1)(y) g()(z) is reducible over K.

Proof. Let z, ..., z be the zeros of g(z) x. From Lemma 7, there
exists a polynomial g*(y) e K[y] such that the zeros of g*(z) x are exactlythe
quantities z obtained from the expression

K(z) K(z) _.
From Lemma 8, G(_/K(z)) is the group obtained by restricting the ele-
ments of G(/K(z)) to a_. We thus obtain from (2.4)

(2.15) , G(_/(y) . G(_/K(z) ).

If the degree of g* were less than the degree of h, then some power of a (the
branch cycle corresponding to the branch point x would be fixed on all
quantities z, but would not be fixed on the quantities y. This would con-
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tradict (2.15). We therefore deduce that deg g* > deg h, and

(2.16) K(z) n h- K(z) and 2_x c h_.

Interchanging the roles of h and g in this argument, we see that deg g deg h
and

_ _ . Thus, G(/K(x)) has two faithful permutation
representations satisfying (1.7). From Lemma 3,

(2.17) G(/K(yl) is intransitive on zl ..., z,

Assume h h()(h()). In order to obtain expressions (2.12), (2.13) and
(2.14), apply the argument above after having restricted all elements of
G(/K(x)) to 2()_. |

Proposition 4 when coupled with Proposition 2 gives necessary and sufficient
conditions that a pair of rational functions h, g satisfy (2.3).

PROPOSITION 4. Let G* be a finite group with two inequivalent transitive per-
mutation representations on the letters y y* * *and z ..., z, respectively.
If o ..., o, are any set of letters on which it makes sense to represent G*, for

s# ,
(r e G*, let r, be the permutation of o ., , corresponding to *. Then there
exist rational functions h(y), g(y) e C(y) such that

(2.s)

(2.19)

and

G* G(a_/C(x)) denoted G,

(2.20) the representation of G on the zeros y ..., y, of h(y) x (respectively
z ..., z,) is the same (up to a renaming of the letters) as the representation of

* z) if and only if there exist elements *(1),G on y ..., y* (resp. z
* G*r (r) such that

and

(r*(1), o’* r) generate G*’ifwe let ((r* - *(1) *(r) then

= ind * *%*(3) + ind %.() 2(n- 1)

.= ind * *,,(j) + ind ,,() 2(m 1)
(see 1.2) ).
Also, h and g can be chosen to be polynomials if and only if *(1), ..., a*(r) can
be chosen so that

(2.23) = ind %,(j) n 1 and ;= ind a,,(j)* m-- 1

(here n m by Remark 2).

Proof. If there exist h(y), g(y) C(y) satisfying (2.18), (2.19), and (2.20),
then the branch cycles al, ..., a, a for _over C(x), satisfy (2.21) and
(2.22) when represented on {y, ..., y} and {zl, ..., z} (see [9, p. 43] for
more details on this and the rest of the argument, in relation to the use of
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Riemann surfaces). The fact that (2.21) and (2.22) yield (2.18), (2.19), and
(2.20) follows from the well-known scissors and paste construction of a Rie-
mann surface having finite branch cycles (as a cover of the sphere) .(i)}*
(respectively i)}_-) Riemann’s existence theorem implies that these
surfaces have an algebraic structure, and from the Riemann-Hurwitz formula
the genus of these surfaces is 0. Thus, these Riemann surfaces described
above are the Riemann surfaces corresponding to h(y) x and g(z) x for
two rational functions h and g.
Then h and g are polynomials, if a (the branch cycle for x is an n-

cycle on both sets {y, ..., y} and {z, ..., z}. This implies (2.23) must
hold if we choose *(1), ..., a*(r) to represent finite branch cycles in the con-
struction alluded to above. |

The next two propositions are important for applications where h(y) is de-
composable and the hypotheses of Theorem 1 are not satisfied. See [10, p.
S3].

PROPOSITION 5. Let h(y), g(y) K(y). We denote the zeros of h(y) x by
yl ", ym the zeros of g(z) x by zl ..., z, Suppose

(2.24) h(y) g(z) is reducible over K,

but

(2.25) h(1)(y) g(1)(Z) i8 nOt reducible for any rational functions h(), g()
which are composition factors of h, g respectively such that either deg h() deg h
or deg g(1) deg g.

If z z,(.) ..., z,(k) are the conjugates of z over K(y), let F be the field obtained
by adjoining to K the symmetric functions in Zl z,(.) z,(k) Then

(2.26) F-- K(y).

Proof. From Proposition 2 we must have 2_ _. Let * be a fixed
algebraic closure of _. If a e G(_/K(y) ), then a permutes the field ele-
ments z, z,(.), ..., z,(). Therefore a is elementwise fixed on F and by the
fundamental theorem of Galois theory, F K(y).

Conversely, any isomorphism a of

_
into *, fixed on F, must permute the

elements zl, z,(.), ..., Z,(). Therefore

(2.27) a(g(z)) a(x) g(a(zl) g(z,()) x for some integer i.

By Galois theory this implies

(2.28) K(x) F K(y).

From Lemma 7, F K(r(y) where r, h()
e K[y] are polynomials such that

h()(r(y)) h(yl). If is one of the symmetric functions in z, z,(), ...,
z,(), then is a rational function in r(y). Also, o is a sum of products of
elements integral over K[x]. As K[r(y)] is the integral closure of K[x] in F,
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we have K[x, ]

_
K[r(y)]. Thus, is a polynomial in r(y) and we deduce

that

(2.29) h()(r(y) g(z) (r(y), z)..(y, z)

where , . e K[y, z] and the coefficients of , are symmetric functions in
z, z,(.), ..., z,(). Now, if .(y, z) were contained in K[r(y), z], then
h()(y) g(z) would be a reducible polynomial in two variables, contrary to
(2.25). More generally, suppose S(r(y), z) divides T(r(y), z) as polynomials
in two variables. We claim that the quotient

T(r(y), z)/S(r(y), z) R(y, z)

is in K[r(y), z]. The rational function T(u, z)/S(u, z) is not a polynomial in
Cu, z if and only if there exists finite (u0, z0) e such that T(uo, zo) O,

S(Uo, z0) 0. Let y0 be such that r(yo) uo. Then R(yo, z0) , con-
trary to the fact that the polynomial R(y, z) takes finite values at finite places
(y0, z0). |

PROPOSITION 6. Let h(y), g(y) e K[y] (that is, h and g are polynomials).
Assume that (2.24) and (2.25) of Proposition 5 holds. Assume, in addition,

(2.30) there exists xo e C u such that g(z) Xo has a zero of multiplicity
(that is, some power of a prime integer) and p’ does not divide the multiplicity of
any other zero of g(z) Xo.

In particular, (2.30) holds if xo and deg g is a prime power.
Then there exist constants a O, b C such that,

(2.31) ay + b z - z,(.) +
where z ..., z,() are the conjugates of z over K(y).

Remark 3. From Proposition 2, (2.24) and (2.25) imply that a_ fl_.
Thus (2.31) implies that the representations of G(a_/K(x)) on the letters
{y, ..., y,} and {z, ..., z,} are equivalent. In particular (2.4) holds.

Proof. First we recall that if a0 is a zero of g(z) xo of multiplicity m, then
the Puiseux expansions for g(z) x about x0, corresponding to the center
(a0, x0), are of form

za) ao + a(x Xo)’ + a.(x Xo) -z(.) ao + a(x Xo) -k a. (x xo) -k
(2.32)

( +Zr(m) ao al

where a 0 and i’ is a primitive m4h root of 1. This holds only for a0 ,
but corresponding expansions are easily obtained for a0 . From Proposi-
tion 5, K(y) F (statement (2.26)). Using Remark 3, we have f
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g-x, so that the orders of the inertial groups for primes over x0 in both
and 2g_ are the same. Therefore, we may without loss assume that yl has a
Puiseux expansion for x0 of ramification order divisible by p.

Let h(yl) g(z) have a factorization of the form r i(y, z) into irre-
ducible factors over K(y). We assume that z is a zero of (yl, z). The
complete set of zeros of 1(yl, z) is therefore z, z,(.), ..., z,(k) and the
coefficient of zk-1 is

zl + z.(2) + + z(k) y*.
ttowever, the coefficient of zk-1 in(y, z) is linear in y. Therefore we have
established the proposition if we show that y* is not a constant.

Let m p in (2.32). Let c be the coefficient of (x x0) in y*. Then
c is actually a times a sum of pU-th roots of 1. Some, but not necessarily all,
of the elements z,.(.), ..., Zr(,) appear among z, ", z,(). Suppose c 0.
Then the expression for c results in an equation

(2.33) f() 0

where f is a polynomial whose coefficients are O’s or l’s.
visible by (x 1)/(x- 1), so

However, f(x) is di-

(2.34) f(x) g(x) (x" 1)/(x’’- 1))

where g(x) is a polynomial of degree _< p- 1.
see that if

From this expression we

i=oaix and A {imodulopla 0/,

then B {i + p-X mod p i e A} is identically the same set as A.
to be any extension to 2h_ of the automorphism obtained from

(2.35) (x x0)

Consider

where is a primitive p-th root of 1. Then the preceding discussion shows
that the symmetric function in z, z,(), ., z,() are fixed by because the set

Zl Za(2) " Za(k)}

is invariant under transformation by . However, y is not fixed by . This
contradicts K(y) F. Thus y* is not a constant. |

Our next theorem goes a long way toward characterizing polynomial pairs h
g such that h is indecomposable and h(y) g(z) is reducible. For the ap-
plications it would be of interest to consider the case where h is an indecom-
posable polynomial and g is u rational function (rather than a polynomial).

THEOREM 1. Let h(y) e K[y] be an indecomposable polynomial.If g(y) K[y]
is a polynomial such that

(2.36) h(y) g(z) is reducible as a polynomial in two variables, then Proposi-
tion 2 implies (by replacing g by a composition factor of g) that we may assume

(2.37) degg degh n and

_ _.
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Let h(y) g(z) r i(y, z) where i(y, z) are absolutely irreducible poly-
nomials. Then"

(2.38) g(y) is indecomposable;

(2.39) 2, so that h(y) g(z) has exactly two irreducible factors, unless h
and g are linearly related (see Definition 4) and h is a cyclic or Chebychev poly-
nomial [9, p. 41];

(2.40) if deg /c, then n 1 I/(/c 1) and there exists a difference set
{1, a(2), ..., a(/)} modulo n whose automorphism group is doubly transitive;

and

(2.41) the Riemann surface for h(y) x over the x-sphere has at most three
finite branch points.

In addition, suppose that K is a field such that

(2.42) K Q(,,) M where M is the totally real subfield of Q(,).
Then

(2.43) h and g must be linearly related. In particular if K Q (that is, h,
g e Q[y]) and (2.36) holds (assuming (2.37)), then h and g are linearly related.

Proof. From Lemma 9 of [9], since h is indecomposable G(a_/K(x)) is
doubly transitive as a permutation group on y, ..., y. (the zeros of h(y) x),
unless h is a cyclic or Chebychev polynomial. In the case that h is a cyclic or
Chebychev polynomial, Lemma 11 of [9] shows that h and g are linearly re-
lated. Assume (2.36), and therefore (2.37) holds. If deg (y, z) /c, the
coefficient of y- in (y, z) is linear in z, where z, ..., z are the zeros of
g(z) x. Then we obtain

azl b yl " ya(2) -- -- Ya(k).

As already noted in the proof of Lemma 2, a doubly transitive permutation
representation is the direct sum of aa irreducible representation and the
identity representation. Thus, the subspace of relations

{ ayi b with al, ..., a, b e K}

is of dimension 1, generated by i..1 y- c 0 for some c e K. In par-
ticular we deduce that y y,(2) - y,() is not constant. From this
we see that the representations of G(_/K(x)) on {y, ..., yn} and on
{z, ..., z,} are equivalent.
From Proposition 3 we conclude that g(y) is indecomposable. Thus we

have two doubly transitive representations of G(_/K(x)). Therefore
(2.39) and (2.40) follow from Lemma 4 (since the branch cycle for x oo is
an n-cycle in both representations).
The hypotheses for Proposition 1 now hold. Thus, each of the finite

branch cycles (1), ..., (r), for the Riemann surface of h(y) x moves
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at least half the letters. It is easy to see that this implies

(2.44) ind(r(i) >_ n/4 for i-- 1, ...,r.

However, since ’1 a(i) n 1, we must have r _< 3. This demonstrates
(2.41). The remainder of the theorem, expression (2.42), is a consequence
(special case) of Theorem 2 applied to the function fields of h(y) x and

|

Remark 4. Let h, g C[y] be two polynomials such that h- ,-v. If
deg h is a prime, then Lemma 3 implies that h(y) g(z) is reducible. Indeed,
this also can be shown if deg h is 2.p for p a prime. In fact, there do not seem
to be known any examples of pairs (G, T), i 1, 2 where T1 and T2 are
equivalent doubly transitive representations of the same degree such that there
exists e G with TI(z) and T.(z) both n-cycles. If there were no such ex-
amples, then, combining Proposition 2 and Proposition 4, there would be es-
sentially an equivalence between the relations 2h_ t_ and h(y) g(z)
reducible, for h and g both polynomials.

PROPOSITION 7. Suppose h(y) g(z) ’ i(y, z) where h and g are poly-
nomials and deg h p (a prime integer). From Theorem 1, we may assume
deg g deg h and 2 (where 1 and 2 are absolutely irreducible). Assume
degaS1 and degb2 > 1. Then, there exist polynomials h* and g* such that"

(2.45) degh* degg* p;

(2.46) h*(y) g*(z) is reducible (or equivalently from Lemma 3,,_ ,_) but has no linear factors; and

(2.47) the Riemann surface for h*(y) x has exactly two finite branch points
over the x-sphere.

Proof. From Theorem 1 (expression (2.41)) we may assume that the
Riemann surface for h(y) x has no more than three finite branch points
over the x-sphere. Actually using (2.41) is not essential to this proposition,
and it could be replaced by an induction process. Let (1), (2), and (3)
be branch cycles corresponding to these points. If (1) and z (3) both
fixed at most one letter, then h would be a cyclic or a Chebychev polynomial
(Lemma 9 of [9]). Thus we ussume (1) fixes at least 2 letters among
yl, y. Consider the subgroup H of G(_/C(x) generated by a(1)
a (1) and (2).a(3) a*(2). Then if we replace G* by H in Proposition 4,
we conclude that there exist polynomials h* and g* of degree p such that h*(y)
g*(z) is reducible, the Riemann surface for h*(y) x over the x-sphere has

* *(2), and the irreducible factors of h*(y)finite branch cycles a (1) and
g*(z) are in one-to-one correspondence with the orbits of H1 on z, ..., z where
H1 is the stabilizer of yl in the subgroup H of G(_,/C(x)). The number of
such orbits is at least 2, and must be 3 if one of these orbits is of length 1 (that
is, h*(y) g*(z) has an irreducible factor of degree 1).
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However, if h*(y) g*(z) has three irreducible factors, then (2.39) im-
plies that h*(y) is a cyclic or Chebychev polynomials. This is impossible
(Lemma 9 of [9]) because a*(1) fixes two letters. This contradiction con-
cludes the Proposition since h* and g* cannot be linearly related. |

3. Fields of definition of function fields
Let K be a number field, and let Z be a projective curve equipped with a

morphism Z -- P’(C) such that Z and are both defined over K. Let
K(z) be the normal closure of K(Z) (the field of K-rational functions on Z)
over K(P’(C)). The field (z) was called K(Z) in the introduction of this
paper. Let T be the permutation representation of G(K(z)/K(P’)) obtained
from the action of G on the set of conjugates of some primitive generator of
K(Z) over K(P’). Suppose also that

(3.1) G is equipped with two (permutation inequivalent) doubly transitive
permutation representations T1 T and T2 which are equivalent as group
representations.

Let i% be a primitive n-th root of 1. Then, G(Q(’.)/Q) can be identified
with the invertible elements of the ring Z/(n). From Lemma 4, the situa-
tion (3.1) yields a difference set modulo n, and the multipliers of this difference
set, (see Definition 2), form a non-empty subgroup of such that / is
not the trivial group (Lemma 5). Let M() denote the fixed field in
q(,) of 9, so M() Q.

THEOREM 2. With the above assumptions, assume also that

(3.2) there exists a place (which we may assume to be ) of P’(C) which is
totally ramified in Z.

Then,

(3.3) K

_
M().

Proof. The permutation representation T2 (of (3.1)) yields a curve

k" Y -- P’(C)

such that Y and k are also defined over K. Let yl be a primitive generator of
K(Y) over K(P’(C)), {y} the conjugates of yl and yl, y,(), y,() the
conjugates of yl over K(Z).
Letz y y(2) - y()and

Zi O’--I(zl) Yl/i--1 - Y,()+- - - Y.()+i-1

for i- 1,...,n,

where a is the branch cycle corresponding to the totally ramified place
For Theorem 2 we may replace K by K n (Q(i’,). Assume that

re G(M()/K n M()
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so that r is represented by a non-multiplier of the difference set. Since Z
(respectively Y) is defined over K, and is totally ramified in Z (respec-
tively Y), we may assume that yl and zl are fixed by the action of r on their
Puiseux expansions about , while

(3.4)

where r(a(i) 1) is the action of (as a multiplier modulo n) on (a(i) 1)
modulo n. Since r is not a multiplier, the sets {r(a(i) 1)} and
la(i) 1/ are distinct. Therefore (since (z) z), we have two
representations of z as a sum of elements {YI which yields a relationship

(3.5) y q- Y(.) q- - Y,() Y -b Y(()-)+ -b -b Y(,()-I)+,

a non-trivial relationship among the {y}. As noted in the proof of Theorem
1, this contradicts the double transitivity of the representation T1. |

An easy generalization of the theorem of [10, p. 83] yields the next proposi-
tion. The proof is quite combinatorial and utilizes Propositions 5 and 6.

PROPOSIWION 8. Let Z P’( C) be a covering morphism such that and
the (projective) curve Z are defined over K. Suppose for the pair (G, T) (nota-
tion as above), there exist two representations of the same degree; TI T and
T of G which are permutation inequivalent, but G(K(Z) ^/K(Z) is not transitive
in the restriction of T to this group. Suppose also that there exists a place of
P’( C) such that the branch cycle r corresponding to (and the representation TI)
has a decomposition into disjoint cycles of the form
(3.6) a (s( 1, a) (s(2, a ) (s(](), a)

(as in (1.2)), where

(3.7) s(1, ) pU for some prime p 2 and integer u >_ 1,

and

(3.8) pU s(i, (r) for i 1.

Then

(3.9) K n Q(’) Q.

We do not know to what extent the condition (3.2) can be removed from
Theorem 2 (except where Proposition 8 is applicable). However, we suspect
that the removal of (3.2) requires a fairly deep contribution to arithmetic (if
it can be done). General principles (as in [12]) allow us to revert to the case
where all ramified places of Z (in Z -- P’(C) are defined over K.
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