AN ARC THEOREM FOR PLANE CONTINUA

BY
Cuarres L. Hacopian

If H is a bounded aposyndetic plane continuum which does not separate the
plane, then H is locally connected. This follows from a result of Jones’
[3, Th. 10] that if p is a point of a bounded plane continuum H and H is
aposyndetic at p, then the union of H and all but finitely many of its com-
plementary domains is connected im kleinen at p.' As a corollary of these
results, each bounded aposyndetic nonseparating plane continuum is arc-wise
connected. Closely related to the notion of an aposyndetic continuum is that
of a semi-aposyndetic continuum, studied in [2]. A continuum M is semi-
aposyndetic if for each pair of distinet points x and y of M, there exists a sub-
continuum F of M such that the sets M — F and the interior of F relative to
M each contain a point of {z, y}. Note that a bounded semi-aposyndetic
nonseparating plane continuum may fail to be locally connected. In this
paper it is proved that every bounded semi-aposyndetic nonseparating plane
continuum is arc-wise connected.

Throughout this paper S is the plane and d is the Euclidean metric for S.

DeriniTioN. Let E be an arc-segment (open are) in S with endpoints a and
b, D be a disk in a continuum M in S, and ¢ be a positive real number. The
arc-segment E is said to be e-spanned by D in M if {a, b} is a subset of D and
for each point 2 in a bounded complementary domain of D u E, either
d(z, E) < € or x belongs to M.

LemMA 1. If an arc-segment E in S of diameter less than & with endpoints a
and b is e-spanned by a disk D in M (a subcontinuum of S), then there exists an
arc-segment M (E) in M with endpoints a and b such that for each point x of
M(E), d(x, E) < 2e.

Proof. Let w be a point of the unbounded complementary domain of
DuE. Let B denote an are in D with endpoints @ and b. TFor each positive
real number r, let C'(r) denote the set consisting of all points = of S such that
d(z, Cl E) < r (ClE is the closure of ). For each positive real number
r, Cl C(r) is a bounded locally connected continuum in S which does not
contain a separating point. By a simple argument, one can show that if
r > ¢, Cl C(r) does not separate S. Hence for each real number r > ¢,
Cl C(r) is a disk [5, Th. 4, p. 512]. Since B is locally connected, the set @
consisting of all components of B — Cl E which meet Bd C(¢) (the boundary
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1 A continuum H is aposyndetic at a point p of H if for each point ¢ of H — {p}, there
exist a continuum L and an open set G in H such that pe @ © L C H — {q}. A con-
tinuum is said to be aposyndetic if it is aposyndetic at each of its points (Jones).
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of C(¢)) is finite. Define Q; to be the set of all elements X of @ such that if
Y is an element of @ — {X}, then ¥ u Cl E does not separate X from w in S.
Forn = 2, 3,4, -, define @, to be the set of all elements X of @ — Q:
such that if ¥ is an element of @ — ({X} u UiZ!Q;), then ¥ u Cl E does not
separate X from w in S. Since @ is finite and the sets @1, @2, @s, -+ are
mutually exclusive, there exists an integer n such that Uj-,Q; = Q.

For each element X of @, define the arc-segment M (X) as follows. Let
¢ and e be the endpoints of X and let I denote the arc in Cl E from ¢ to e.
Let Z be the bounded complementary domain of the simple closed curve
X ul. Letmbe theinteger (1 £ m = n) such that X belongs to @, . If X
is contained in Cl C(e + ¢/m), define M (X) to be X. Suppose that X is not
contained in Cl C(e + ¢/m). Since

InBdC(e + ¢/m) = @,

there exists a simple closed curve J containing I in Bd Z u Bd C(¢ + &/m)
such that Z n C(e + ¢/m) contains a complementary domain V of J [6, Th. 15,
p. 149]. In this case define M (X) to be the arc-segment J — I. Let z be a
point of M(X) — X. Cl V contains x and is a subset of Cl Z.
Since Bd Z = Ju X, zisnotin Bd Z. Thus z belongs to Z. Hence for each
point x of M (X), either z belongs to D, or d(z, E) > ¢ and z is in Z and there-
fore belongs to a bounded complementary domain of Du E. It follows that
M (X) is contained in M. Note that for each point x of M (X), d(x, E) < 2.
For each arc-segment X in B belonging to @Q,

M(X)n (B — Uy:o Y) = 6;

for if there exists a point z in M(X) n (B — Uy.e Y), then x would belong to
both X (since B — Uy ¥ < C(¢)) and B — X. If X and Y are distinct
elements of ¢, then the corresponding arc-segments M (X) and M(Y) are
disjoint. To see this first suppose that X and Y both belong to @, for some
integer m. Assume there exists a point z in M(X) n M(Y). Since B is an
arc, X n Y = ¢ and # must belong to either M(X) — X or M(Y) — Y. Sup-
pose that z is in M(X) — X. It follows that x is in the bounded comple-
mentary domain of X u Cl £. If z belongs to Y then X u Cl E separates
Y from w in 8. This contradicts the assumption that X and Y are both ele-
ments of Q.. . Hence & belongs to M(Y) — Y and is contained in the bounded
complementary domain of Y u C1 E. It follows that either X u Cl E separates
Y from w or Y u Cl E separates X from w in S. Again this is impossible,
since X and Y belong to @, . By the same argument, one can show that
assuming z is in M(Y) — Y also involves a contradiction. Suppose there
exist distinet integers & and m such that X and Y are elements of @ and @,
respectively. Assume without loss of generality that &k < m. Since
Bd C(e + ¢/k) nCl1C(e + ¢/m) = 6,
then
MY)n(MX) —X) =4
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Furthermore M(Y) n X = @; for otherwise, ¥ u Cl ¥ would separate X from
w in S which is impossible since X belongs to @i, Y belongs to Q. , and
k < m. Hence M(X) nM(Y) = @.

The set M(E) = Uxe M(X) u (B — ({a, b} u Uxe X)) is an arc-segment
in M with endpoints ¢ and b such that for each point x of M (E),d(z, E) < 2¢
[1, Th. 20.1.10, p. 157].

Lemma 2. Suppose that M is a bounded continuum in S, E is an arc-segment
in S of diameter less that /4, and D s a disk tn M which contains the endpoints
of E. If E is not e-spanned by D in M, then there exist points x and y @n Bd D
and an arc-segment Y in E — D such that

(1) d({=, y}, E) 2 ¢/4,

(2) {z, y} s not contained in the closure of a complementary domain of
DuY, and

(8) ifd(zx,y) = r, then D contains a circular region U of diameter r/2.

Proof. There exists a point » of S — M such that v is in a bounded com-
plementary domain of D u E and d(v, Cl E) = s > ¢. Let z be a point of
Cl E such that d(v, 2) = s and let T be the straight line segment from v to z
in 8. Define ¢ to be the point of T such that d(z, ¢) = ¢/2 and let L denote
the straight line in 8 which contains ¢ and is perpendicular to 7. Define X to
be the component of S — L which contains ». Let w be a point of X which
also belongs to the unbounded complementary domain of M u Cl E. There
exists an arc-segment YV in  — D such that ¥ u D separates v from w in S
[6, Th. 27, p. 177]. Let a and b be the endpoints of ¥ and let 4 and B be the
components of Bd D — {a,b}. Let Z denote the 6-carve AuBuClY. Note
that the complementary domain  of Z whose boundary contains A and B is
the interior of D [7, Th. 1.7, p. 105].

Since Yisin S — D,both AuCl Y and Bu Cl Y separate v from w in S.
Furthermore, since C1 X n C1 Y = @ and {v, w} is a subset of X, both A and
B meet X. There exist a positive real number r and points z and yin 4 n C1 X
and B n Cl X respectively such that

d(AnClX,BnClX) =d(z,y) =7

Let ¢ be the midpoint of the straight line segment in Cl X from z to y. Let
G be the circular region in S which is centered on ¢ such that {z, y} is contained
in Bd G. Since

(GnClX)n(AuB) =9¢

and Cl (G n X) meets both A and B, G n X is a subset of @ [6, Th. 116, p. 247].
The set G n X contains a circular region U of diameter /2. Since Gn X is a
subset of D, U is contained in D.

The circular disk J of radius £/4 centered on z contains E. Note that
d(J,X) = ¢/4. It follows that d({z, y}, E) > /4. Since {z, y} is contained
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in Cl @ and
{x’ y} n {a7 b} = ﬂ’

{z, y} is not contained in the closure of a complementary domain of D u ¥V
[6, Th. 116, p. 247].

LemMA 3. Suppose that E is an arc-segment in S, N is a disk in M (a
subcontinuum of S which does not separate S), and N contains the endpoints of
E. For each positive integer n, there exists a disk D in M containing N such that
if

(1) W s a complementary domain of D u E,

(2) =z s apoint of Cl Wn Bd D, and

(3) d(z, E) > 1/n,
then there exists a point t of W — M such that d(zx, t) < 1/2n.

Proof. There exists a 1-complex K (a finite collection of arcs no two of
which interesect in an interior point of either) in Cl (8 — N') such that (1)
Bd N is contained in K, (2) each vertex of K has order 3 in K, and (3) if L
is a component of S — (K u N) and Cl L n M 7 @ then the diameter of L is
less than 1/2n. Define H to be the finite set consisting of all components of
8 — K which are subsets of M, and let D be the component of Uxr Cl X
which contains N. Since M does not separate S, D is a disk.

Let W be a complementary domain of D u E. Suppose there exists a point
z of Bd D n Cl W such that d(z, £) > 1/n. Note that W is the only com-
plementary domain of D u E which has z as a limit point. The point z be-
longs to K. There exist a component L of S — (K u D) and a point ¢ of
S — M such that = belongs to Cl L and ¢ belongs to L; for otherwise, x would
belong to the interior of D. Since the diameter of L is less than
1/2n,d(z, t) < 1/2n. L is a connected setin S — (D u E). It follows that
tis a point of W — M.

DerFiNiTION. A point y of a continuum M cuts « from z in M if x, y and 2
are distincet points of M and y belongs to each subcontinuum of M which con-
tains {z, 2}.

LemmA 4. If M s a compact semi-aposyndetic metric continuum and x, y and
z are points of M such that y cuts x from z in M, then z does not cut x from y in M,

Proof. Suppose y cuts x from z and z cuts « from yin M. For each positive
integer 7, let G; be the set of all points v of M such that p(v,2) < 1/7 (pis a
metric for M) and let L; be the z-component of M — @G; . The limit superior
LofLy,L;,Ls, --- is a continuum in M which contains {z, z}. Since y cuts z
fromzin M, yisin L. Note that for each positive integer ¢, y does not belong
to L,' .

M is not aposyndetic at y with respeet to z. That is, the point z belongs to
each subcontinuum of M which contains y in its interior (relative to M). To
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see this assume there exist a continuum H and open sets U and V in M such
thatze Vandy e U € H C M — V. There exists an integer 7 such that G;
is contained in V. Since y does not belong to an element of Ly, Ly, L3, + -,
for each integerj (7 > %), L;n U = @. This contradicts the fact that yisin L.

By the same argument, M is not aposyndetic at z with respect to y. Since
M is semi-aposyndetic, this is a contradiction. Hence 2z does not cut x from y
in M.

TuroreM. If M is a semi-aposyndetic bounded subcontinuum of the plane S
which does not separate S, then M s arc-wise connected.

Proof. Let p and ¢ be distinet points of M. According to a theorem by
Jones, if no point cuts p from ¢ in M, then p and ¢ belong to a simple closed
curve in M and are therefore the extremities of an arc lying in M [4]. Suppose
that there exists a point which cuts p from ¢ in M. Let K be the closed
subset of M consisting of p, ¢ and all points z such that & cuts p from ¢ in M.
Define the binary relation B on K as follows. For distinet points « and y of
K,z R yif x cuts p from y in M or z = p.

If z and y are distinet points of K, either ¢ B y or y B . To see this first
suppose that {x, y} n {p, ¢ = 0. Either « does not cut y from ¢ or y does not
cut z from g in M (Lemma 4). Assume that # does not cut y from ¢ in M.
There exists a continuum H in M — {z} containing {y, ¢}. The point z cuts p
from y in M; for otherwise, there would exist a continuum F such
that {p, y} < F € M — {z} and {p, ¢} would be a subset of the continuum
Hvu Fin M — {z} which is impossible since z belongs to K. Hence z R y.
By the same argument, if y does not cut x from ¢, then y R x. If
{z, ¥} n{p, ¢} # @, the conclusion follows immediately.

The binary relation R is anti-symmetric. For if 2 and y belong to K and
z R y, then by Lemma 4,y R 2 (y B x does not hold). R is also transitive. To
see this suppose there exist points z, ¥ and z of K such that z R y, y R 2z and
xz R z. There exists a continuum H in M — {a} containing {p, 2}. Since
y R 2, y must belong to H. This contradicts the assumption that x R y.

For each point z of K, define P(z) to be the set of all points z of K such that
z R x and define F(x) to be the set of all points z of K such that z R 2. Note
that P(p) = F(q) = §. Let « be a point of K — {p, ¢} and let z be a point
of F(x). Since R is anti-symmetric, z R x. Hence there exists a continuum
J such that {p, 2} € J € M — {2}. P(z) is a subset of J and since J is
closed in M, 2z is not in Cl P(z). It follows that for each point z of
K, Cl P(z) n F(z) = §. Suppose that « is a point of K — {p, ¢} and zis a
point of P(z). Since z R z, 2 R z. Consequently there exists a continuum
Pin M — {z} containing {p, 2}. The point z cuts z from ¢ in M ; for otherwise,
there would exist a continuum L such that {z, ¢} € L < M — {z} and {p, ¢}
would be a subset of the continuum L u P in M — {z} which contradicts the
assumption that x belongs to K. By Lemma 4, the point z does not cut =
from q in M. Therefore there exists a continuum 7' such that

{z,q T c M — {z}.
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Let y be a point of F(x). If y is not in T, there exists a continuum H such
that {p, ¢ € H € M — {y}. This contradicts the assumption that y is in K.
It follows that F(x) is contained in the closed set 7' and z is not in CI F(x).
Hence for each point z in K, P(z) n C1 F(z) = @.

The binary relation R is a natural ordering of K [7, p. 41]. Hence there
exists an arc 4 (not necessarily in 8) containing K such that p and ¢ are
endpoints of 4 and R is the order induced on K from 4 [7, Th. 6.4, p. 56]. If
a and b are points of K such that a R b and a point = cuts a from b in M, then
x belongs to K, a B «, and « R b. To see this first note that since z cuts a
from b in M and a R b, = is not p (Lemma 4). Since a belongs to every
subcontinuum of M which contains {p, b}, z cuts p from b in M. It follows
that = belongs to K and # B b. Suppose that z cuts p from a in M. By
Lemma 4, there exists a continuum H such that {p, b} € H < M — {a}. This
contradicts the assumption that « R b. Hence z Raand a R z. Let E be a
component of A — K with endpoints ¢ and b and assume ¢ B b. Suppose
there exists a point x such that x cuts a from b in M. The point « belongs to
K. Furthermore since ¢ R x and R b, x must belong to £. This contradicts
the assumption that F is a subset of A — K. Hence no point cuts o from b
in M. Let C denote the set of components of A — K. It follows from
Jones’ theorem that for each E belonging to C, there exists a simple closed
curve J(E) in M which contains the endpoints of £ [4]. Since M does not
separate S, there exists a disk N (&) in M such that the endpoints of E are in
N(E). Note that if C is finite, one can easily define an arc in M with end-
points p and gq.

Assume that C is infinite. For each element E of C' define £’ to be the
straight line segment in S which has the endpoints of £ as endpoints. Sup-
pose that for some positive real number ¢, there exists an infinite subset I of C
such that for each element of E of I, £ is not e-spanned by a diskin M. There
exist a point z in K and a sequence E, , E,, E;, - - - of elements of I such that
(1) Ei, Es, E;, --- converges to z and (2) for each positive integer n, the
diameter of E.,, is less than ¢/4. By Lemma 3, for each positive integer n,
there exists a disk D, in M containing N (E,) such that if (1) W is a comple-
mentary domain of D, u E.,, (2) zis a point of CI W n Bd D, , and (3)
d(z, E.) > 1/n, then there exists a point ¢ of W — M such that d(z, ) < 1/2n.
According to Lemma 2, for each positive integer n, there exist points x, and ¥
in Bd D, , an arc-segment Y, in B, — D, , a positive real number 7, , and a
circular region U, in S such that (1) d({xa , Yn}, E.) > ¢/4, (2) {2a , ya} is DOt
contained in the closure of a complementary domain of D, u Y., (3)
d(%n , Yn) = Ta, and (4) U, has diameter r,/2 and is contained in D, . If ¢
and j are distinct positive integers, then U; n U; = §; for otherwise,

(K —{p,q}) nCl (E;u Ej)

would contain a point which does not cut p from ¢ in M. Since M is bounded
and the regions Ui, U,, U;, --- are mutually exclusive, the sequence
71,72, 73, -+ has limit 0. There exists a point  of M — {2} such that x is a
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cluster point of 21, 22, 23, - -- . Suppose that there exists a continuum # in
M — {2z} such that x belongs to the interior of F (relative to M). There exist
a region ( containing z in 8§ — F and distinct integers ¢ and 7 such that (1)
D; and D; both meet F and (2) Cl (E; u E;) is a subset of G. It follows that
(K — {p,q}) nCl (E;u E;) contains a point which does not cut p from ¢ in M.
This is a contradiction. Hence each subcontinuum of M which contains « in
its interior (relative to M) must also contain z (that is, M is not aposyndetic
at x with respect to z).

Since M is semi-aposyndetic, there exists a continuum F, in M — {} such
that z is contained in the interior of F, (relative to M). There exist mutually
exclusive circular regions U and V in S such that (1) x e U and z ¢ V, (2)
ClUnF,=@,and (3) MnV C F,. There exists a positive interger n such
that (1) 1/n < &/4, (2) the set

{u €S l d(u’ {xn ) yn}) < ]_/’I’l}
is contained in U, and (3) Cl E., is contained in V. Since
A(En, (@, y}) > 1/n,

there exist points ¢ and % of (S — M) n U such that {¢, 4} is not contained
in a complementary domain of D, u ¥, . Let W and Z be the complementary
domains of D, u Y, (there are only two) which contain ¢ and u respectively.
Since M does not separate S, there exists an arc Lin 8 — M from ¢ tou. Let
k denote the first point of L n Bd U n Z and let & be the last point of L n Bd U
which precedes k with respect to the order of L. Let H denote the subarc of
L which has endpoints h and k. Note that % belongs to W and
HnClU = {h k}. (D,uY,) — U separates h from kin S — U. There
exists a continuum N in (D, u Y,) — U which separates h from kin 8§ — U
[6, Th. 27, p. 177]. Let By and B; be the mutually exclusive arc-segments in
Bd U which have endpoints 4 and k. For ¢ = 1 and 2, there exists a point ¢;
in B; n N. The points ¢; and ¢, are contained in distinet components of
N — Y, [6, Th. 28, p. 156]. For ¢ = 1 and 2, let d; be a point of
Cl Y. n (c;-component of N — Y,). The set (-curve) H u Bd U separates
dy from dy in S [6, Th. 28, p. 156]. H u Bd U is contained in S — F, and
{d1, d3} is a subset of F,. Since F, is connected, this is a contradiction.
Hence for each positive real number ¢, the set consisting of all elements E of C
such that E’ is not e-spanned by a disk in M must be finite.

For each positive integer n, let C, be the finite set consisting of all elements
E of C such that either the diameter of E’ is greater than or equal to 1/2n, or
E’ is not (1/2n)-spanned by a disk in M. Let H; = C;, and for
n=23,4---,let H, =C, — Cpry. Notethat the sets H,,H,,Hs, ---
are mutually exclusive and C = U5-H,. For each element E of C, define
the arc-segment M (E) as follows. Assume that a and b are the endpoints of
E. There exists an integer n such that E belongs to H,. If n = 1, define
M(E) to be an arc-segment in N (F) with endpoints a and b. According to
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Lemma 1, if n > 1, there exists an arc-segment M (E) in M with endpoints
a and b such that for each point z of M(E), d(z, E') < 1/(n — 1). For each
positive real number ¢, the set consisting of all elements E of C such that the
diameter of M (E) is greater than ¢ must be finite. Suppose that for some
element X of C, the arc-segment M (X) meets K u Ugeo—(zy M(E). It follows
that (K — {p, ¢}) n C1 X contains a point which does not cut p from ¢ in M.
This is a contradiction. Hence for each element X of C,

(K u Upeeiz) M(E)) n M(X) = 0.

For each element E of C, let fr be a homeomorphism from E onto M(E)-
Define the function f from 4 to K u Ug.c M(E) as follows. For each point
z of K, define f(z) = x. If zisa point of A — K, define f(x) = fa(x) (z ¢ E).
The function f is a homeomorphism. Hence K u Uz M(E) is an arc in M
from p to ¢. It follows that M is arc-wise connected.
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