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Let k be a field, K an extension field, and U a finite-dimensional k-algebra
containing K. Sweedler [2] proved that if U is central simple with K as maxi-
mal commutative subfield, then U is isomorphic to K (R) K as a K K bi-
module; for K/k purely inseparable, he also proved the converse. Chase [1]
has given simpler proofs of these results, and has also shown that the converse
fails with K/k normal separable. In this note I show that the converse fails
whenever K/k, is not purely inseparable.

First recall some of the results of [2]. Let e (j 1, 2, 3, 4) be the natural
algebra maps of K (R) K (R) K into K (R) K (R) K (R) K given by inserting a 1 in
the jth place. (For brevity we write (R) instead of (R)k.) An element
x a (R) b (R) c is called a cocycle if

(1) ab(R)c= e(R) landa,(R)bc= l(R)eforsomeeO, and
(2) ,().() ()().

Let U be the algebra Endk K, with K embedded in it as the multiplication
operators. Given a cocycle x, define a new multiplication on U by
u v.= , as ub vc. Then this gives an associative k-algebra containing K
and isomorphic to K (R) K as a K K bimodule, and every such algebra arises
in this way. The algebra is central simple iff x is invertible (and is therefore
an Amitsur cocycle), and every central simple algebra with K as maximal com-
mutative subfield arises in this way.
Our problem thus is to show that not all cocycles are invertible. For K/k

separable we will in fact write down a cocycle x which is a nontrivial idempo-
tent. If L is a superfield of K, the image of x in L (R) L (R) L will again be a
Cocycle and a nontrivial idempotent. Since any extension not purely insepa-
rable contains a separable subextension, this will complete the proof.
We therefore assume K/k, separable. The kernel of the multiplication map

K (R) K -- K is then generated by an idempotent f, and we set

x I (R) 1 (R) 1- (f(R) i)(i (R)f).

It is easy to verify that this is a nontrivii idempotent satisfying condition (I)
with e I.
To check condition (2) we compute in the Galois closure E of K. If

q, ..., run independently over the maps of K into E, then

runs over the maps of (R)K into E, and the idempotents e. (x) always map to 0
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or 1. It is easy to see that 1 (x) goes to 1 precisely when z2 z or z z4

similarly s2 (x) goes to 1 when 1 z or 4, (x) when 1 or z4,

and 4 (x) when z or z z3. Hence e (x)s3 (x) and (x)s (z) always
have the same image, and therefore they must be equal.
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