COBORDISM OF LINE BUNDLES WITH A RELATION

BY
V. Giambalvo

In this paper a cobordism theory for line bundles over oriented manifolds, with w_{2} (Base) $=w_{1}^{2}$ (bundle), is studied. The cobordism groups Λ_{n} are computed. A homomorphism

$$
\Lambda_{n} \rightarrow \Omega_{n}^{S p i n}\left(Z_{2}\right)
$$

is given, and it is shown that this is a monomorphism mod torsion.

1. The classifying space

We reserve the term manifold for oriented, compact C^{∞} manifolds, without boundary unless otherwise specified. Let $B S O$ be the classifying space for stable oriented vector bundles, and $B O_{1}$ the classifying space for line bundles. Let

$$
f: B S O \times B O_{1} \rightarrow K\left(Z_{2}, 2\right)
$$

be the map give by $f^{*}(\iota)=w_{2} \otimes 1+1 \otimes t^{2}$, where $\iota \epsilon H^{2}\left(K\left(Z_{2}, 2\right), Z_{2}\right)$ is the fundamental class, $t \in H^{1}\left(B O_{1}, Z_{2}\right)$ the generator, and $w_{i} \in H^{i}\left(B S O, Z_{2}\right)$ the i th universal Stiefel-Whitney class. Then f induces a fibration over $B S O \times B O_{1}$ from the path space over $M\left(Z_{2}, 2\right)$

Given an oriented manifold M and a line bundle η over M, the classifying map ν of the stable normal bundle of M, and the classifying map η of η induce a map

$$
\nu \times \eta: M \rightarrow B S O \times B O_{1} .
$$

Now $w_{2}(M)+\left(w_{1}(\eta)\right)^{2}=(\nu \times \eta)^{*}\left(w_{2} \otimes 1+1 \otimes t^{2}\right)=(\nu \times \eta)^{*} f^{*}(\iota)$. So $\nu \times \eta$ lifts to a map $c: M \rightarrow E$ iff $w_{2}(M)+\left(w_{1}(\eta)\right)^{2}=0$. Thus we have the following definition.

Define an equivalence relation on the set of triples (M^{n}, η, c), where M^{n} is an n-dimensional manifold, η a line bundle over M, and c a lifting of $\nu \times \eta$ to E as follows: $\left(M_{1}^{n}, \eta_{1}, c_{1}\right)$ is equivalent to $\left(M_{2}^{n}, \eta_{2}, c_{2}\right)$ if there is a triple (W, η, c) where W is an $(n+1)$-dimensional manifold with boundary, η a line bundle over W, and c a lifting of $\nu_{W} \times \eta$ to E, such that
(1) $\quad \partial W=M_{1}+\left(-M_{2}\right)$
(2) $c \mid M_{i}=c_{i} \quad i=1,2$.

Received July 22, 1971.

Note that c determines η and so $\eta \mid M_{i}=\eta_{i}$ automatically. Let Λ_{n} denote the set of equivalence classes.

We can also do this entire procedure over $B S O_{k} \times B O_{1}$ and obtain E_{k}. But the map $B S O_{k} \rightarrow B S O_{k+1}$ lifts to a map $E_{k} \rightarrow E_{k+1}$. Hence, this is a special case of ' B, f^{\prime}-cobordism according to Lashof [3], where $B=E$ and f is the composition $E \rightarrow B S O \times B O_{1} \rightarrow B S O$. So we have the following [3].

Theorem 1. Λ_{n} is a group with operation induced by disjoint union. Furthermore, setting $\Lambda_{*}=\oplus_{n} \Lambda_{n}$, we have $\Lambda_{*} \approx \pi_{*}(M(\xi))$, the stable homotopy of the Thom space of the bundle ξ over E induced by the composition $E \rightarrow$ $B S O \times B O_{1} \rightarrow B S O$ from the universal bundle over $B S O$.

Also there is a product in Λ_{*}, given by cartesian product of manifolds, and tensor product of line bundles. Lifting the composition

$$
E \times E \rightarrow B S O \times B O_{1} \times B S O \times B O_{1} \rightarrow
$$

$$
\mathrm{BSO} \times \mathrm{BSO} \times \mathrm{BO}_{1} \xrightarrow{\oplus, \otimes} \mathrm{BSO} \times \mathrm{BO}_{1}
$$

gives a map $\mu: E \times E \rightarrow E$ such that the diagram

commutes. So μ induces $\mu: M(\xi) \wedge M(\xi) \rightarrow M(\xi)$, and Λ_{*} is a graded ring.
Since $\pi_{1} p_{n}: E_{n} \rightarrow B S O(n) \times B Z_{2} \rightarrow B S O(n)$ is a $\bmod p$ homotopy equivalence for odd primes p, it follows that $\pi_{*}(M(\xi))$ has no odd torsion.

$$
\text { 2. } H^{*}\left(M(\xi) ; Z_{2}\right)
$$

For the rest of this paper, all homology and cohomology will be with coefficient group Z_{2}, \mathfrak{Q} will denote the $\bmod 2$ Steenrod algebra, and $w_{i} \epsilon H^{i}(B S O)$ the $i^{\text {th }}$ Stiefel Whitney class.

Theorem 2. As a graded Q algebra, $H^{*}(E)$ is isomorphic to the polynomial ring

$$
Z_{2}\left[\left(\pi_{1} p\right)^{*}\left(w_{i}\right), i \neq 2^{j}+1\right] \otimes Z_{2}\left[\left(\pi_{2} p\right)^{*}(t)\right]
$$

t being the generator in $H^{1}\left(B Z_{2}\right)$, with the extension given by $\left(\pi_{2} p\right)^{*}\left(t^{2}\right)=$ $\left(\boldsymbol{\pi}_{1} \boldsymbol{p}\right)^{*}\left(w_{2}\right)$.

Proof. In the fibration $K\left(Z_{2}, 1\right) \rightarrow E \rightarrow B S O \times B Z_{2}$ the fundamental group of the base acts trivially on the cohomology of the fibre. The fundamental class

$$
\iota_{1} \in H^{1}\left(K\left(Z_{2}, 1\right)\right)
$$

transgresses to $p^{*}\left(w_{2} \otimes 1+1 \otimes t^{2}\right)$. Hence ι_{1}^{2} transgresses to

$$
S q^{1} p^{*}\left(w_{2} \otimes 1+1 \otimes t^{2}\right)=p^{*}\left(w_{3} \otimes 1\right)
$$

and $\iota_{1}^{2 i}$ transgresses to $p^{*}\left(\left(w_{2}{ }^{j+1}+\right.\right.$ decomposables $\left.) \otimes 1\right)$. Thus, by Borel's theorem, $H^{*}(E)$ is the required quotient of $H^{*}\left(B S O \times B Z_{2}\right)$.

Hereafter we drop the p^{*} from $p^{*}\left(w_{1}\right)$ and $p^{*}(t)$.
Corollary 1. The bundle ξ over E has a Spin ${ }^{c}$ structure, and its classifying map

$$
\hat{\xi}: E \rightarrow B S p i n^{c}
$$

induces a monomorphism on cohomology.
Corollary 2. Let $U \in H^{0}(M(\xi))$ be the Thom class. Then the homomorphism.

$$
a \rightarrow H^{*}(M(\xi))
$$

give by $a \rightarrow a U$ has kernel $\mathfrak{a} / \mathfrak{a}\left(S q^{1}, S q^{3}\right)$.
This follows from the corresponding fact for $H^{*}\left(M S p i n{ }^{c}\right)$ [7].
In order to compute $H^{*}(M(\xi))$ as an \mathfrak{Q} module, we will need the following building blocks.

Definition. Let M be the \mathfrak{a} module obtained from the direct sum

$$
a / a S q^{1} \oplus \oplus_{i=1}^{\infty} a
$$

by the relations $S q^{2} x_{0}=S q^{1} x_{1}, S q^{2} S q^{3} x_{i}=S q^{1} x_{i+1}$, where x_{0} denotes the generator of the summand $\mathbb{Q} / Q S q^{1}$, and x_{i} the generator of the i th summand. Note $\operatorname{deg}\left(x_{0}\right)=0, \operatorname{deg}\left(x_{i}\right)=4 i-3$.

Theorem 3. Let \mathfrak{J} be the set of all non-decreasing sequences of integers $\left(j_{1}, \cdots, j_{s}\right)$ of finite length such that $j_{r}>1$ for all r. Let Y be the graded Z_{2} vector space with one generator Y_{J} for each $J \in \mathcal{g}$, with $\operatorname{deg} y_{J}=4 n(J)=4 \sum j_{i}$. Then $H^{*}(M(\xi))$ is isomorphic as an a module to $M \otimes Y \oplus F$, where F is a free a module.

The proof will occupy the remainder of this section. The homology of $M \otimes Y$ and $H^{*}(M(\xi))$ with respect to the differentials Q_{0}, and Q_{1}, induced by operation of $S q^{1}$ and $S q^{3}+S q^{2} S q^{1}$, respectively will be computed. Then

$$
f_{*}: H\left(M \otimes Y, Q_{i}\right) \rightarrow H\left(H^{*}(M(\xi)), Q_{i}\right)
$$

will be shown to be an isomorphism and Theorem 5.1 of [6] will be applied. Note that the product in Λ_{*} gives $H^{*}(M(\xi))$ the structure of a coalgebra over \mathfrak{a}.

The first step is to compute $H\left(H^{*}(M(\xi)), Q_{0}\right)$ and $H\left(H^{*}(M(\xi)), Q_{1}\right)$. Since $Q_{0} U=0$ and $Q_{1} U=0$ in $H^{*}(M(\xi))$, the Thom isomorphism $H^{*}(E) \rightarrow H^{*}(M(\xi))$ induces an isomorphism on Q_{0} and Q_{1} homologies. So $H\left(H^{*}(E), Q_{i}\right)$ will be computed.

Lemma 1. There are classes $u_{2 i} \epsilon H^{2^{i}}(E)$ and $\tilde{u}_{2 i-2} \epsilon H^{2^{i-2}}(E)$ such that

$$
\begin{equation*}
H\left(H^{*}(E), Q_{0}\right) \approx Z_{2}\left[w_{2 i}^{2}, i \neq 2^{j}\right] \otimes Z_{2}\left[u_{2 i}, j>1\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
H\left(H^{*}(E), Q_{1}\right) \approx Z_{2}\left[w_{2 i}^{2}, i \neq 2^{j}-1\right] \otimes Z_{2}\left[u_{2 i-2}, j>2\right] \otimes \Lambda\left(w_{2}\right) . \tag{2}
\end{equation*}
$$

Proof. (1) $Q_{0}\left(w_{2 i}\right)=w_{2 i+1}, Q_{0} w_{2 i+1}=0, Q_{0} t=t^{2}=w_{2}$. There are classes

$$
u_{2 i}^{\prime} \in H^{2 i}\left(B S p i n^{c}\right)
$$

such that $u_{2 i}^{\prime}=w_{2 i}^{\prime}+$ decomposables, and $Q_{0} u_{2 i}^{\prime}=0[7, \mathrm{pg} .316]$. Hence we can write $H^{*}(E)$ as

$$
Z_{2}\left[w_{2 i}, Q_{0} w_{2 i}, i \neq 2^{j}\right] \otimes Z_{2}\left[u_{2 i}, j>1\right] \otimes Z_{2}[t],
$$

where $u_{2 j}$ is the image in $H^{*}(E)$ of $u_{2 j}^{\prime}$.
(2) $Q_{1} w_{2 i}=w_{2 i+3}, Q_{1} w_{2 i+1}=0, Q_{1} t=t^{4}=w_{2}^{2}$. Choose $\tilde{u}_{2} i_{-2}$ as in proof of (1). Then we get

$$
H^{*}(E) \approx Z_{2}\left[w_{2 i}, Q_{1} w_{2 i}, i \neq 2^{j}-1\right] \otimes Z_{2}\left[\tilde{u}_{2 i}-2, j>2\right] \otimes Z_{2}[t] .
$$

Corollary 3. $H\left(H^{*}(E)\right)$ has Q_{0} homology only in dimensions congruent to $0 \bmod 4$.

Lemma 2.

$$
H^{*}\left(M S p i n^{c}\right) \approx\left(\oplus_{J^{\prime}}\left(Q / Q\left(S q^{1}, S q^{3}\right)\right) x_{J}^{\prime}\right) \oplus F
$$

where F is a free module, $\operatorname{deg} x_{J}^{\prime}=4 n(J)$, and \mathfrak{g}^{\prime} is the set of all finite non-decreasing sequences J of positive integers.
Proof. [7, pg. 319].
We use this to construct the map $f: M \otimes Y \rightarrow H^{*}(M(\xi))$.
Let $z_{J}^{\prime} U \in H^{4 n(J)}\left(M S p i n^{c}\right)$ be the generator of the $\left(\mathbb{Q} / \mathbb{Q}\left(S q^{1}, S q^{3}\right)\right) x_{J}^{\prime}$. Let

$$
z_{J} U \epsilon H^{*}(M(\xi))
$$

be its image. Recall M is a quotient of the direct sum

$$
a / a S q^{1} \oplus a \oplus a \oplus a \oplus \cdots
$$

with generators $x_{0}, x_{1}, x_{2}, \cdots$. Let $f\left(x_{0} \otimes y_{J}\right)=z_{J} U$. Then $S q^{1}\left(z_{J} U\right)=0$. Now

$$
S q^{1}\left(S q^{2} z_{J} \cdot U\right)=S q^{3} z_{J} \cdot U=0 .
$$

So by Corollary 3, there is a $z_{J}^{\prime} \epsilon H^{4 n(J)+1}(E)$ with $S q^{1} z_{J}^{\prime}=S q^{2} z_{J}$. Let

$$
f\left(x_{i} \otimes y_{J}\right)=z_{J} w_{2}^{2 i-2} t U+z_{J}^{\prime} w_{2}^{2 i-2} U .
$$

Now
$S q^{1} f\left(x_{i} \otimes y_{J}\right)=z_{J} w_{2} U+S q^{1} z_{J}^{\prime} U=z_{J} w_{2} U+S q^{2} z_{J} U=S q^{2} f\left(x_{0} \otimes y_{J}\right)$ and

$$
\begin{aligned}
S q^{2} S q^{3} f\left(x_{i} \otimes y_{J}\right)=w_{2}^{2 i+1} z_{J} U & +\left(S q^{2} z_{J}\right) w_{2}^{2 i} U \\
& =S q^{1}\left(w_{2}^{2 i} t z_{J} U+w_{2}^{2 i} z_{J}^{\prime} U\right)=S q^{1} f\left(x_{i+1} \otimes y_{J}\right)
\end{aligned}
$$

and hence $f: M \otimes Y \rightarrow H^{*}(M(\xi))$ is defined.

Let Q_{1} be the sub Hopf-algebra of \mathbb{Q} generated by $S q^{0}=1, S q^{1}$ and $S q^{2}$. Define \hat{M} as the quotient of the direct sum $\mathbb{Q}_{1} / \mathbb{Q}_{1} S q^{1} \oplus \mathbb{Q}_{1} \oplus \mathbb{Q}_{1} \oplus \cdots$ by the relations

$$
S q^{2} x_{0}=S q^{1} x_{1}, \quad S q^{2} S q^{3} x_{i}=S q^{1} x_{i+1}
$$

Then $M=\mathfrak{a} \oplus_{a_{1}} \hat{M}$. Let \hat{M}^{i} be the elements in \hat{M} of degree i, and $\hat{M}^{(i)}$ the sub a_{1} module of \hat{M} generated by $\hat{M}^{j}, j \leq 1$. Then $\hat{M}^{(0)} \subset \hat{M}^{(1)} \subset \cdots$ defines an increasing filtration on \hat{M}, and $M^{(i)}=\mathbb{Q} \otimes_{a_{1}} \hat{M}^{(i)}$ gives an increasing filtration on M.

Lemma 3. The inclusion $M^{(0)} \rightarrow M$ induces an epimorphism

$$
H\left(M^{(0)}, Q_{i}\right) \rightarrow H\left(M, Q_{1}\right)
$$

Proof. It is enough to show this for \hat{M}. Now

$$
\hat{M}^{(0)} \approx a_{1} / a_{1}\left(S q^{1}, S q^{3}\right) \quad \text { and } \quad \hat{M}^{(4 i+1)} / \hat{M}^{(4 i-3)} \approx a_{1} / a_{1} S q^{1}
$$

In the spectral sequence for $H\left(\hat{M}, Q_{i}\right), E^{1}$ is isomorphic to

$$
H\left(\hat{M}^{(0)}, Q_{i}\right) \oplus \oplus_{j=1}^{\infty} H\left(Q_{1} / Q_{1} S q^{1}, Q_{i}\right)
$$

In the case $i>0, H\left(Q_{1} / Q_{1} S q^{1}, Q_{0}\right) \approx Z_{2} \oplus Z_{2}$, given by the classes of the generator x_{i} and $S q^{2} S q^{3} x_{i}$. Now $d_{1} x_{i}=S q^{2} S q^{3} x_{i-1}$ if $i>1$, and $d_{1} x_{1}=S q^{2} x_{0}=S q^{2} x_{0} \neq 0$. So only the $H\left(\hat{M}^{(0)}, Q_{0}\right)$ term survives. Since $H\left(Q_{1} / Q_{1} S q^{1}, Q_{1}\right)=0$, the result follows.

To conveniently express $H\left(M, Q_{i}\right)$, note that dualization following an application of the cannonical antiautomorphism X of the Steenrod algebra induces an isomorphism of Q_{i} homology. Let $\xi_{i} \in \mathbb{Q}^{*}$ be the usual generator of degrees $2^{i}-1$.

Iemma 4.

$$
H\left(M, Q_{0}\right) \approx Z_{2}\left[\xi_{1}^{4 k}\right], \quad H\left(M, Q_{1}\right) \approx \Lambda\left[\xi_{i}^{2}, i \geq 1\right]
$$

Proof.
$H\left(\mathbb{Q} / \mathbb{Q}\left(S q^{1}, S q^{3}\right), Q_{0}\right) \approx Z_{2}\left[\xi_{1}^{2 k}\right], \quad H\left(a / a\left(S q^{1}, S q^{3}\right), Q_{1}\right) \approx \Lambda\left[\xi_{1}^{2}, i \geq 1\right]$
by [7]. In the E^{1} term of the spectral sequence for $H\left(M, Q_{0}\right)$, the term corresponding to ξ_{1}^{4+2} is a boundary, by proof of Lemma 3. For the same reason, the spectral sequence for $H\left(M, Q_{1}\right)$ collapses.

Lemma 5. finduces an isomorphism $f_{*}: H\left(N, Q_{i}\right) \rightarrow H\left(H^{*}(M(\xi)), Q_{i}\right)$ for $i=1,2$.

Proof. This is analogous to the corresponding state for MSpin ${ }^{c}$ [7, Lemma 1, p. 320]. We can consider $H\left(H^{*}(E), Q_{0}\right)$ as the free $Z_{2}\left[w_{2 i}^{2}, i>1\right]$ module on generators

$$
u_{2^{i(1)}} \cdots u_{2 i(s)}, \quad 1<j(1)<j(2)<\cdots<j(s) .
$$

Write $w_{2 i(1)}^{2} \cdots w_{2 i(k)}^{2}, u_{2^{i(1)}} \cdots u_{2^{j(s)}}$ as $w_{I}^{2} u_{S}$, where

$$
I=(i(1), \cdots, i(k)), \quad S=(j(1), \cdots, j(s))
$$

Partially order the monomials $w_{I}^{2} u_{S}$ by $w_{I}^{2} u_{S}<w_{I^{\prime}}^{2} u_{S^{\prime}}$ if dimension $w_{I}^{2}<$ dimension $w_{I^{\prime}}^{2}$. Then

$$
H\left(M \otimes Y, Q_{0}\right)=H(M) \otimes Y
$$

Let $\alpha_{4 k} \in H\left(M, Q_{0}\right)$ correspond to $\xi_{1}^{4 k}$. Then, exactly as in [7], $f\left(\xi_{1}^{4 k} \otimes y_{J}\right)=$ $w_{J} u_{S} \cdot U+\sum_{J^{\prime}} w_{J^{\prime}} u_{S^{\prime}} U$ where $w_{J^{\prime}}>w_{J}$ and $S=(j(1), \cdots, j(s)$ is the dyadic expansion of $4 k$. Thus f induces an isomorphism on Q_{0} homology.

To show f induces an isomorphism on Q_{1} homology, write $H\left(H^{*}(E), Q_{1}\right)$ as the free $Z_{2}\left[w_{2 j}^{2}, j>1\right]$ module on generators

$$
\tilde{u}_{2^{j(1)-2}} \tilde{u}_{2 i(2)-2} \cdots \tilde{u}_{2 j(s)_{-2}}
$$

where $1<j(1)<j(2)<\cdots j(s)$, setting $\tilde{u}_{2}=w_{2}$. If $K=\left(k_{1}, k_{2}, \cdots, k_{r}\right)$ is a finite sequence of 0 's and 1 's, let $\alpha_{K} \in H\left(M, Q_{1}\right)$ be the homology class corresponding to $\xi_{1}^{2 k_{1}} \xi_{2}^{2 k_{2}} \cdots \xi_{r}^{2 k_{r}}$. Then [7]

$$
f_{*}\left(\alpha_{K} \otimes y_{J}\right)=w_{J} u_{S} U+\sum_{J^{\prime}} w_{J^{\prime}} u_{S^{\prime}}
$$

where

$$
w_{J^{\prime}}>w_{J} \quad \text { and } \quad u_{S}=\left(\tilde{u}_{2^{2}-2}\right)^{k_{1}} \cdot\left(u_{2^{3}-2}\right)^{k_{2}} \cdots\left(u_{2^{s+1}-2}\right)^{k_{s}} .
$$

Proof of Theorem 3. By a theorem of Peterson [6, Theorem 5.1], since f induces an isomorphism $f_{*}: H\left(N, Q_{i}\right) \rightarrow H\left(H^{*}(M(\xi)), Q_{i}\right)$ for $i=0,1$, Theorem 3 will follow if we verify the following:

Let $x \in N$, degree $x=n$, such that x is not in the submodule of N generated over \mathfrak{a} by terms of degree less than n. Then there is an element $b \in \mathbb{Q}_{1}, b \neq 0$, such that $b x=0$. But this is trivial, since x must be $\sum \alpha_{i} x_{i} \otimes y_{J_{i}}$ where $\alpha_{i} \in Z_{2}$. But $S q^{3} S q^{1}$ does the job.

$$
\text { 3. } \pi_{*}(M(\xi))
$$

We now obtain information on $\pi_{*}(M(\xi))$ via the Adams Spectral sequence. Since

$$
H^{*}(M(\xi)) \approx M \otimes Y \oplus F
$$

to compute the E_{2} term it is sufficient to compute $\operatorname{Ext}_{\alpha}\left(M ; Z_{2}\right)$. Since $M=\mathfrak{Q} \otimes_{a_{1}} \hat{M}$ as an \mathfrak{Q} module, $\operatorname{Ext}_{a}\left(M, Z_{2}\right)=\operatorname{Ext}_{a_{1}}\left(\hat{M}, Z_{2}\right)$ [4]. Note $\operatorname{Ext}_{a_{2}}\left(\hat{M}, Z_{2}\right)$ is an $\operatorname{Ext}_{a_{2}}\left(Z_{2}, Z_{2}\right)$ module. Let

$$
h_{0} \in \operatorname{Ext}_{\Omega_{1}}^{1,1}\left(Z_{2}, Z_{2}\right) \quad \text { and } \quad h_{1} \in \operatorname{Ext}_{Q_{1}}^{1,2}\left(Z_{2}, Z_{2}\right)
$$

be the elements coming from the relation $S q^{1} 1=0$ and $S q^{2} 1=0$.
Theorem 4. For each interger $i>0$, there are elements

$$
x_{i} \in \operatorname{Ext}^{0,4 i-3}\left(\hat{M}, Z_{2}\right) \quad \text { and } \quad \gamma_{i} \in \operatorname{Ext}^{2 i, 4 i}\left(\hat{M}, Z_{2}\right)
$$

such that the only nonzero elements are $h_{0}^{j}, h_{0}^{k_{i}} x_{i}$ and $h_{0}^{j} \gamma_{i}$ where $j \geq$ and $0 \leq$
$k_{i}<2 i+1$. There is a relation given by $h_{1} \gamma_{i}=h_{0}^{2 i+1} x_{i+1}$ and since $h_{0} h_{1}=$ $0, h_{0}^{2 i+2} x_{i+1}=0$.

Proof. Construct a resolution. This is a simple computation.
Corollary 4. $\operatorname{Ext}_{a}^{s, t}\left(M ; Z_{2}\right)=0$ unless $t-s \equiv 0,1 \bmod 4$.
Theorem 5. $\quad E_{2}=E_{\infty}$.
Proof. Since in $\operatorname{Ext}_{\alpha}^{* *}\left(M \otimes Y ; Z_{2}\right)$ there are only entries for $t-s \equiv 0$, $1 \bmod 4$, and the elements with $t-s \equiv 0 \bmod 4$ build infinite towers, the only non-zero differentials can come from the summand $\operatorname{Ext}_{\alpha}^{* *}\left(F ; Z_{2}\right)=$ $\operatorname{Ext}_{⿷}^{0, *}\left(F, Z_{2}\right)$. We compute F to see that this cannot occur.

Let $k: B S p i n \rightarrow E$ be a lifting of the composition

$$
B S p i n \rightarrow B S O \rightarrow B S O \times p t \rightarrow B S O \times B Z_{2}
$$

Since $k^{\prime}(\xi)$ is the universal bundle over BSpin, k induces a map

$$
k: M \operatorname{Spin} \rightarrow M(\xi)
$$

with $k^{*}\left(w_{i} U\right)=w_{i} U\left(i \neq 2^{j}+1\right)$, and so k^{*} induces an isomorphism

$$
\hat{k}: H^{*}(M(\xi)) /(t) \rightarrow H^{*}(M S p i n)
$$

where $H^{*}(M(\xi)) /(t)$ is quotient by the submodule generated by (powers of $t) \cdot U$.

From [1] we have

$$
H^{*}(M S p i n)=\mathfrak{a} / \mathfrak{a}\left(S q^{1}, S q^{2}\right) \otimes Y^{\prime} \oplus \mathfrak{a} / \mathfrak{a} S q^{3} \otimes Y^{\prime \prime} \oplus F^{\prime}
$$

where Y^{\prime} and $Y^{\prime \prime}$ are the subspaces of Y generated by those $J \in \mathfrak{J}$ with $n(J)$ even and $n(J)$ odd, respectively. For $n(J)$ even, we have

$$
k^{*}\left(M \otimes y_{J}\right)=\mathbb{a} / \mathfrak{a}\left(S q^{1}, S q^{2}\right) \otimes y_{J}^{\prime}
$$

For $n(J)$ odd, $1 \in M, k^{*}\left(1 \otimes y_{J}\right)=S q^{2} \otimes y_{J}^{\prime \prime}$. (Recall for $n(J)$, odd, $\operatorname{deg}\left(y_{J}^{\prime \prime}\right)=n(J)-(2)$. Let

$$
\hat{l}:(M \text { Spin }) \rightarrow H^{*}(M(\xi))
$$

be defined by $\hat{l}\left(w_{i_{1}} \cdots w_{i_{k}} U\right)=w_{i_{1}} \cdots w_{i_{k}} U$. If $\alpha_{J} \epsilon H^{4(n(J))-2}(M(\xi))$ is given by $\hat{l}\left(1 \otimes y_{J}^{\prime \prime}\right)=\alpha_{J}$, then α_{J} is the generator of a free \mathbb{Q} module. So is $t \alpha_{J}$, and $t^{2} \alpha_{J}=w_{2} \alpha_{J}$ generates a copy of M, i.e. $w_{2} \alpha_{J}=1 \otimes y_{J}$. Similarly, we identify all the $t^{k} \alpha_{J}$. These cannot support differentials, since they either come from infinite cycles in $E_{2}^{* *}(M S p i n)$, or are products of other zerodimensional elements in E_{2}. An analogous argument gives the results for elements of the form $t^{k} \hat{l}\left(Z_{i}\right)$, where Z_{i} generates a free \mathbb{Q}-module in $M S$ pin.

Thus one can read off Λ_{n}. A short table is as follows:

n	0	1	2	3	4	5	6	7	8		9	10	11	12
Λ_{n}	Z	Z_{4}	0	0	Z	Z_{16}	0	0	$Z \oplus Z$	$Z_{64} \oplus Z_{4}$	Z_{2}	Z_{2}	$Z \oplus Z \oplus Z$	$Z_{266} \oplus Z_{16} \oplus Z_{4}$

4. Relation to $\Omega^{\text {Spin }}\left(Z_{2}\right)$

If (M, η, c) $\in \Lambda_{n}$, then the sphere bundle $S(\eta)$ of η admits a natural free orientation preserving involution, and also a Spin structure, since

$$
w_{2}(S(\eta))=p^{*}\left(w_{2}(M)\right)=p^{*}(\eta(t))^{2}=0
$$

So there is a homomorphism $\Lambda_{n} \rightarrow \Omega_{n}^{S p i n}\left(Z_{2}\right)$, the cobordism group of oriented manifolds, with free, orientation preserving Z_{2} action. By forgetting the Z_{2} action, and using the natural inclusions, we get a diagram

Then $2 s(x)=\gamma \beta \alpha(x)$ for all a $\epsilon \Lambda_{n}$. Now s maps the integral summands of $\Lambda_{4 n}$ monomorphically, as a look at the map s^{*} in cohomology shows. Hence α is a monomorphism on $\Lambda_{n} /$ torsion.

References

1. D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math., vol 86 (1967), pp. 271-298.
2. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, New York, 1964.
3. R. Lashof, Some theorems of Browder and Novikov, Mimeographed Notes, University of Chicago.
4. A. Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math., vol. 86 (1964), pp. 1-16.
5. J. W. Milnor, Spin structures on manifolds, Enseignment Math., vol. 9 (1963), pp. 198-203.
6. F. P. Peterson, Cobordism theory, Proc. of Symposia in Pure Math., Madison, Wisconsin, 1970.
7. R. E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, New Jersey, 1968.

The University of Connecticut
Storrs, Connecticut

