
COBORDISM OF LINE BUNDLES WITH A RELATION

BY

V. GIAMBALVO

In this paper a cobordism theory for line bundles over oriented manifolds,
with w.(Base) w(bundle), is studied. The cobordism groups h. are
computed. A homomorphism

O.Spi

is given, and it is shown that this is a monomorphism mod torsion.

1. The classifying space
We reserve the term manifold for oriented, compact C manifolds, without

boundary unless otherwise specified. Let BSO be the classifying space for
stable oriented vector bundles, and B01 the classifying space for line bundles.
Let

f: BSO X B01 -- K Z. 2)

be the map give by f*(e) w2 (R) 1 + 1 (R) , where e H(K(Z., 2), Z) is
the fundamental class, e HI(BOI Z) the generator, and w Hi(BSO, Z:)
the ith universal Stiefel-Whitney class. Then f induces a fibration over
BSO X B01 from the path space over M(Z, 2)

E PK(Z, 2)

BSO X BO- f K(Z, 2).

Given an oriented manifold M and a line bundle n over M, the classifying
map of the stable normal bundle of M, and the classifying map v of n induce
a map

v X n :M-- BSO X BO.
Noww(M) + (w(,)) (v X v)*(w (R) 1 + 1 (R) ) (v X v)*f*().
So v X n lifts to a map c M--)Eiffw(M) + (w()) 0. Thuswehave
the following definition.

Define an equivalence relation on the set of triples (M, , c), where M" is
an n-dimensional manifold, a line bundle over M, and c a lifting of v X n to E
as follows: (M, w, cl) is equivalent to (M, n, c.) if there is a triple
(W, , c) where W is an (n + 1)-dimensional manifold with boundary, a
line bundle over W, and c a lifting of v X n to E, such that

(1) OW M +
(2) cIii c i 1,2.
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Note that c determines nd so [M automatically. Let An denote
the set of equivalence classes.
We can also do this entire procedure over BSO X B01 and obtain E. But

the map BSOk ---, BSO+I lifts to a map E -, E+. Hence, this is a special
case of ’B, f’-cobordism according to Lashof [3], where B E and f is the
composition E ---+ BSO BOa BSO. So we have the following [3].

THEOREM 1. A is a group with operation induced by disjoint union.
Furthermore, setting A, @ As, we have A, r,(M()), the stable homot-
opy of the Thorn space of the bundle over E induced by the composition E --BSO X BO -- BSO from the universal bundle over BSO.

Also there is a product in .4,, given by cartesian product of manifolds, and
tensor product of line bundles. Lifting the composition

E X E-- BSO X B01 X BSO X BO1 --+

BSO X BSO X BOa
(R) (R) ;BSO X B01

gives a map E E --, E such that the diagram

EXE-- -> E

BSO X BSO BSO

commutes. So induces M() /k M() - M(), nd A, is a graded ring.
Since rl p, "E, -- BSO(n) X BZ -- BSO(n) is a rood p homotopy

equivalence for odd primes p, it follows that r,(M()) has no odd torsion.

2. H*(M(); Z)
For the rest of this paper, all homology and cohomology will be with co-

efficie group Z, ( will denote the rood 2 Steenrod ulgebm, and w H(BSO)
the i Stiefel Whitney class.

THEOREM 2.
ring

As a graded ( algebra, H*(E) is isomorphic to the polynomial

Z:[(rl p)*(w), i 2 -+- 1] (R) Z.[(r. p)*(t)],

being the generator in H(BZ), with the extension given by (r p)*(t)
(rl p) *(w).

Proof. In the fibration K(Z, 1) -- E --+ BSO X BZ. the fundamental
group of the base acts trivially on the cohomology of the fibre. The funda-
mental class

e H(K(Z 1))
transgresses to p*(w (R) 1 + 1 (R) t). Hence transgresses to

* p,Sqp (w (R) 1 + 1 (R) ) (w (R) 1)
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2iand 1 transgresses to p*((w2i+ -}- decomposables) (R) 1). Thus, by Borel’s
theorem, H*(E) is the required quotient of H*(BSO X BZ.).

Hereafter we drop the p* from p*(wl) and p*(t).
COROLLARY 1. The bundle over E has a Spi structure, and its classifying

map
E-- BSpin

induces a monomorphism on cohomology.

COROLLARY 2. Let U e H(M()) be the Thorn class. Then the homomor-
phism

a --) H*(M())
give by a --, aU has kernel a/(( Sq, Sq3).

This follows from the corresponding fact for H*(MSpi) [7].
In order to compute H*(M() as an ( module, we will need the following

building blocks.

DEFINITION. Let M be the ( module obtained from the direct sum

a/aSq = a

by the relations Sq2xo Sqx, Sq2Sq3xi Sqlxi+, where x0 denotes the
generator of the summand a/aSq, and xi the generator of the ith summand.
Note deg (x0) 0, deg (x) 4i 3.

THEOREM 3. Let be the set of all non-decreasing sequences of integers
(jl j,) offinite length such that fl > i for all r. Let Y be the graded Z.
vector space with one generator Yj for each J e , with deg yj 4n(J) 4 ji
Then H*(M() is isomorphic as an ( module to M (R) Y F, where F is a

free ( module.

The proof will occupy the remainder of this section. The homology of
M (R) Y and H*(M() with respect to the differentials Q0, and Q1, induced
by operation of Sq and Sq - SqSq, respectively will be computed. Theu

f. H(M (R) Y, Q) -- H(H*(M()),will be shown to be an isomorphism and Theorem 5.1 of [6] will be applied.
Note that the product in A. gives H*(M()) the structure of a coalgebra
over (.

The first step is to compute H(H*(M()), Qo)and H(H*(M()), QI).
Since Q0 U 0 and Q U 0 in H*(M()), the Thom isomorphism
H*(E) -+ H*(M()) induces an isomorphism on Q0 and QI homologies. So
H(H*(E), Q) will be computed.

H-(E) such thatEMMA 1 There are classes u H’(E) and -. e

(1) H(H*(E), Qo) Z[wi, i 2] @ Z[u2, j > 1]
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(2) H(H*(E), Q1) Z.[w, i 2 1] (R) Z.[u2i_2, j > 2] (R) A(w2).

Proof. (1) qo(w2i) w2i+, Q0w2i+l 0, Q0t w2. There are
classes

Hi(BSpi)U2i e

such that u. wi + decomposables, and Q0 u; 0 [7, pg. 316]. Hence
we can write H*(E) as

Z2[w, Qo w.i, i 2’] (R) Z.[u2, j > 1] (R) Z[t],

where u is the image in H*(E) of ui.
(2) Q w.i w2+a, Qw+l 0, Q w. Choose .i_. as in proof

of (1). Then we get

H*(E) Z.[w2, Q w, i 2 1] (R) Z[_., j > 2] (R) Z2[t].

COROLLRY 3. H H* E) has Qo homology only in dimensions congruent to
0 rood 4.

LEMMA 2.
H* MSpi) @, a/a( ql, qa) Xj) F

where F is a free module, deg x 4n(J), and is the set of all finite non-de-
creasing sequences J of positive integers.

Proof. [7, pg. 319].
We use this to construct the map f M (R) Y - H*(M() ).
Let z! U e H’()(MSpin) be the generator of the (a/a(Sq1, Sq) z’ Let

H*zu (M())

be its image. Recall M is a quotient of the direct sum

a/aSq a a $ a
with generators x0, xl, x, .... Let f(xo (R) y) z U. Then
Sq zJ U) O. Now

Sq(Sq z U) Sqz.U O.

u4n()So by Corollary 3, there is a ze +I(E) with Sqz Sqz. Let

i--2 i--2f(x (R) y) z w U z w U.
Now

Sqf(x (R) y) zw U + Sqz U zw U + Sqz U Sqf(xo(R) y)

and
2i-1 2iSqSqf(x (R) y) w2 z U + (Sqz)w U

2i 2i Sq f(x+ (R) y,)Sq (w tz U -t- w z U)
and hence f" M (R) Y -- H*(M()) is defined.



446 v. GI/kMBALVO

Let al be the sub Hopf-algebra of a generated by Sq 1, Sq and Sq2.
Define 2r as the quotient of the direct sum (1/(1 Sq @ (1 (9 (1 (9 by
the relations

Sqxo Sqlxl Sq Sq x Sq

Then M ( al 21. Let 2 be the elements in 21 of degree i, and ]r(i) the
sub a module of ]r generated by ]J, j _< 1. Then 21r() c 21(1) c de-

]F-i(i)fines an increasing filtration on 21r, and M(i) a (R)al gives an increasing
filtration on M.

LEMMA 3. The inclusion M() -- M induces an epimorphism

U(i(), Q) -, H(M,

Proof. It is enough to show this for _/t. Now

](0) (1/(1(ql, q3) and /(4i-t-1)/](4i-3) (i/al Sq1.

In the spectral sequence for H(_r, Q), E is isomorphic to

U(;(), Q,) =H(a/a sql, Q,).

In the case i > O, H(a/al Sq, Qo) z2 $ z., given by the classes of the
generator x and Sq2Sq3x Now dlx SqSqxi_l if i > 1, and
dl xl Sq2xo Sq2xo O. So only the H(2r(), Q0) term survives.
Since H(al/a Sq1, Q) o, the result follows.
To conveniently express H(M, Q), note that dualization following an ap-

plication of the cannonical antiautomorphism X of the Steenrod algebra
(*duces an isomorphism of Q homology. Let e be the usual generator of

degrees 2 1.

LEMMA 4.

H(M, Qo) Z2[], H(M, Q1) A[, i

_
1].

Proof.
H(a/a(Sq1, Sq), Qo) z[], H(a/a(Sq1, Sq), Q1) - A[, i >_ 1]

by [7]. In the E term of the spectral sequence for H(M, Q0), the term cor-
responding to + is a boundary, by proof of Lemma 3. For the same
reason, the spectral sequence for H(M, Qx) collapses.

LEMMA 5. f induces an isomorphism f. H(N, Q) -- H(H*(M()), Qi)
for i 1,2.

Proof. This is analogous to the corresponding state for MSpir [7, Lemma
1, p. 320]. We can consider H(H*(E), Qo) as the free Z[w, i > 1] module
on generators

u;(1) u:;(,), 1 <j(1) <j(2) < <j(s).
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Write whereW2i(1) W2i(k) U2i(I) U2/(s) DS

I (i(1), .-.,i(k)), S (j(1), ...,j(s)).

Pa,rtially order the monomials w us by wx u
dimension w,. Then

H(M (R) Y, Qo) H(M) (R) Y.

Let a4k H(M, Q0) correspond to k. Then, exactly as in [7], f(k (R) y)
wus.U - ,w,us, U where wz, :> w and S (j(1), ..., j(s)isthc
dyadic expansion of 4k. Thus f induces n isomorphism on Q0 homology.
To show f induces an isomorphism on Q homology, write H(H*(E), Q)

.as the free Z[w, j > 1] module on generators

U2i(1)_2 21(2)2 21(s)_2

wherel <j(1) <j(2) < -..j(s),setting=w. IlK=
is finite sequence of O’s nd l’s, let a e H(M, Q) be the homology class
.corresponding tok . Then [7]

f.(a,: (R) y) w u U + ,wz,u,
where

w, > we nd u (_)l.(u_:)... (us+_).
Proof of Theorem 3. By theorem of Peterson [6, Theorem 5.1J, since f

induces n isomorphism f. H(N, Q) -- H(H*(M()), Q) for i 0, 1,
Theorem 3 will follow if we verify the following"

Let x e N, degree x n, such that x is not in the submodule of N generated
.over a by terms of degree less thn n. Then there is n element b e a, b 0,
such that bx 0. But this is trivial, since x must be ax (R) y where
a e Z:. But SqSq does the job.

3. ,(M())
We now obtain iformtion on .(M() vi the Adams Spectral sequence.

Since
H*(M()) M (R) Y (R) F,

to compute the E term it is sufficient to compute Exta(M; Z,). Since
M a (R)a/t) s n a module, Exta(M, Z) Ex a(., Z) [4]. Note
Ext(r, Z) is n Eta(Z, Z) module. Let

’ Z)hoe Ext.’(Z, Z) and he ]xt (Z,

be the elements coming from the relation Sql 0 nd Sql O.

THEOREM 4. For each interger i > O, there are elements

x e Ext’-(, Z) nd e Ext’(/t, Z)

such that the only nonzero elements are ho, hx and h’ where j >_ and 0

_
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.2i+1k < 2i + 1. There is a relation given by h,/ no Xi+l and since ho h,
2i2O, no x+ O.

Proof. Construct a resolution. This is a simple computation.

ConoLxnV 4. Ext’t (M; Z:) 0 unless s 0, 1 mod 4.

THEOREM 5. E. E..

Proof. Since in Exta**(M (R) Y; Z2) there are only entries for s 0,.
1 mod 4, and the elements with s 0 mod 4 build infinite towers, the
only non-zero differentials can come from the summand Exta**(F; Z?)

0,Ext,’ (F, Z2). We compute F to see that this cannot occur.
Let k BSpin E be a lifting of the composition

BSpin -- BSO --. BSO X pt BSO X BZ2

Since/() is the universal bundle over BSpin, k induces a map

k MSpin -- M()with k*(w U) w U (i # 2 + 1), and so k* induces an isomorphism

H*(M() )/(t) ---, H*(MSpin),

where H*(M()) /(t) is quotient by the submodule generated by (powers of
t) .U.
From [1] we hve

H*(MSpin) ala(Sq, Zq) (R) Y’ alasq (R) Y" F’
where Y’ and Y" are the subspaces of Y generated by those J e with n(j)
even and n(J) odd, respectively. For n(J) even, we have

k*(M (R) y) a/a(Sq, Zq) (R) y.
For n(J) odd, 1 M, k*(1 (R) y) Sq (R) y’. (Recall for n( J}
odd, deg (y) n(j) (2). Let

(MSpin) H*(M()
H4(n(J)be defined by i(w w U) w- w U. H a e )-(M()) is

given by l(1 (R) y’) a, the a is the generator of a free a module. So is
a wa generates a copy of M, i.e. w. a 1 (R) y. Similarlyta, and

we identify all the a. These cannot support differentials, since they either
come from infinite cycles in MSpin), or are products of other zero-
dimensional elements in E. An nlogous rgument gives the results for
elements of the form tl(Z), where Z generates free a-module in MSpin.
Thus one cn read off A. A short tble is as follows-

13

Z256 Z16 Z4
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4. Relation to 2si (Z)
If (M, v, c) e h,, then the sphere bundle S(v) of admits a natural free

orientation preserving involution, and also a Spin structure, since

w.(S(v)) p*(w(i)) p*(v(t)) O.
SpinSo there is a homomorpsm A, (Z), the cobordism group of oriented

folds, with free, orientation preseing Z actioa. By forgetting the Z
action, and using the natural inclusions, we get a agram

Then 2s(x) Ba(x) for aH a e A. Now s maps the integral summands
of A, monomorpcally, as a look at the map s* in cohomology shows. Hence
a is u monomorpsm on A/torsion.
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