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Let X nd Y be compact Hausdorff spaces. A and B will denote sub-algebras
of C(X) and C(Y) respectively. (C(X) indicates the space of continuous
complex-vlucd functions on X,) It will be ussumed that A and B re
equipped with the sup-norm, are point separating, and contain the constant
functions. In this pper, we give a description of the linear isometries from
A to B in the case where A C(X) and B C(Y), and under certain re-
strictions on the pair (X, Y).

Operators of the form

(,) T/ g(f o k)

where g is fixed function in C(Y) of norm 1 nd is a continuous mp from
Y into X such that ([g [--1(1)) X, constitute a class of isometries from
C(X) into C(Y). In fct, if T is an isometry of C(X) onto C(Y), then T
must be of the form (,) (see, e.g., [1, p. 442]). It is not true, in general,
that all isometries from C(X) into C(Y) are of the form (,). For example:
let [0, 1] [0, 1], i 1, 2 be continuous functions having the following
properties: on [0, 1/2], ([0, 1/2]) [0, 1], und(1) .(1). De-
fine isometries Ti C[0, 1] -- C[0, 1] by Ti f f i, i 1, 2. Let

T (1/2)T-t- (1/2)T.

Then T is n isometry, but T is not of the form (,).
Let S nd S, denote the unit balls in the dual spaces of A and B respec-

tively. Suppose T A -- B is an isometry. It follows from the Hahn-Banach
theorem, that the udjoint T* of T maps S, onto S. Let be an element of
the set ex S of extreme points of S. Then (T*)-I(/) n S. is non-empty
wek* closed face of S,. (A face F of u convex set K is a convex subset of
K such that

cf + (1 c)f eF nd (c,f,f) e (0, 1) X K X K

implies that f, f: e F.) It follows from the Krein-Milman Theorem that
there is an extreme point e of S, such that T*(e) 1. It is known (see, e.g.,
[3, Prop. 6.2]) that is an extreme point of S iff it is of the form e"l, where
a e [0, 2r] and l denotes evaluation at a point x of the Choquet boundary of
X with respect to A. Thus, we hve the following"

PROPOSITION 1. Let T be an isometry from A into B. Let
Y(T) {y e Y I[TI(y)I 1 and there is a (y) e X such that Tf(y)
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T1 (y)f( (y) for all f e A}. Then the mapping ’i: Y( T) X is continuous
and ( Y( T) contains the Choquet boundary of X with respect to A.|

COROLLAIV. Tf assumes its maximum on Y( T) for every f A.|

Let (B denote the space of bounded linear operators from A to B. We will
make use of the weak operator topology on (see [1, p. 476]).
We will use (B1 to designate the set of operators in (B having norm _< 1.

DEFINITION. Let T A -- B be a linear isometry. 5(T) will denote the
set U 9 Uf(y) Tf(y) for every f A and every y e Y(T)}.

THEOREM 2. Let T e ( be an isometry. Then 5( T) is a face of (B1 and is
closed in the weak operator topology. Furthermore, every member of 5( T) is an
isometry.

Proof. The only part of the theorem that is not immediate from the above
definition is the assertion that 5(T) is a face. Suppose

cU + (1 c)U2 e (T) where (c, U, U2) (0, 1) X (B X (B1.

Let y e Y(T). Then the mapping f Tf(y) is in ex S. Since the map-
pings f Uif(y), i 1, 2 are in SA, it follows that Tf(y) Uf(y)
Uf(y) for all f e A.|

COROLLARY. ex 5(T)

__
ex (1 .

It is natural to ask for a description of the extreme points of 5(T). One
might try to find conditions under which the extreme points of 5(T) are of
the formf gMf, where g e B and M is an algebra monomorphism. Another
appropriate question is whether or not 5(T) is the weak operator closed
convex hull of operators of the form f --. gMf.
For the remainder of the paper, it will be assumed that A C(X) and

B C(Y).

DEFINITION. Let T e (B be an isometry, if(T) will denote the set

[S (T) S is of the form (.)}.

Note that the members of if(T) need not be extreme points of 5(T).

DEFINITION. The pair (X, Y) is said to have the weak Tietze property if,
whenever is a continuous map from a closed subset F of Y onto X, then
has a continuous extension to all of Y.

Let Y be arbitrary. Let be a collection of spaces such that (C, Y) has
the weak Tietze property for each C e . If X is the Cartesian product of
(, then (X, Y) has the weak Tietze property. It follows from the previous
statement and from the Tietze Extension Theorem that, if X is an absolute
retract, then (X, Y) has the weak Tietze property.

Let X be arbitrary. If (X, Z) has the weak Tietze property and Y is a
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closed subset of Z, then (X, Y) has the weak Tietze property. Suppose Y
is totally disconnected and metric. Then Y can be looked upon as a closed
subset of the Cantor set K. If it can be shown that (X, K) has the weak
Tietze property, then it will follow that (X, Y) has the weak Tietze property.
Suppose F is a closed subset of K and h maps F continuously onto X. It can
be shown that there is a retraction r" K - F. Thus, it follows that h o r
extends h.

THEOREM 3. Let (X, Y) have the weak Tietze property. Suppose T is a
linear isometry from C(X) into C(Y). Then 8(T) is the weak operator closed
convex hull of ( T).

Proof. The following argument is an adaptation of one due to P. Morris
and R. Phelps [2, Th. 2.1].

Suppose U e 5(T) c (T). Then there are regular Borel measures
tl, 2, g, functions fl, f2, f e C(X), and a real number r > 0,
such that

() Re (.-_ f Ufi di) > Re (i= f Ffi di) + r

for every F e if(T). It can be assumed without loss of generality that i >_ 0
for i 1, 2, n. We can also assume without loss of generality that
i(Y(T)) 0fori 1,2, ,n, since Ufi Ffi on Y(T) for/= 1, 2, ..., n.
Let , i= i. Given e > 0, there is a closed subset Z of Y\Y(T) such
that 9(Y\Z) < e. For i 1, 2, n, let h denote the Radon-Nikodym
derivative of t with respect to 9. Choose h e C(Y) such that 0 _< hi < 1
andf[hi-- hid,< efori 1,2,....

Let g ih Ufi. For each y e Y, define ky i1 h(y)fi. Then
g(y) Uky(y). g(y) is also equal to (U*)(k,) where U* is the adjoint
of U and represents the unit point measure at y. The function w(p)
Re fk dp is weak* continuous on C(X)*. Since U* e So(x), it follows that
sup w(Scx)) >_ Re g(y). By the Krein-Milman Theorem, there is a e ex

iaSo(x) such that w(,) > Reg(y) -e. But e for some xeX and
some a e [0, 2). It follows that, for each y e Y, we may choose a (y) e X
and a complex number c(y) with [c(y) 1, such that

Re (in= c(y)h(y)fi((y) > Re g(y) e.

For each y e Z, choose an open neighborhood V of y such that V n Y(T) 9
and

Re i- c(y) h(w)fi((y) > Re g(w) 2e

for all w e V. Let {Vyl, V., V} be a finite collection of V’s which
covers Z. One can easily find another open cover {U, U} of Z such
that Ui V, i 1, 2, p and

v({YlY is in more thn one U.}) < e.
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Consider the setsHj (Zn U)\u{Ulij},j 1, 2,...,p. Then the
sets H are closed and disjoint and u(Z\iJ= Hi) < .

Define a mapping 0 Y(T) [J [[jr=l H.] -- X by

(y) =(y.) if yells.

(y) ifyeY(T).

Define a mapping " Y(T) u [(J=l H.] --> D where D is the closed unit
disk by

(y) C(yj) if yells.

Tl(y) ify e Y(T).

Since (X, Y) has the weak Tietze property and 0 is onto, it follows that 0
has a continuous extension, which we shall also denote by 0, to all of Y. By
the Tietze Extension Theorem, also has an extension, denoted by , to all
of Y. Define an operator FI" C(X) -- C(Y) by Ff Cf 0. Note that
F e if(T). By a straightforward argument (see [2, Th. 2.1]), one can find
a constant M > 0 such that

Thus, by choosing v sufiS.ciently small we obtain a contradiction to (’).|

COROLLARY 4. Let F denote the unit circle and let

T" C(X) ---, C( Y)

be a linear isometry. Suppose that (X, Y) and (F, Y) have the weak Tietze
property. Let ff( T) U e F( T) II Ul 1}. Then 3( T) co--fi(T).

Proof. The proof is the same as that for Theorem 3, except that, in the
present case, can be extended as a mapping from Y
mapping from Y -- D.|Note that (F, Y) has the weak Tietze property iff any continuous map
0 F -- F, where F is a closed subset of Y, has a continuous extension to all
of Y.

COROLLARY 5. Let X, Y) and T be as in Theorem 3. Suppose that T1 1.
Let be the set of algebra monomorphisms in ( T) Then T

Proof. Let (T) U (T) U1 1}. Note that each U I(T) is pos-
itive, i.e., f >_ 0 Uf >_ 0 (see [3, p. 36]). Note further, that
F(T). In the proof of Theorem 3, we made use of the fact that T* mapped
So(r) onto So(x). In this case, T is positive, hence, T* maps P(Y) onto
P(X) where P(Y) and P(X) denote the sets of probability measures on Y
and X respectively. It follows that, in the proof of Theorem 3, we can take
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Exanple. Let H C( 1) - C(D) be defined by
2r

Hf(z) (1/2r) f, f(e)Pz(e) dt if zl < 1

i lzl
where Pz(e) denotes the Poisson kernel. Note that H is an isometry, that
D(H) F, and that / is the identity map. Since r is not a retract of D,
it follows that (H) . Thus, in Theorem 3, it is not possible to remove
the condition that (X, Y) have the weak Tietze property.

It is interesting to note that ex I(H) 0 by [2, Prop. 5.11.|
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