MODULAR QUOTIENT GROUPS

BY
Mogrris NEWMAN

Introduction
Let

be the {-dimensional modular group,
T(n) ={Ael:A = I mod n},

the principal congruence subgroup of T' of level n, so that I' (n) consists of all
elements of T' congruent elementwise to the identity element modulo n, and

G(n, m) = T'(n)/T(m).

Here n, m are arbitrary positive integers such that n divides m. The question
which motivated this paper was to determine G (n, m)’, the commutator sub-
group of G'(n, m), and hence to determine the number of 1-dimensional repre-
sentations of G(n, m). It turns out that for ¢ > 2 a complete answer to this
question can be given using a result of J. L. Mennicke proved in [4]. This in
turn brings out some interesting new relationships involving the prinecipal con-
gruence groups I' (n), and implies a number of other results, such as a neces-
sary and sufficient condition for the solvability of the quotient group G (n, m).

The case ¢ = 2 requires a special discussion, and is the motivation for ex-
amining the normal subgroups of I' containing a principal congruence group
T'(n). This question had already been studied and answered completely in
[3], [5], and [6], with a more natural (but also more restrictive) definition
of principal congruence group. In order to obtain similar results in the pres-
ent situation, limitations must be imposed on m, n, and ¢.

We list for convenience some important properties of the groups I'(n),
G(n,m). These may be found for example in [8] or [9].

Let (m, n) = 3§, [m, n] = A, so that § is the greatest common divisor of m
and n and A the least common multiple of m and n. Then

) T(m)T(n) = T (),
@) T(m)nT(n) = T(a),
®) G, m) = G(n, A).
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A restatement of (3) is

4) G(d, da) = G (db, dab)
for all positive integers a, b, d such that (a, b) = 1.
(5) G(3,4) = G(3,m) X G(3,n),

where X stands for direct product.
A restatement of (5) is

6) G (d, dab) = G(d, da) X G(d, db)

for all positive integers a, b, d such that (a, b) = 1.

Let m = JIp® be the canonical decomposition of m into prime powers.
For each prime p dividing m let p®® be the highest power of p dividing = (so
that @, > 0, b, > 0). Then
@) G(n, mn) = XG (p™, p*™),
where X denotes direct product, and is extended over all primes p dividing m.

G (n, mn) is abelian if and only if m divides . If every prime dividing m
also divides n, then the order of G'(n, mn) is m* . If’p is a prime dividing n,
G (n, pn) is abelian of type (p, p, -+ - , p) and order p* ', and may be thought
of as the multiplicative group of matrices

I + nE, E modulo p, tr (£) = 0 mod p.

This group is isomorphic to the additive group of matrices E, E modulo p, tr
(E) = Omod p.
As usual, E;; denotes the matrix with 1 in position (z, ) and 0 elsewhere.
Preliminary matter
LemMmA 1. Let H be a normal subgroup of the group G. Then
(G/HY = G'H/H.

Proof. The result is an immediate consequence of the fact that if «H, yH
are arbitrary elements of G/H, then the commutator of ®H, yH is just

[«H, yH] = (zH)(yH) (eH)" WH)" = 2y 'y H = [z, y]H.

Levma 2 (Mennicke [4]). Suppose that ¢t > 2, and let <, j be any distinct
pair of integers such that 1 < 4,5 < t. Let A(I + nkE;;) stand for the normal
closure of I + nE;;in T'. Then

A(I -+ nEz,) = I‘(n)

Lemuma 3. Suppose that t > 2. Then I + n*Ey, belongs to T (n)’, the com-
mutator subgroup of T'(n).

Proof. The lemma follows from the identity
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I+ nEw,I + nEg] = (I + nEu)( + nEu)(I — nEy)([I — nksy)
=1+ n’Eyp,
as may be seen from the multiplication law E;; Ex; = 81 Ei .
Lemma 4. T'(n) < T (#?).
Proof. Let A, B be any elements of T'(n). Then

A = I mod n, B = I mod ,
8o that
(A -I)B—1I)=0mod AB=A + B — I mod n’.
Similarly,
BA =B+ A — I mod 7,
8o that
AB = BAmodn’, [A4,B] = ABA™'B™ = I mod #*

From this the lemma follows at once.

The results for ¢t > 2
Our first result is
Tueorem 1. Suppose that t > 2, and that n 18 any positive integer. Then
I'(n) = T@®).

Proof. Because of Lemma, 4, we need only show that I'(n’) € I'(n)’. By
Lemma 2, T'(n®) = A(I + n’Ey). By Lemma 3, I + n’Ey, belongs to T'(n)’.
Hence A(I + n’Ey,) © T'(n)’ and the result follows.

Theorem 1 is certainly false for ¢ = 2. For then, if n > 2, I'(n) is a free
group of finite rank >2, and so I'(n)’ is a free group of countably infinite rank,
and so is not even of finite index in T,

The next theorem is the principal result of this section.

TaEOREM 2. Suppose that t > 2, and that m, n are arbitrary positive integers.
Puts = (m,n). Then

8) G(n, mn) = G0, mn).
Proof. By Lemma 1, we have that
G(n, mn) = (T'(n)/T(mn)) = T'(n) T (mn)/T(mn).
By Theorem 1 and (1) we have
T'(n)'T(mn) = T@)T (mn) = T((®’, mn)) = T (nd).
This completes the proof.

As a corollary, we obtain

COIEOLLARY 1. The number of 1-dimensional representations of G (n, mn) is
just 8° 7, wheret > 2,8 = (m, n).
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Proof. The number of 1-dimensional representations of G (n, mn) is the
order of G (n, mn)/G (n, mn)’, and we have

G(n, mn)/G(n, mn) = Gn, mn)/Gns, mn) = G(n, nd).
Since § | n, the order of G (n, né) is just 5‘2_1, which is the desired result.
Another noteworthy corollary of Theorem 2 is the following:

CorOLLARY 2. Ift > 2 and (m, n) = 1 then G(n, mn) is a perfect group
and so not solvable.

It is clear that Theorem 2 provides an effective means of determining pre-
cisely when G (n, m) is solvable. It is also clear from (7) that it is only neces-
sary to consider the case n = p° m = p’, p prime. In this connection we prove

LemMA 5. Suppose that ¢ > 2. Let p be a prime, a = 0,b > 0. Then
G ®, p*™*) is solvable if and only if a = 0.

Proof. Suppose first that ¢ = 0. Then G (%, p*™) = G(, p°) and so is
not solvable by Corollary 2. Now suppose that ¢ > 0. If b < a, then
G (p°, p*™) is abelian and hence certainly solvable. Suppose that b > a.
Then a unique positive integer » exists such that

2"a < a+b < 2"
A simple calculation now shows that

G(pa’ pa+b)(k) - G(p2ka’ pa+b)’ 1 S k S n

a+b

But now G (p™?, p**™) is abelian, since

G, 1) = GO PP,
and
b— 2" — 1)a £ 2%.

Hence G (p°, p*T)™™™ is trivial and the result follows. Lemma 5, together

with (7), implies the following result:

THEOREM 3. Suppose that t > 2. Then the group G (n, mn) is solvable if
and only if each prime dividing m also divides n.

A comment of some interest implied by the proof of Lemma 5 is that if
G (n, mn) is solvable then the length of its derived series is at most O (log m).

Another corollary, previously proved in [1] by another method, is the fol-
lowing:

CoroLLARY 3. Suppose thatt > 2,1 < a < b — 1. Then no two of the

b — 1 groups G (p°, p*™) are isomorphic, although they are all of the same order

b(t2—1)
yi .

Proof. By Corollary 1, the number of 1-dimensional representations of
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G, p*™) is p**' P, since (p°, p°) = p°. Since these numbers are all dif-
ferent for 1 < a < b — 1, no two of the groups can be isomorphic. This
concludes the proof.

Some inclusion theorems

We now go on to some inclusion theorems for the groups I' (z) (and all di-
mensions ¢) which are of interest in themselves and which will be used to
prove results analogous to the preceding ones for { = 2. We must consider
the structure of G (n, np) more closely, where p is a prime dividing n.

Let G be the additive abelian group of all £ X ¢ matrices E over GF (p) with
tr (B) = 0. Then Gis of type (p, p, -+, p) and order p'z"l, and the gener-
ators of G may be taken as

Vii = By, T # ],
=Eis— Eipin, 1<i<t—1, ¢=7.

9)

G may also be described as the additive abelian group generated by the normal
closure in SL (t, GF (p)) of the matrix

Ve = Ep.
Thus a subgroup H of G which contains V3, , and for which
UHU™ c H forall U eSE(t, GF(p)),

must be all of G.

If p | » then G(n, np) is isomorphic to G and the generators of G(n, np)
may be taken modulo np as I + nV,;, where the V;; are given by (9).

Let A be a normal subgroup of I' such that

T(n) D AD I'(np),
and assume that A % I'(np). If we can show that A contains
I4nVye =1+ nEgs,

it will follow that A must be I'(n), by the preceding remarks. For this to
occur some restriction on p is necessary, and what we will prove is the follow-
ing:

THEOREM 4. Let p be an odd prime such that (p,t) = 1 and p|n. Then if
A is a normal subgroup of T such that T'(n) D A D T'(np), A must be T'(n) or
T (np).

Proof. Assume that A I'(np). Then A must contain an element I 4+ nE
such that E # 0 mod p.

Suppose first that E is diagonal modulo p. Then E cannot be scalar modulo
p. For if E = al mod p, then tr (E) = ta mod p. Buttr (£) = 0 mod p
and (¢, p) = 1. Hence ¢ = 0 mod p, which implies that £ = 0 mod p, a
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contradiction. If follows that the diagonal entries of E contain at least two
elements which are distinct modulo p, and which may be taken as the (1, 1)
and (2, 2) elements, after a suitable conjugacy by generalized permutation
matrices of SL (¢, GF (p) ) has been performed. Thus we have

_la O} ;
E = [0 b] 4+ D,
where a # b mod p.

Now
[1 1][a 0][1 —-l:l_[a b—a]
0 1]]lo bjlo 1 lo b
Put
U=[1 1]-i-I —I+E
0 1 t—2 12.
Then

UEU? — E = (b — a)Ex,

and since b — a % 0 mod p, it follows that A must contain I + nE. In
this case then we may conclude that A is all of T'(n).

Next assume that E is not diagonal modulo p. Then after a suitable con-
jugacy by generalized permutation matrices of SL ({, GF (p)) has been per-
formed, we may assume that the (2, 1) element of E is # 0 mod p. Write

A B
p=[g 5)
where Ais2 X 2. PutU = —I, 4+ I,s. Then

E, = UEU™ =[fc ”DB], E 4+ E, = 2(A 4+ D).

Since we are assuming that p is odd, we can conclude that A must contain
I+ n(4 4 D). Write
a b
=124l

where ¢ % 0 mod p. Then for any «z,

A = 1 AN 1 —z | _la+ac b — za + zd — 2’
S | 0o 1 c d — zc ?
_ e —a+d—zxc
If we assume that (x, p) = 1, it follows that A contains

¢c —a+d—zxc| .
I+n([0 —c ]+O).

Choosing z = 1, 2 (as we may since p is odd) and subtracting, we find that
A contains I + ncEy, ; and since (¢, p) = 1, A must also contain I + nEy, .
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Thus in this case also we can conclude that A must be all of I'(n). This con-
cludes the proof.

We next prove

TuaeoreM 5. Let p be an odd prime such that (p,t) = 1 and p |n. Then if
A is @ normal subgroup of T' such that

(10) T'(n) D A D I'(np'),
A must be T'(n), T (np), T (np?).
Proof. Intersecting and producting by I'(np) in (10) and using (1) and
(2) we find that
T'(n) D AT (np) D T'(np), T'(np) D An T (np) D I (np’).
Theorem 4 now implies that
AT (np) = T'(n), T'(nwp),  AnT(np) = T'(np), T'(np’).

If AT (np) = T'(np) then T'(np) D A D T (np’), which implies that A = T'(np)
or I'(np®). If AnT(np) = I'(np), then I'(n) D A D I'(np), which implies
that A = T'(n) or I'(np). Assume then that

AT(np) = T'(n), AnT(np) = T(np’).
Then

T'(n)/T (np) =2 A/T (np*).

Since I'(n)/T (np) is abelian of type (p, p, -+, p), the same must also be
true of A/T (np®). In particular, the pth power of any element of A must be-
long to T (np”).

Let A = I + nE be any element of A. Since p | n, we have

A? = (I 4+ nE)” = I + npE mod np’.

But this implies that £ = 0 mod p, which in turn implies that 4 ¢ I'(np)-
Thus A C I'(np), and the proof in this case is completed precisely as before-
This concludes the proof.

We now use these results to prove

THEOREM 6. Let m, n be positive integers such that (m, 2t) = 1, and each
prime dwiding m also divides n. Let A be a normal subgroup of T such that

11) T'(n) D ADTI'(nm).
Then A = T'(nd), for some divisor d of m.

Proof. The proof will be by induction on n and on ¢o(m), the number of
divisors of m. We note that if m and » satisfy the hypotheses of the theorem,
then so do m; and n; , where my is any divisor of m and »; any multiple of n.

If oo(m) < 3 then m = 1, p, or p’ for some prime p, and the theorem is
true in these cases by Theorems 4 and 5.
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Now assume the theorem proved for all m and n satisfying the hypotheses
of the theorem such that o9(m) < k, where & > 4. Let m and » satisfy the
hypotheses of the theorem and suppose that ¢o(m) = k. Producting in (11)
with I' (nd), where d is any proper divisor of m, we obtain

T'(n) D AT'(nd) D T'(nd).
Since d is a proper divisor of m the induction hypothesis implies that

AT (nd) = T'(ns), &|d.
Then
T'(né) D AD TI'(nd).

If 5 > 1 we get our conclusion from the induction hypothesis, with n replaced
by né and d replaced by d/6. We may assume therefore that

12) AT (nd) = T'(n), d|m,1 <d < m.
Similarly, intersecting with I' (nd) in (11), we obtain
T(nd) D AnT(nd) D I'(nm).
The induction hypothesis implies (with » replaced by nd and m by m/d) that

AnT(nd) = T(nds), &| (m/d).
Thus
T'(n) D A D T(ndsd).
If 6 < m/d, so that dé6 < m, we again get our conclusion from the induction
hypothesis, with m replaced by ds. We may assume therefore that

(13) AnT(md) = T(nm), d|m,1<d<m

But now (12) and (13) imply that I'(n)/T(nd) = A/T (nm), so that
(I'(n):T'(nd)) is independent of d. But (I'(n):T'(nd)) = d'z_’, and d as-
sumes at least 2 different values, since d may be any proper divisor of m and
oco(m) > 4. Hence (12) and (13) cannot both hold, and the result is true
for all m and n satisfying the hypotheses of the theorem such that oo (m) = k.
This concludes the proof.

Results for t = 2

From now on we assume that { = 2. Weremark that I and I'" areno longer
equal in this case, but (I':I”) = 12, and I'" D T'(12) (see [2] for example).
We first prove

LeMMA 6. Let m be a positive integer such that (m, 6) = 1. Then
G, m) = GQA, m).

Proof. By Lemma 1, G(1, m) = (I'/T(m)) = I'I'(m)/T(m). Now
I’ © r(12), and so I'I'(m) D I (12)T'(m) = I'((12, m)) = I. Hence
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I'T'(m) = T, and the conclusion follows.
We next prove

LEmmA 7. Let p be a prime >2. Let a, b be integers such that a > 0,b > 0.
Then
(14) GQ', pY = GO, ),

Proof. Ifb < a G(p°, p°*’) is abelian, and so G (p°, p°*°) is trivial. In
this case @ + min(a, b) = a + b and (14) holds.
Now suppose that b > a. Then

G@", p*") = T(@*)YT@*")/T @)
The group H = T (p*)'T (p°™) is a normal subgroup of T such that
T () D H> r@™).

Furthermore, it is clear that T'(p®)’ is not contained in T (p***°) for any posi-
tive ¢ (for example, the commutator of

1 »° 10
[o 1] and [p“ 1]
2a+c

does not belong to ' (p™*"°) for any positive ¢). But then the same is true for
H, and Theorem 6 implies that H must be T' (p**). It follows that

G(Pa, pa+b); = G(Pza, pa+b)-

Since b > a, a + min (a, b) = 2a and so (14) holds in this case as well.
This concludes the proof.

Combining these lemmas, we have

TueoREM 7. Let p be a prime >3. Let a, b be integers such that a > 0,
b>0. Then

G@°, p"Y = @R, pt).

Using Theorem 7, formula (7), and elementary properties of direct products,
we can show

TurorEM 8. Suppose that t = 2, and that (m, n) are arbitrary positive in-
tegers such that (m, 6) = 1. Puts = (m,n). Then

15) G(n, mn) = G(ns, mn).
(16) The number of 1-dimensional representations of G (n, mn) is &
We omit the proof, which is straightforward.

The classical modular group

Finally, we make one or two comments about the classical modular group
T = PSL(2, Z).
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Let I'" be the fully invariant subgroup of T' generated by the n-th powers
of the elements of I'. Then the only normal subgroups of I' containing I
are T, T, T°, I’ (see [7] for a proof of this statement). Furthermore
(:1%) = 2, (I:T%) = 3, (I':T’) = 6. On the basis of this information, and
following the procedure of Lemma 6, we have

Turorem 9. Let T = PSL(2, Z), n a posttive integer. Then the number of
1-dimensional representations of G(1,n) = T'/T (n) is just (n, 6).
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