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Introduction

r rt SL(t,Z)

be the t-dimensional modular group,

r(n) {A e r:A -= I mod n},

the principal congruence subgroup of I’ of level n, so that r (n) consists of all
elements of 1 c.ongruent elementwise to the identity element modulo n, and

G(n, m) r(n)/r(m).

Here n, m are arbitrary positive integers such that n divides m. The question
which motivated this paper was to determine G (n, m )’, the commutator sub-
group of G (n, m ), and hence to determine the number of 1-dimensional repre-
sentations of G (n, m ). It turns out that for > 2 a complete answer to this
question can be given using a result of 5. L. Mennicke proved in [4]. This in
turn brings out some interesting new relationships involving the principal con-
gruence groups F (n), and implies a number of other results, such as a neces-
sary nd sufficient condition for the solvability of the quotient groupG (n, m ).
The case 2 requires a special discussion, and is the motivation for ex-

amining the normal subgroups of I’ containing a principal congruence group
r (n). This question had already been studied and answered completely in
[3], [5], nd [6], with a more nturl (but also more restrictive) definitioa
of principal congruence group. In order to obtain similar results in the pres-
ent situation, limitations must be imposed on m, n, and t.
We list for convenience some important properties of the groups r (n),

G (n, m ). These may be found for example in [8] or [9].
Let (m, n) 3, Ira, n] A, so that is the greatest common divisor of m

and n and A the least common multiple of m and n. Then

(1) r()r(n) r(),

(2) n r(n) r(),

(3)
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A restatement of (3) is

(4) G(d, da) G(db, dab)

for all positive integers a, b, d such that (a, b) 1.

(5) (,) (, m) (, n),

where stands for direct product.
A restatement of (5) is

(6) G(d, dab) G(d, da) X G(d, db)

for 11 positive integers a, b, d such that (a, b) 1.
Let m IXpb be the canonical decomposition of m into prime powers.

For each prime p dividing m let pa be the highest power of p dividing n (so
thata>_ 0, b > 0). Then

(7) G (n, ran) XG (pa, pa+b),
where X denotes direct product, and is extended over all primes p dividing m.
G (n, ran) is belin if nd only if m divides n. If every prime dividing m

also divides n, then the order of G (n, ran) is m*-l. If p is a prime dividing n,
G (n, pn) is abelian of type (p, p, p) and order p-l, and may be thought
of as *he multiplicative group of matrices

I + nE, E modulo p, tr (E) - 0 mod p.

This group is isomorphic to the additive group of matrices E, E modulo p, tr
(E) 0 mod p.
As usual, E denotes the mtrix with 1 in position (i, j) and 0 elsewhere.

Preliminary matter

IEMMA 1. Let H be a normal subgroup of the group G. Then

(G/H)’ G’H/H.

Proof. The result is an immediate consequence of the fct that if xH, yH
are rbitrry elements of G/H, then the commutator of zH, yH is just

[xg, yH] (xH) (yH) (xH)-I (yH)-I xyx--ly-lH Ix, y]H.

LEMMA 2 (Mennicke [4]). Suppose that > 2, and let i, j be any distinct
pair of integers such that 1 <_ i, j <_ t. Let A (I + nEi) stand for the normal
closure of I + nEi in F. Then

A (I + nE) r (n).

LEMM/k 3. Suppose that > 2. Then I + nE. belongs to F (n ), the com-
mutator subgroup of F (n ).

Proof. The lemma follows from the identity
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[I + nE I -+- nE.] (I + nE (1% nE (I nExt) (I nE
I + nE,

as my be seen from the multiplication lwEE t. E.
LEMM& 4. I (n)’ t::::: I ().
Proof. Let A, B be any elements of I (n). Then

A I mod n, B m I mod n,
so that

(A-I)(B- I)-=0modng., AB-- A +B- Imodn2.
Similarly,

BA B + A I mod
so that

AB =- BA mod n, [A, B] ABA-B- I mod

From this the lemma follows at once.

The results for > 2

Our first result is

THEOREM 1. Suppose that > 2, and that n is any positive integer. Then
r(n)’ r (n).

Proof. Because of Lemma 4, we need only show that 1 (ng.) I’ (n)’. By
Lemma 2, I’ (n) A (I + n E). By Lemma 3, I + ng.E belongs to I’ (n)’.
Hence A (I + n E) r (n)’ and the result follows.
Theorem 1 is certainly false for 2. For then, if n > 2, r (n) is a free

group of finite rank > 2, and so I’ (n)’ is a free group of countably infinite rank,
and so is not even of finite index in F.

The next theorem is the principal result of this section.

TiIEOREM 2. Suppose that > 2, and that m, n are arbitrary positive integers.
Put 5 (re, n). Then

(8) G (n, ran)’ G (n, ran).

Proof. By Lemma 1, we have that

G(n, ran)’ (r(n)/r(rnn))’ r(n)’r(mn)/r(mn).

By Theorem 1 and (1) we have

r(n)’r(mn) r(n)r(mn)= r((n, ran))= r(na).
This completes the proof.

As a corollary, we obtain

COROLARY 1. The number of 1-dimensional representations of G (n, mn is
just *-, where > 2, (m, n).
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Proof. The number of 1-dimensional representations of G(n, mn) is the
order of G(n, nn)/G(n, n)’, and we hve

G (n, nn)/G (n, nn)’ G (n, nn)/G (nS, nn G (n, nS ).

Since n, the order of G (n, n is just -, which is the desired result.

Another noteworthy corollary of Theorem 2 is the following"

CorollAry 2. If > 2 and (, n) 1 then G (n, n) is a perfec$ group
and so not solvable.

It is clear that Theorem 2 provides n effective means of deterning pre-
cisely when G (n, is solvable. It is lso clear from (7) that it is only neces-
sary to consider the cse n p, p, p prime. In this connection we prove

LEMMA 5. Suppose ha > 2. Le p be a prie, a O, b > O. Then
G (pa, pa+b) i8 solvable if and only if a O.

Proof. Suppose first that a 0. en G(p, p+) G(1, p) nd so is
not solvable by Corollary 2. Now suppose that a > 0. If b a, then
G(p, p+) is belin nd hence certainly solvable. Suppose that b > a.
Then unique positive integer n exists such that

2a < a b 2+a.
A simple clcultion now shows that

G(pa, pa+b)(k) G(p2a, pa+b), 1 n.

But now G" 2ha pa+bp is belin, since

G "p, p+ G" pp--
nd

b- (2- 1)a 2a.

Hence G(pa, pa+b)(+) is trivial nd the result follows. Lemma 5, together
with (7), implies the following result"

THEOREM 3. Suppose tha > 2. Then the group G (n, n is solvable if
and only if each prie dividing also divides n.

A comment of some interest implied by the proof of Lemm 5 is that if
G (n, n) is solvable then the length of its derived series is t most 0 (log ).

Another corollary, previously proved in [1] by nother method, is the fol-
lowing"

Coov3. Suppose hat > 2, 1 a b- 1. Then no wo of he
b 1 groups G (p, p+) are isomorphic, although they are all of the sae order
pb(t--).

Proof. By Corollary 1, the number of 1-dimensional representations of
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G(p, p’+) is p"(*-), Since (p, pa) p. Since these numbers are all dif-
ferent for 1 _< a _< b 1, no two of the groups can be isomorphic. This
concludes the proof.

Some inclusion theorems

We now go on to some inclusion theorems for the groups r (n) (and all di-
mensions t) which are of interest in themselves and which will be used to
prove results analogous to the preceding ones for 2. We must consider
the structure of G (n, np more closely, where p is a prime dividing n.

Let G be the additive abelian group of all X matrices E over GF (p) with
tr (E) 0. Then G is of type (p, p, p) and order p-, and the gener-
ators of G may be taken as

V. E., i # j,
(9)

E-- E+x,+, 1 <_ i <_ t- 1, i =j.

G may also be described as the additive abelian group generated by the normal
closure in SL (t, GF (p)) of the matrix

V2 E2.

Thus a subgroup H of G which contains V., and for which

UHU- H forall U e SL (t, GF (p

must be all of G.
If pin then G (n, np) is isomorphic to G and the generators of G (n, np)

may be taken modulo np as I + nV, where the V. are given by (9).
Let i be a normal subgroup of F such that

I(n) a F(np),

and assume that A F(np). If we can show that h contains

I - nV I - nE,

it will follow that A must be r (n), by the preceding remarks. For this to
occur some restriction on p is necessary, and what we will prove is the follow-
ing:

THEOREM 4. Let p be an odd prime such that (p, t) 1 and pin. Then if
A is a normal subgroup of F such that r(n) D h D r(np), h must be r(n) or
r (up).

Proof. Assume that A F (rip). Then A must contain an element I nE
such that E 0 mod p.

Suppose first that E is diagonal modulo p. Then E cannot be scalar modulo
p. For irE---- aImodp, thentr(E) --- tamodp. Buttr (E) --- 0 modp
and (t,p) 1. Hencea 0modp, which implies that E - 0modp, a
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contradiction. If follows that the diagonal entries of E contain at least two
elements which are distinct modulo p, and which may be taken as the (1, 1 )
and (2, 2) elements, after a suitable conjugacy by generalized permutation
matrices of SL (t, GF (p)) has been performed. Thus we have

where a b,mod p.
Now

Pug

Then

U
1 I-o. I + Elo.,

UEU-1 E (b a)E12,

and since b a 0 mod p, it follows that A must contain I + nE. In
this case then we may conclude that A is all of 1 (n).
Next assume that E is not diagonal modulo p. Then after a suitable con-

jugacy by generalized permutation matrices of SL (t, GF (p)) has been per-
formed, we may assume that the (2, 1 ) element of E is ! 0 rood p. Write

whereAis2X2, PutU= -II_. Then

-C EWE, 2(A,D).

Since we are assuming that p .is odd, we can conclude that must contain
IWn(A D). Write

where c 0 mod p. Then for any x,

E 1 -x] [a+xcAx= A
0 1 c

b xa + xd
d xc J

c -a + d xc1Ax-A=x 0 -c

If we assume that (x, p) 1, it follows that h contains

I + n {ECo -a + d_c- XC] 0).
Choosing x 1, 2 (as we may since p is odd) and subtracting, we find that
A contains I -F ncE and since (c, p) 1, A must also contain I "F nell.
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Thus in this case also we can conclude that A must be all of I’ (n).
cludes the proof.

This con-

We next prove

THEOREm 5. Let p be an odd prime such that (p, t) 1 and p n.
A is a normal subgroup of F such that

(10) r(n) r(np),
A must be F (n), F (np), F (np).

Then if

Proof. Intersecting and producting by r (np) in (10) and using (1) and
(2) we find that

r(n) hr(np) r(np), r(np) A n F(np) r(np).

Theorem 4 now implies that

At(rip) r(n), r(np), r(np) r(np), r(np).

If AF (np)= F (np) then I’ (np) A F (np ), which implies that A P (np)
or F (np). If A n 1 (np)= F (np), then F (n) A F (np), which implies
that A r (n) or r (np). Assume then that

ar (np F (n A r (up) r (up ).
Then

r (n)/r (up) Ar (up

Since r (n)/r (np) is abelian of type (p, p, p), the same must also be
true of A/I’ (np). In particular, the pth power of any element of A must be-
long to r (np).

Let A I - nE be any element of A. Since p n, we have

AT (I+nE) =- I+npEmodnp.
But this implies that E 0 mod p, which in turn implies that A e F (np).
Thus A C I’ (rip), and the proof in this case is completed precisely as before.
This concludes the proof.

We now use these results to prove

THEOREM 6. Let m, n be positive integers such that (m, 2t) 1, and each
prime dividing m also divides n. Let A be a normal subgroup of F such that

(11) r(n) A r(nm).
Then A F (nd), for some divisor d of m.

Proof. The proof will be by induction on n and on z0 (m), the number of
divisors of m. We note that if m and n satisfy the hypotheses of the theorem,
then so do ml and nl, where m is any divisor of m and nl any multiple of n.

If z0(m)

_
3 then m 1, p, or p for some prime p, and the theorem is

true in these cases by Theorems 4 and 5.
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Now assume the theorem proved for all m and n satisfying the hypotheses
of the theorem such that a0 (m) < k, where k >_ 4. Let m and n satisfy the
hypotheses of the theorem and suppose that a0 (m) k. Producting in (11)
with r (nd), where d is any proper divisor of m, we obtain

r(n) Ar(nd) r(nd).

Since d is a proper divisor of m the induction hypothesis implies that

Ar(nd) r(n),
Then

r(n) r(nd).

If > 1 we get our conclusion from the induction hypothesis, with n replaced
by n and d replaced by d/. We may assume therefore that

(12) At(rid) r(n), dim 1 < d < m.

Similarly, intersecting with r (nd) in (11), we obtain

r(nd) an r(nd) r(nm).

The induction hypothesis implies (with n replaced by nd and m by m/d) that

a. r (nd) F (nd ), (m/d).
Thus

r(n) a r(nd).

If t < m/d, so that d < m, we again get our conclusion, from the induction
hypothesis, with m replaced by d. We may assume therefore that

(13) AnF(nd) F(nm), dim, 1 < d < m.

But now (12) and (13) imply that F (n)/F (nd) A/F (rim), so that
(F (n)" r (nd)) is independent of d. But (r (n)" F (nd)) d’-, and d as-
sumes at least 2 different values, since d may be any proper divisor of m and
a0(m) >_ 4. Hence (12) and (13) cannot both hold, and the result is true
for all m and n satisfying the hypotheses of the theorem such that
This concludes the proof.

Results for 2

From now on we assume that 2. Weremark that r and r’ areno longer
equal in this case, but (F" F’) 12, and r’ F (12) (see [2] for example).
We first prove

LEMMA 6. Let m be a positive integer such that (m, 6) 1. Then

G(1, m)’ G(1, m).

Proof. By Lemma 1, G(1,
F F(12), and so r’r() r(12)r(m)= r((12, m))= r.

Now
Hence
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r’F (m) r, and the conclusion follows.

We next prove

LEMlgA 7. Let p be a prime > 2. Let a, b be integers such that a > 0, b > 0.

Then

(14) G (pa, pa+b), G (p+,in(.b), p+b).

Proof. If b

_
a G(p, pa+b) is abelian, and so G(p, p+)’ is trivial. In

this case a -t- min (a, b) a W b and (14) holds.
Now suppose that b > a. Then

G (p, p + )’ r (p )’ r (p + /1 (p + ).

The group H r (p)’F (p+) is a normal subgroup of r such that

F (pa) H F (p/b).

Furthermore, it is clear that r (p)’ is not contained in r (p"+) for any posi-
tive c (for example, the commutator of

does not belong to I’ (p+) for any positive c). But then the same is true for
H, and Theorem 6 implies that H must be I’ (p). It follows that

G (p, p +)’ G (p, p +).
Since b > a, a W min (a, b) 2a and so (14) holds in this case as well.
This concludes the proof.

Combining these lemmas, we have

THEOREM 7.
b > O. Then

Let p be a prime >3. Let a, b be integers such that a >_ 0,

G(p, pa+), e(pa+min(a.b), pa+b).

Using Theorem 7, formula (7), and elementary properties of direct products,
we can show

THEOREM 8. Suppose that 2, and that (m, n) are arbitrary positZve in-
tegers such that (m, 6 1. Put (re,n). Then

(15)

(16)

G(n, ran)’ G (n, ran).

The number of 1-dimensional representations of G (n, ran) is

We omit the proof, which is straightforward.

The classical modular group
Finally, we make one or two comments about the classical modular group

PSL(2, Z).
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Let 1 be the fully invariant subgroup of 1 generated by the n-th powers
of the elements of F. Then the only normal subgroups of 1 containing 1’
are I, 1, r, F’ (see [7] for a proof of this statement). Furthermore
(r" r) 2, (F" r*) 3, (F" F’) 6. On the basis of this information, and
following the procedure of Lemma 6, we have

To 9. Let F PSL (2, Z), n a positive integer. Then the number of
1-dimensional representations of G (1, n) r/r (n ) is just (n, 6 ).
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