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1. Introduction

In [4-1, Newman exhibited a family of noncongruence subgroups for the
modular group. In this note we generalize his construction to the Hecke
groups G(/2) and G(x/3).

In [1-1, Hecke introduced the discontinuous groups G(2q) which are generated
by the two linear fractional transformations T(z) 1/z and S’to(z) z + 2.
Here 2a 2 cos (n/q), where q is an integer, q > 3. When q 3, we have the
modular group; when q 4 or 6, the resulting groups are G(/2) and G(x/3).
For notational convenience let m stand for 2 or 3 throughout the remainder

of this paper. By identifying the transformation z’ (az + fl)/(,z + 6) with
the matrix

G(/m) may be regarded as a multiplieative group of 2 x 2 matrices in which
a matrix is identified with its negative. It is known [2], I-6], that G(/m) consists
of the entirety of elements of the following two forms:

(i) ( a bX/dm), a, b, c, d e Z, ad bcm 1,
cx/m

(ii) (acm b) a,b,c, deZ, mad- bc 1.
d/m

Those of type (i) are called even whereas those of type (ii) are called odd.
For N a positive integer, we define the principal congruence subgroup of

level N by

Fro(N)= {M= (: )eG(x/m)’M= +I(modN)}
where the congruence is elementwise and takes place in Z[/m-I. It is easy to
verify [5-1 that the above definition is equivalent to

Fm(N) =(M=( a

c/m
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bX/dm)’a--d--+_l(modN)
and b c 0 (mod N)}. (1)
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A subgroup F of G(x/m) is called a congruence subgroup of level Nif Fro(N) c F
and N is minimal with respect to this property.

2. Definition of the groups r4mn
Let G <xl,..., Xk> be the free group of rank k freely generated by

xl,..., xk. For every positive integer n, let G, be the subgroup of G consisting
of all words of G for which the sum of the exponents of x, is divisible by n.
G, is a normal subgroup of G of index n in G. Since G is of rank k, the rank of
G, is + n(k 1) by the Reidemeister-Schreier formula. It is easy to verify
that

x’, x]xjx;", j 2,..., k, r 0,..., n 1 (2)

are generators of Gn. Since there are exactly 1 + n(k 1) of them, they are the
free generators of G,.
We wish to apply the preceding remarks to the group Fro(2). First, however,

it is necessary to show that Fro(2) is free of rank 2m 1. Since Fro(2) contains
only even elements, the mapfdefined by

a a

is a homomorphism from F(2) into the modular group. From (1) we see that

f(r(2)) r(2) a r0(4) and f(r(2)) r(2) c r0(3).
Since F(2) is a free group of rank 2 and since

Ir(2):f(r(2))l 2 and Ir(2):f(r(2))l 4,

F2(2) is a free group ofrank 3 and Fa(2) is a free group ofrank 5. In [3] Knopp
shows that F2(2) is generated by

X, (10 2V/12),
(-3 4V/52)X3 _2x/2

and that Fa(2) is generated by

X4 _6x/3

2X/2

X4 _4x/2

2x/3

X5 _6x/3

( -5 67V/3)X3 -2/3

(-11 61x/33)X6 _8x/3
Since XX ’X,,,Xa I in F2(2) and XsXaXIX; ’X.X6 I in Fa(2), we may
choose X, X2, and Xa as the free generators of F2(2) and X,, X2, Xa, X4, and X5
as the free generators of Fa(2).
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We now define the groups F,m.. I’s, is the subgroup of F2(2) generated by
the 1 4- 2n elements

(10 2nlx/2) (1 +8r-16r2x/2
242 1 8r ]’

(3)

(-3-_228r (4+ 16r+16r8r+ 5 2)x/2) r= 0,...,n- 1.

F12 is the subgroup of F3(2) generated by the + 4n elements

(10 2nlV/3) (1 + 12r-24r2x/3
2x/3 1 12r ]’

(2 + 24r + 72r2)x/3 (4)
7 + 36r(6+24r+24rZ)x/3)12r+7 (-5-36r_6x/3

r=0,...,n- 1.
-11 36r (8 + 48r + 72rZ)x/3)-6x/3 13 + 36r

If we make the correspondence X xi, 1,..., 2m 1, (2) and our
earlier comments on free groups give"

THEOREM 1. The group F,,,, is a normal subgroup ofF(2) ofindex n in F(2).
It is thefree group on the 1 + 2(m 1)n generators (3) when m 2 or (4) when
m 3. In addition, F,,, consists of those elements ofFro(2)for which the sum of
the exponents of

is divisible by n.

Remarks. Since F,(2) is of index 4m in G(x/m) [3], F4,, is of index 4mn in
G(x/m). Also, for n > 1, F4,,, is not a normal subgroup G(x/m). For example,
X2 e F,, but TX2T-1 S-2,/., is not in F,, if n > 1.

3. r4mn is not a congruence subgroup if m 2 and

n 1, 2, 4 or if m 3andn#= 1,2

For technical reasons we now introduce the groups

r.(Rx/m) {M e G(x/m)" M +_ I (mod Rx/m)},
R a positive integer, where the congruence is elementwise and takes place in
Z[x/m]. It is easily verified [5] that

F,(Rx/m) {M ( a bdm) G(x/m)’a d +1 (mod Rm),
4m

b c 0(modR).
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LEMMA 2.

and

Proof.
2nil.

Assume that I4mn is a congruence subgroup of G(m). Then

F,mn = Fm(2nx/m) if n 0 (mod m)

r4mn = Fm(2n) /f n 0 (mod m).
Let I be the level of F,mn. Then Fm(l) [4mn" Since Sl/m Fm(l),

Consider first the case when n 0 (mod m). Take

M=( acx/m bdm)
in Fm(2nx/m). Without loss of generality we may assume that a d
(mod 2mn). We must show that M
We may assume that (d, 1) 1 for, if not, bc 0 and, since ad mbc 1,

(d, 2nmc) 1. Therefore, there exists an integerfsuch that (d + 2nmfc, 1) 1.
Now consider

a (2afn + b)x/m’MS2fn4m=
cx/m 2fcnm + d

MS2y"’/m Fm(2nx/m) and MS2s’/m F,m iff M Fmn. Therefore, we may
replace M by MS2s’/m.
We may also assume that b 0 (mod 1). If not, consider

S2g,./mM (a + 2nmcx/m (b + 2ddn,x/m)
for any integer . Now choose so that b + 2dn =- 0 (mod l). This is possible
since (2dn, l) 2n divides b.
A similar argument shows that we may also assume that c 0 (mod l).
The above conditions on M imply that ad (mod ml) and that

M =- ad- lx/m d(2- ad) 1, (modl).

Thus there exists V Fro(l) such that M M’V where

a (1 ad)x/m1M’ ad l x/m d(2 ad) ]m

and it suffices to show that M’ F4mn. However,

M’ d, I/ a- 1
m rn

X (2d-1)/2my (31 -a)/2mx (1.1" -d>/2

(1- >ax/’m)(l0 )2
_a (I d)x/m

1

and M’ lP4m because of the congruence conditions on a and d.
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Now take n 0 (mod m). Let

M =( acx/m bX/dm)
be in Fm(2n) and assume that a d 1 (mod 2n). As above, to show that
M F4m, it suffices to show that

M’ X2a- 1)]2mx(31-a)/2mX(ll-d)/2 F_. I4m..
However, since n 0 (mod m), a d (mod 2m); and M’ F4m.. This
completes the proof of the lemma.

TI-rEOREM 3. F,m, is not a congruence subgroup ifm 2 and n 1, 2, 4 or if
m 3andn 1,2.

Proof. By Lemma 2 it suffices to exhibit an element of Fm(2nx/m) or Fm(2n)
which is not in F#m,.

Consider the element

M=XX’,’z ( a bX/dm)2 3 C4m
where

a= 1-2ym,
and

b 2z- 4zym + 2ym, c 2x-4xym- 2y,

Then

Suppose that x, y, and z have been chosen so that d (mod 2mn) if n 0
(mod m) and d 1 (mod 2n) if n 0 (mod m); that is, so that

2XZ 4xyzm 2yz + 2xym + y =- 0 (mod n ’(n, m)]" (5)
\

M=(1 + mbc blm) c2/2 ( 2mn
cx/m =- X/2X mod

(m, n),]
and V X ;c/2X ;b/2M F(2mn/(m, n)). Since the sum of the exponents of
X1 in V is ym(2z 1), V will belong to F(2mn/(m, n)) but not to F, if (5)
is satisfied and, in addition,

ym(2z- 1) 0 (mod n). (6)

Suppose first that n > 1, (n, 2m)= 1. Set z 0 and y= 1. Then (5)
becomes 2xm + 0 (mod n) which has a solution since (2m, n)= 1.
(6) becomes -m 0 (mod n) which is satisfied since (n, m) 1, n > 1; and
the theorem is proved in this case. However, since I"4ma :D I"4mn whenever d n,
the theorem is proved for any n with a positive divisor d such that (d, 2m) 1.
When m 2, it remains to consider n 2, k >_ 3. If we take z= 1,
x 2-3, and y 2-, both (5) and (6) are satisfied. When m 3 and

d 4xzm 8xygm2 4yzm + 4xym2
at- 2ym + 1.
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n 2k, k _> 2, (5) and (6) are both satisfied if we choose z 1, x 2k- 2, and
y 2k-1. Finally, if m 3 and n 3k, k >_ 1, we note that x’ak-xX3-’4
belongs to F3(2" 3k) but not to I2.3k. This completes the proof of the theorem.

4. I’4mn is a congruence subgroup if rn 2 and
n= 1,2.4orifm= 3andn= 1,2

In this section we prove"

THEOREM 4. Fs, = F2(2n) ifn 1, 2, 4; and F2. = Fa(2nx/3)/fn 1, 2.

Proof First take m 2. By Lemma 2 it suffices to show that Ia2 I2(8).
Since I2(8) I2(2), any element of I2(8) may be written as

M,

where ax, b, c,..., a, b, c are integers. Set , = a and 7, = cv
To show that M 1732 we must prove that , 0 (mod 4). Since

b X x, , ( 1--4c 2(a 4ac + 2c)/2
2a

2(b- 4bc c)x/2 1 + 4(2ab- 8abc 2ac + 4bc + c)

an induction argument gives

(1 4A 2B42M,
\ 2C,/2 1 +

In addition, since M gt_lXb’XtXt, the integers At and B satisfy the
recursion congruences

A, a,_ + c, (mod2) (7)

B, B,_z + a, + 2c, (mod4) (8)

with initial conditions At ct, Bt at + 2ct (mod 4). Summing both sides
of (7) and then (8), we find that

A, rt (mod 2) (9)

B, =, + 2r, (mod 4). (10)

However, since M F2(8), A 0 (mod 2) and B 0 (mod 4); and (9) and
(10) imply that = 0 (mod 4). This completes the proof of the theorem when
m=2.
Now let rn 3. We need only show that F2 = Fa(4/3). Since Fa(4x/3) =

Fa(2), any element of F(4/3) may be written as

M Xb2Xcaxava4 ;1 xvbtvctyat’d’vt23 4
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where the as, b, c, d, e, 1,..., t, are integers. Set
?t = c, and 6t = d. We must prove that t 0 (mod 2). Since

xbcaae= (1 6A 2B3

with A c + d (mod 2) and B a + c + d (mod 2), an induction argument
gives that

(1 6A 2Bt3 h
Moreover, since M Mt_ X*X*Xa,v., ’, the integers A and B satisfy
the recursion congruences

A,-- At-t + ct + dt (mod2) (11)

Bt Bt-t + at + ct + dt (mod2) (12)

with the initial conditions At cl + dt (mod 2) and Bt at + ct +dl
(mod 2). Summing both sides of (11) and then (12), we find that

At =- Vt + 6, (mod2) (13)

Bt ot + Vt + 6t (mod2). (14)

However, since Mt F3(4x/3), At 0 (mod 2) and Bt 0 (mod 2). It follows
from (13) and (14) that t 0 (mod 2); and the proofofthe theorem is complete.

5. Conclusion

The groups F,m, are an important example of a family of noncongruence
subgroups of G(x/m) of strictly increasing index but of genus 0. In addition,
they are related to 2m, the invariant of F(2), which is given in I-6] when rn 2
and i-2] when rn 3 as a quotient of theta-null series. When rn 2, Fs, is the
invariance group of /. When rn 3, the invariance group of 2/" is the
subgroup F of Ft2, consisting of all words for which the sum of the exponents
of X3 and the sum of the exponents of X4 are both divisible by n. F is of index
n2 in F2 and, by Theorem 3, is not a congruence subgroup of G(x/3) whenever
n > 3. When n 2, the argument in Lemma 2 shows that F is a congruence
subgroup iff F Fa(4x/3). However, since

IG(x/3): F(4x/3)l IG(x/3): rl 96 [5],

F is a congruence subgroup iff F F3(4x/3). Since X2 F but X2 F3(4x/3),
F is not a congruence subgroup; and the invariance group of 2]/" is a congruence
subgroup only when n 1.
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