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i. Introduction

Suppose that u(z) is subharmonic (s.h.) in a disk Izl R in the plane. Let

T(r, u) "n u+(re) dO, ux(re) sup u-(te),
O<t<r

where u+(z)= max {u(z),0) and u-(z)=-min (u(z),0). nayman I-2,
Theorem 4, p. 193] proved the following result.

THEOREM A. If u(z) is s.h. in Izl < R, then for 0 < r < R,

ux(re)dO < 1 + {T(R,u)- u(O)},
2n

where

p(t) (1 t)log(1 + (2Try/t)/(1 -t))
zrx/t log (l/t)

(1.1)

This powerful result has some interesting applications, and has been used by
Hornblower [3], Hornblower and Thomas [4], and Talpur [5], I-6] to show the
existence of a sectionally polygonal asymptotic path in a disk or the plane along
which u(z) M, where M is + in the latter case. It is natural to investigate
the analogues of this and other results in spaces of higher dimensions. In order
to show the existence of an asymptotic path F such that u(x) M as x
on F, where M is the 1.u.b. of u(x) in R3, the author proved a spatial analogue
ofTheorem A in Talpur [7-1, but was able to show the existence of an asymptotic
path F only with finite M. In spite of this the result is interesting as the constant
involved is the best possible. Theorem is a generalization of Theorem A to
R", n > 3. This theorem has some interesting consequences.
Suppose that u(x) is s.h. in R" and

u(x) u(x,..., x,) u(p, 0,..., 0,_)

where0 < p < ,0 < 0 < n(i= 1,...,n- 2),0 < On-t <-- 2rr.
Let o9, denote the surface area of the n-dimensional unit sphere. Thus o9,

2rc"/2/F(n/2).
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Let u+(x) max {u(x), 0}, u-(x) -min {u(x), 0}.

T (R) T(R, u)

m(R) m(R, u)

co,,R"-
u +(x) daR(x),

(.o.R"-
u-(x) dtrR(X)

where the integration is with respect to dtrR(x), the (n 1)-dimensional surface
area element on Ixl R.

ul(r) sup u-(p, 01,..., On-l) for fixed Oi, 1,..., n 1.
O<p<r

THEOREM 1. Suppose that u(x) is s.h. in a neighborhood of a closed ball
Ixl _< R; then with the above notation, for 0 < r < R,

nrn 1

where

c. r(n/2)r(1/2) and ,(t)- 4C,t
2r((n 1)/2) n(1 (t)"

From this we deduce Theorem 2.

THEOREM 2. /f U(X) is nonpositive and s.h. in Rn, n >_ 3, then

1 f inf u(p, 01, O. 1)dcrl(x) > (1/2 + C.)u(O) (1 3)
(.O .Jlxl=l O<p<o

We then show by an example that the constant 1/2 + C, is the best possible. An
immediate consequence of the sharp inequality (1.3) is the following.

COROLLARY. Suppose that u(x) is s.h. in Rn, n >_ 3, and bounded above there.
Then on almost all lines through a 9iven point, u(x) is bounded below except when
u is -c at that point.

2. Preliminary results

Our method of proof is similar to that of Hayman. For our proof we shall
need two lemmas. The first lemma is a version of the Riesz decomposition
theorem which represents u(x) in Ix[ < R in terms of the values of u(x) on
[xl R, and the Riesz measure # of u(x) in Ix[ < R. (See for instance Brelot
[1, Chapter 4, 3].) The second lemma is on some estimates of kernels. We
first introduce some notation.

Let K(R, x, ) denote the Poisson kernel for [xl < R, and so

R"- 2(R2 Ixl)K(R, x, )
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If 01 is the angle between x and with 11 R, and Ixl p, then

K(R,x,) K(R,p, 01) R"-2(R2 p2)
(R2 + p2 2Rp cos 01)"/2"

(2.1)

Let k(R, r, 01) supop_<r K(R, p, 01).

Let G(R, x, ) be the Green’s function for Laplace’s equation in an
n-dimensional (n > 3) sphere of radius R. Then

1 R"-2
G(R, x, )

Ix l-2 1l-21x ’1n-2’

where ’ is the point inverse to in the R-hypersphere.
If Ixl p and I1 r and 01 is the angle between x and , then

G(R, x, ) G(R, p, r., 01)

(p2 + r 2 2pr, cos 0//

Rn-2
(R4 + P2r2u 2R2pru cos 01)(n-2)[2

Let g(R, r, ru, 01) suPop_<r G(R, p, ru, 01).

(2.2)

LEMMA 1. Suppose that u(x) is s.h. in Rn, n > 3. For every R > 0, there exists
a unique nonnegative measure p(e) definedfor all Borel measurable sets e in R"
andfinite on compact sets, such that for all x in [xl < R, we have,

u(x)
o9. ""-x u()K (R, x, ) daR() G(R, x, ) dp(). (2.3)

I=R

LEMMA 2. With the above notation, we have:

o3 r

(i) In R3,

In R", n >_ 4,

(_D r

In R3,(ii)

2
(_D3r

In R, n >_ 4,

f k(R, r, 01) da,(x) < + 1/2 log
R + r

(2.4)

3 2C R + r
k(R, r, 0) da,(x) < + log (2.5)

1=, 2 n R r

g(R,r, ru, Oa) dar(x) <( 1 1 r2r 2

+ ’ (2.6)
ru R 8R

g(R, r, ru, 01) da(x) < - r 2 Rn-2 + n-2 (2.7)
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We first prove (i). We note that for re/2 < 01 < r, K(R, p, 01) is a decreasing
function of p. For 0 < 01 < re/2, the function

R2 p2
R2 + p2 2Rpcos01

increases from to cosec 01 as p increases from 0 to R cos 01/(1 + sin
and then decreases again. Also

,R"- 2

(R2 + p2 2Rp cos 01)(n- 2)/2

increases from to cosecn-2 0 as p increases from 0 to R cos 0 and then
decreases again. If 0o is the number in the range 0 < 0o < n/2, given by
R cos 0o/(1 + sin 0o) r, i.e.

0o 2cot- R + r

R-r’
then

r, 01)

k(R’r’O1)=o<_p<_rsup K(R,p, 01)< tosec"-lO
In polar coordinates let

x /9 sin01...sin0_lcos0i

x. p sin 01 sin 0._ 2 sin 0n- 1.

Then

for0 < 0 < 0o
for 0o < 0 < r/2.
for re/2 < 01 < rc

F(n/2). 2rc .fi3 fo:27rn/2 i=

-<
r(/)r((n )/)

In R3,

(i 1,...,n- 1)

< 1 + 1/2 log R+r
R-- r

fl 1[ R-x/(R2+r 2) R + r 1z l=k(R’r’01) da’(x) <_- 1 +
r

+ lOgR_r-t- 1
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In R", n > 4,

k(R, r, 0) da,(x)

K(R, r, 0) sin 2 01 dO + log

3 2C. R + r_< + log
2 R-r

R+r F((n 1)/2)1-(1/2)]
2F(n/2) J

since K(R, r, 01) > 0 in (0, n).
We now prove (ii). We note that for 01 in (n/2, n), G(R, p, r, 01) decreases

with increasing p so that G(R, p, ru, 01) attains its maximum value at p 0.
For 0 < 01 < n/2; we consider the two terms of G(R, p, r,, 01) separately.
For 0 < 01 < re/2,

1 cosec 2 01sup
2 2pru cos O)(n-2)/2 rn-2O<_p<_r (p2 + ru

We note further that for 0 < 01 < hi2,

Rn-2
(R4 -k- P2rz-u 2R2pru cos 01)"-2)/2

increases as p increases from 0 to (R2 cos 01)/ru and then decreases. Thus the
minimum value in the interval is attained at p 0 or p r and is

1 Rn-2
or

Rn-2 (R4 + r2r2u 2RZrru COS 01)(n-2)/2

respectively, the latter value being the minimum if r > (2R2 cos 01)/r.
Therefore using polar coordinates we have as in (i),

conr Ixl=r
9(R, r, ru, 01) dar(X)

where

F(n/2)
F(1/2)F((n 1)/2)

2CnI/2 n-21 dO1+
g(R, r, ru, 01) sinn- 2 01 dO

)sinn-Zo dO1 I]Rn_ 2’

rr’/2R2 sin"- 2 01-;,-- dO

t/2 R 2 sin 201 dO1
os-, rrM2R (R4 + r2r2u 2R2rru cos O)(n-2)/2"
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Since I is rather tedious we evaluate it for n 3. For n > 3, we take I to
be zero. For n 3,

1 r2r 2

11
1 rru + l [(R, + r2r2u)l/2 R2] > a

R 2R3 rr.R R 8R5

In R", n > 4, since I1 > 0, we have

f 1(1 1)co.r"-x o(R, r, ru, 01) dar(x) < C. + r’n-2 " n-2 Rn-2Ixl=r ru
This completes the proof of Lemma 2.

3. Proof of Theorem

We saw in Lemma 2 (ii) that in Ra,

I
1

g(R,r, ru, O1) dtL(x) < (1/2 + n/4) 1 r 2 2

co3 r2 xl ru R 8R

and in R", n > 4,

1
o(R, r, r., 02) da.(x) < - r. 2 R"- 2

4- n-’--""conrn x]

This gives

in R3 and

1 1 1 r + Rr. 7r/4 1/2 +I< u +4 R- G R 8gSJJ

C.rI <
n-2 Rn-2 + Cn + Rnz’- n-2

in R" for n >_ 4.
We next set R, (rR)*/2 and suppose first that 0 < r, _< R,. Then in Ra,

#r /4 1/2I< k

where

Since

R1-)[ ++4
v/tf(t)

l x/t I( ) + }"
f(t) < -+- <-" <- "C3 t3(t),

l-/t 4 X-x/t n X-v/t
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we have in R3,

Also in R" for n > 4, we have

where

){+-+4 Oa()}

i<( 1
n-2 en-2

(t) C,
t(n- 2)/2 4Cnx/t< On(t),

1 (n-2)/2 7(1 x/t)

(3.1)

and

g(R, r, r., 01) <_ k(R1, r, 01)G(R, R1, r., 01) dag,().
conRnl Igl-gl

Therefore

I_< co.r"-i j { 1flonR- k(Rlr,O)G(R,R,r,,O)daR()}da().,
Inverting the order of integration, which is justified since the integrands are
positive, we have

k(R1, r, 0) da,()
,R-nr

From the harmonicity of G(R, p, r., 0) it follows that the average on the
surface of the R-hypersphere equals

1 1
(g, 0, )

n-2 Rn-2

Hence from (2.4) and (2.5), we have in R3,

(I< 1 +-121og
r 1

(3.3)
R +

since 0 < < 1. And so

I < r, R,_
"JZ -1- Cn "it" On (3.2)

Next if R1 < % < R, we note that G(R, p, r,, 01) is a positive harmonic
function of (p, 01,..., 0,_ 1) for 0 < p < R1 and the Riesz measure # vanishes
inside the Rl-hypersphere. Therefore from Lemma 1, we have

G(R, p, r., 01)
1

G(R, RI, r., 01)K(R1, p, 01) da ()
conR- 3[ g[ =R1
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and in R", n > 4,

"yn- 2 R 2n R ,
We now show that (3.1) and (3.2) always hold.
where x > 1, we have

log1+ x/t 1( + x/t 1- ) 2t
1 t

< t- + 1 --t"
Since 0 < < l, wc have 2Jr/(1 t) < 2t/(1 Jr). Therefore

lgR+r-lg(rR)+rRxr (rR) ; lg +tlt_ < 2t < -- ()nt 2Cn
Therefore in R3,

r 1

which is (3.1), and in R" for n 4,

rn-2 Rn-2

n-2 Rn-2

as C for n 4. We now complete the proof of Theorem 1.
From (2.3), if x is the origin, we have

m,_ u() .() ,r,- ’-
With the notation of Section 1, this gives us

j ( )d()= T(R)_u(O)m(R) + 2 R 2
l<n ru

Also with that notation (2.3) can be written as

(3.4)

Since log x < 1/2(x- l/x),

U-(X)
COnRn-1 1 R

K(R, x, )u-() da()

G(R, x, ) dla({)

(3.5)

(3.6)

K(R, x, )u+() daR() u+(x)).
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Since u+ (x) is s.h., the last term on the right hand side of (3.6) is positive, and

u-(x)< og,,R"-l K(R, x, )u_() dtrR() + G(R x, )

Since u(r) supo, u-(p, 0,..., 0-1) for fixed 0, to n 1, we
have

ut(r) < f k(R, x, )u-() dtr()
og,R"- Jll (3.7)

+ t g(R, x, ) dl()

We now operate on both sides of (3.7) by

’r-
dtr,(),

and invert the order of integration which is justified since the integrands are
positive.

.r"-’
u (r) da,()

1

(, x, ) ,() u-() () (3.a)
1 Onrn 1

+ o(, r, r,, 0) ,() ()

In view of (2.4) and (3.1) we have in Ra,

N(I +lgR+ )m(R)R-

+ +- + if3 IT(R)- u(0)- m(R)] (3.9)
4

+-+ {r(R)-u(0)}- re(R)
4

{03 () {logR + :}m(R’
As above we note that

1/21ogR + r 1/21ogl + x/t ()< < =1]/3
R r 2 x/t
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Therefore the second and the third term on the right hand side of (3.9) are
positive and

war2
u, + 3 {T(R) u(0)}, (3.10)

and in R for n 4, we have, in view of (2.5), (3.2), and (3.5),

(r)
onr

{+ C,+ O,()} {T(R)-u(O)}-(C,- 1)re(R)

-{O, ()_2C, logRR_+ :} m(R).

Again, since Cn >-- for n >_ 4, and d/n(r/R) (4CdrO@a(r/R), we see as
before that the second and third terms of the right hand side of (3.11) are
positive, and

f, (r) da,()<{1/2+Cn+n(-)}{T(R)-u(O)}. (3.12)
O)nrn

Ill

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We note that if u(x) is nonpositive in Ixl < R, then u+(x) 0, and -ul(r)
info_<p_<r u(p, 01,..., On-1) for fixed 0, 1,..., n 1, and it follows from
Theorem 1, that

n- u(p, 0, On- ) dar(x)
tnr (4.1)

As u(x) is nonpositive in Rn, we can let R + in (4.1) and note that
n(r/R) 0 as R + . Thus we have from (4.1), that

1
inf u(p, 0,..., 0,_)da,(x) ( + C,)u(O) (4.2)

nrn-1 [xl=r Opr

inf
xl=r O<p<r
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Now (4.2) holds for all r. If we have a sequence of r, tending to infinity, we
have {info_<p_<r. u(p, 01,..., 0,_ 1)) as a decreasing sequence of negative mea-
surable functions. Hence

1
inf /,/(p, 01 O ,) dar(x) > [1/2 + C.]u(0). (4.3)

Onrn-1 ,J xl=r O<p<

Since (4.3) holds for all r, we take r 1. Therefore

f inf u(p,O, 0n_)da(x) > [ + Cn]u(O).
n Jxl=l Op<

This completes the proof of Theorem 2. We show by a simple example that the
constant 1/2 + Co is the best possible.

Example. u(xl,..., x,) -[(xl 1)2 + x22 + + x2,] -("-2)/2 for
(xl, x,) :/: (1, 0,..., 0), u(1, 0, 0) -. Thus u(xl,..., x,) < 0 in R".

In polar coordinates

u(p, 01,..., 0,_1)
-1

(p2_ 2p cos 01 + 1)(n-2)/2"

If rt]2 _< 01 < n, evidently info<p< u(p, 01,..., 0._ 1) for fixed 0i,
i= 1,...,n- 1. If0 < 01 < re/2,

inf u(p, 01,. 0,_ 1) cosec"- 2 01,
01 <p<

and u(p, 01,..., 0_) is a decreasing function of p for 0 <_ p < cos 01 and
attains its minimum, cosec"- 2 01, when p cos 01.

Since we are concerned with large values of p, we consider p >_ cos 01. Then
in polar coordinates (as in Lemma 2 (i))

fl inf
(’On 10<p<

u(p, 01,..., 0,,-1) dal(x)

2Cnrc sin"-2 01 inf u dO1

-2C"I"/2-rc
2Cn re2

sin"- 2 01 cosecn- 2 01 dO1 sin"- 2 01 dO1
/2

F((n -2F(n/z)l)/Z)F(1/2)1 -[Cn + 1/2].

Since u(0,..., 0) -1, we have

f inf u(p, 01, 0,_1) dal(X)= [1/2 + C,]u(0, 0).
(-Dn ,Jlxl=l o<p<

This shows that the inequality (1.3) is sharp.
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As a corollary, we see that if u is bounded above in R" by M, then u M is
nonpositive in R". By (1.3),

inf u(p, 01,..., 0._,)
O<p<o

must be finite on almost all straight lines. Hence u(p, 01,..., 0,) is bounded
below on almost all straight lines.
The results of this paper for R3 were proved in the author’s thesis, completed

under the supervision of Professor W. K. Hayman. The author would like to
thank Professor Hayman for his help and encouragement. The other part of
this work was done when author was a visiting scholar at the University of
Illinois. The author would like to thank the Council for International Exchange
of Scholars for a grant and the University of Illinois for the scholarly privileges.
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