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1. Introduction

Harmonic analysis deals with objects defined on a group or associated with a
group and attempts to represent these objects in terms of objects which behave
simply with respect to group translation. For example, in the harmonic analysis
of functions on compact commutative groups, the functions which behave
simplest with respect to translation are the characters, for these, and their scalar
multipliers, are precisely the eigenfunctions of the translation operators.

In this paper we initiate a study of a harmonic analysis for operators on
homogeneous Banach spaces on the circle group T. In this case the simple
operators will be those which commute with translation (we shall call these
invariant operators) and also those operators which are the composite of an
invariant operator and multiplication by a character of T. These simple opera-
tors are precisely the operators T which satisfy, for soine integer n a functional
equation of the form

TR ei"tRtT, T,

where Rt is the translation operator on T defined by

(Rtf)(s) f(s t), seT.

The operators we call invariant are those which are usually called multipliers
(see [5]) because they are obtained by multiplication on the Fourier transform.
In order to avoid confusion, we shall not use this terminology since we shall
also be dealing with operations of multiplication by a function on T.
Although we state and prove our results for the circle group T, analogues of

all of the results of Sections 2 through 5 are valid for any compact abelian
group.
Some of the results we prove here were announced in [2].

2. Homogeneous spaces: invariant, almost invariant, and simple operators

We shall deal with operators acting on a space of functions on the circle
group T. The spaces we shall consider will be general enough to include all of
the classical Banach function spaces on T.
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We shall assume henceforth that B is a dense linear subspace of L(T) which
is translation invariant; i.e., iff B, then its set {Rtf: T} of translates is
contained in B. We shall assume that B is a Banach space under a norm
satisfying Ilfll,.,T)-< Ilfll, f B, that the norm is translation invariant,
IIRtfllu Ilfll,f B, m T, and that the functions in B translate continuously,

(2.1) lim IlRtf fl]a O.
t-0

So far this is precisely the definition of a homogeneous space of functions on T
in the sense of [4]. We assume in addition one more axiom which is valid in all
of the classical function spaces on T, namely that B is closed under multiplica-
tion by the characters of T, that is, iff B and n is an integer, then the function

Mnf defined by
(Mnf)(t) etf(t), T,

is also in B. (By the Closed Graph Theorem, the operator M, is continuous. We
do not assume that M, is an isometry.)
We denote by .a the Banach algebra of bounded linear operators on B,

supplied with the norm [[’llae. The invariant operators in are those which
commute with translation; i.e., T is an invariant operator if and only if TRt
RtT, T. We denote the set of invariant operators in .’ by .ao. It is easy to
check that Zao is a closed subalgebra of

Translation by elements of T gives rise a group of isometries on as follows.
For T, define b by qbt(T) R_tTRt, T. Then b is a representation
of the group T on and the invariant operators in are precisely the fixed
points of this representation.
We call an operator T in almost invariant if

(2.2) lim TR,- RtT IIe 0,
t-0

We denote the set of almost invariant operators in La by #. It is simple to
check that La# is a closed subalgebra of ..
The following example may help to clarify the definition of almost invariance.

LEMMA 2.1. Let B be C(T) or one of the LP(T). Let dp L(T). Define the
operator T on B by Tf dp f, f B. Then the following are equivalent:

(a) T is almost invariant
(b) ck is equivalent in L(T) to a continuous function.

Proof. For T, let Tt be the operator on B defined by

f= (a).f, f.
A simple computation shows that RtT TtRt. Thus

IITRt- RtTI]. I]TRt- TtRtll. ]I(T- Tt)Rtll. liT- Ttl]a,
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since R, is an isometry. But liT- Tlle limb R,blloo, where Iloo is the
L norm, since for a multiplication operator in , the operator norm is the
same as the L(T) norm. Thus

if and only if

(2.3)

lim TR, R,T o
tO

lim R,bll
t0

But (2.3) is true if and only if q is equivalent in L(T) to a continuous function.
The following characterization of almost invariance will prove to be useful in

the future. Because of this characterization we shall say that the almost invariant
operators are those which translate continuously.

LEMMA 2.2. Let T .f. Then the followiny are equivalent"
(a) limto IITRt RtTllu, 0;
(b) R_tTRt is continuousfrom T to the norm topoloyy

Proof. Let s, T. Then

R_TR R_tTR R_(TRs_ Rs_tT)Rt.

Thus, since R_ and Rt are isometries,

(2.4) IIR_sTR- R_tTRtI].- IlZR-t-- R-tTllu,.

(2.4) shows that (a) and (b) are equivalent.
Using arguments such as those of Theorem 10.2.1 of [3], it is not hard to see

that almost invariance is equivalent to the apparently weaker condition"

{R_tTRt: T} is separable in the norm topology of

Each invariant operator on B is clearly almost invariant. We shall see that the
almost invariant operators are those in the closed linear subspace of &a spanned
by the operators we introduce next, the simple operators.
For n an integer, we denote by 5e, the subset of &a consisting of all operators

T satisfying the functional equation

(2.5) TR e’tRtT, T.

We call an operator in simple if it is in one of the ,. An easy computation
shows that the multiplication operator M, defined by

(2.6) (M,f)(t) e"tf(t), T,

satisfies the functional equation (2.5) and thus is in ’,.
The following summarizes the basic properties of the ’,.

LEMMA 2.3. Each , is a closed linear subspace ofq. Each q’, is contained
in q’. If n # m, then ’,cSe {0}. If U . and V Zz then,
UV ’.+ m"
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Proof. These facts all follow immediately from the functional equation (2.5).
For example, if U e .L’, and V e a,, then

R_tUVR R_tURtR_tVR (ei"tU). (ei"tV) eitn+m)tuv.

Lemma 2.3 yields the following corollary, which characterizes the simple
operators in terms of invariant operators and the multiplication operators Mn
defined by (2.6).

COROLLARY 2.4. Let T .q’. Then the following are equivalent"
(a) T .’.;
(b) there is U -’o so that T UM.;
(c) there is V -q’o so that T M.V.
Proof A simple computation shows that (b) and (c) both imply (a). Con-

versely, suppose that T e L’.. Then, M_. o, by Lemma 2.3. Thus, T
M,,(M_.T), which shows that (a) implies (c). A similar proof shows that (a)
implies (b).

3. The Fourier transform

In this section we introduce a Fourier series for operators in L, the terms of
the series being simple operators. If T is an almost invariant operator, we show
that its Fourier series is C-1 summable to T in the operator norm. As a con-
sequence we obtain the fact that the space of almost invariant operators is
the norm closed subalgebra of 5 generated by the invariant operators in .o
and the multiplication operators M, defined by (2.6). If T is an arbitrary
operator in L’ we are able to show that its Fourier series is C-1 summable to
T in the strong operator topology of .
For each operator T in &o, and each integer n, we define the operator r,(T)

by the vector valued integral

e- _tTRt dt.(3.1)
2r

A word of interpretation of (3.1) is necessary. If T is almost invariant, the
integrand of (3.1) is continuous from T into the norm topology of because
of Lemma 2.2, so the integral makes sense. (See the appendix of [4]) for the
basic properties of vector valued integrals.)

If T is a general operator it is necessary to define n(T) indirectly. For this
we need the following"

LMMa 3.1. Let T , f B. Then the mapping s , R_TRf is con-
tinuous from T to the norm topology of B.

Proof. We shall prove that this map is continuous at a point of T. Let
s T. Then

R_TRf R_,TR,f [R_TRf R_TR,f] + [R_TR,f R_,TR,f]

[R_TR](f- R,_f) + R_[(TR,f) R_,(TR,f)].
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As a consequence,

(3.2) IIR_TRf R_,TR,flIn <_ IITll.llf- R,-flin +
where # TRtf. Since the functions in B translate continuously (as defined
by (2.1)), we have

(3.3) lim IJf- R,-flln 0

and

(3.4) lim Ila R-,II O.
s-t

The lemma now follows from (3.2), (3.3), and (3.4).
We now return to our definition of z,(T). Choose any T .o90 and anyf B.

Because of Lemma 3.1, the integral

(3.5) --2rcl +
_

e-’"tR_tTRtfdt

makes sense. We define [rc,(T)-](f) to be the value of the integral (3.5). (This is
clearly consistent with our definition of t,(T) in the case that T is almost
invariant.) It is immediate from elementary properties of the integral that
n(T) is a bounded linear operator in B and that

(3.6) II(T)lle <- llZllz.

The following summarizes the basic properties of the map

PROPOSITION 3.2. re, is a projection of onto

Proof It is clear from the linearity properties of the integral that n. is linear.
First we show that re, takes &a into ,. Choose any s T. Then

R_(rc,(T))Rf R_, f e-’"tR_tTRtRf dt]
_intR TRtRfdte R-t

2re

1 einS+n’e-i,(s+t)R2-- _(+t)TR+tf dt

e’"’rc,(T)f,

using the translation invariance of Lebesgue measure. Thus

R_(rc,(T))R ei"Src.(T),

and since s was arbitrary,
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To complete the proof of Proposition 3.2 it remains to show that ten(T) T
if T .W Choose any T own, f B. Then

_i,tR TRtfdtrcn(T )f - e

=--2rcl;+

_
e-’"’(e’"’T)f dt

rf.
Thus r.(T) T, which completes the proof of the proposition.
We will associate with each T the formal series

(3.7) to(T).

The series (3.7) will be called the Fourier series of the operator T.
That our definition yields an extension of the usual notion of Fourier series

is seen by the following"

PROPOSITION 3.3. Suppose that B C(T) and that d) is a function in B. Let
M, be the multiplication operator defined by Me(f) dp .f, f B. Then the
Fourier series of the operator M, is .. o q(n)Mn, where

$(n) e- )dr.

Proof Let s T. Then

[[(M,)]f](s) [ ff: e-’’R_,MRtf dt (s)

e _tM,Rtf](s) dt
2

e- + t)f(s) dt
2

f(s) +’)(s + t) dt

f(s)ei"’$(n) $(n)(Mf)(s).
We show next that the Fourier series of an operator T is C-1 summable to T

in the operator norm if T is almost invariant and is C-1 summable to T in the
strong operator topology for general T.

PROPOSITION 3.4. Let T be an almost invariant operator. Then its Fourier
series +_ xo(T) is C-1 summable to T in the operator norm.
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Proof If Or: a# .q,g is defined by t(T) R-tTRt, then t t is a
representation of the group T on the Banach space Lag. Every element of Lg
translates continuously; i.e.,

lim II,(T) T I1 o

Such a situation is covered by the discussion of [1]. Theorem 1.1 of that paper
yields Proposition 3.4 as a special case.
For completeness we include another proof of Proposition 3.4. The Nth C-1

sum of the Fourier series of T is

X 1 x,(T)= X 1
-s N + 1 -N N+I

(3.8) =2rcl f’+= 1
N +lnl ) -nte R_ TRt dt

1-- f + K(t)R-tTRt

where KN is the Nth Fejer kernel. That the last term in (3.5) converges in the
norm [[’H to T now follows by standard arguments (see for example p. 10 of
[4]) since {Kn} is an approximate identity and

lim IIR_tTR,- T II O.
t-*O

COROLLARY 3.5. Lag, the space of almost invariant operators in La, is the
norm closed subalgebra of La generated by the invariant operators and the multi-
plication operators Mn.

Proof. This is immediate from Proposition 3.2, Proposition 3.4, and
Corollary 2.4.
We also have an analogue of the Riemann-Lebesgue lemma.

COROLLARY 3.6. Let T be an almost invariant operator. Then

(3.9) lim Ilzr,(T)ll 0.

Proof. (3.9) is clearly true for Ta finite sum of simple operators. By Proposi-
tion 3.4, such operators are norm dense in Lag. (3.6) then shows that (3.9)
holds for every T in Lag.
As a final consequence of Proposition 3.4 we obtain the fact that an almost

invariant operator is compact if and only if each term of its Fourier series is
compact. This will be applied later in Section 6 to yield a generalization of the
F. and M. Riesz Theorem.
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COROLLARY 3.7. Let T be an almost invariant operator.
are equivalent:

(a) T is a compact operator;
(b) zc,(T) is a compact operator for each n.

Then the following

Proof. (a) implies (b). If T is compact, each R_tTRt is compact.
since it is defined by (3.1) will be in the norm closed linear subspace of
spanned by the R_tTRt and consequently will itself be compact.

(b) implies (a). This is immediate from Proposition 3.4, since the limit in the
norm topology of compact operators must be compact.

Finally we point out that the Fourier series of a general T in Aa is C-1 sum-
mable to T in the strong operator topology of Ao. Equivalently,

PROPOSITION 3.8. Let T .L’, f B.
summable to Tf in the norm of B.

Then the series ,+o n.(T)f is C-1

Proof Similar to that of Proposition 3.4.

COROLLARY 3.9. Let T Z’, f 6 B. Then liml, l_oo II[zc.(T)]flla 0.

Proof This follows from Proposition 3.8 in the same way that Corollary 3.6
followed from Proposition 3.4.

4. The Fourier transform takes multiplication into convolution

In the next two sections we establish some of the formal properties of the
Fourier series defined in the preceding section.

First we introduce some notation. For T Ao, n an integer, we define (n)
to be the operator 7r,(T). We call 5P the Fourier transform of the operator T.
Note that is an &a-valued function defined on the integers and that (n) .oq’,
for each n. is a bounded function because of (3.6),

(n)[I u’ < ZI1., all n.

Finally, if T is an almost invariant operator, liml, l., II(n)ll. 0, because of
Corollary 3.6.
We show in the next proposition that the Fourier transform takes operator

multiplication into convolution. That this result includes the fact that the
Fourier transform of the product of two functions is the convolution of their
transforms follows from Proposition 3.3.

PROPOSITION 4.1. Let S and T be almost invariant operators. Then the series
,=+_ (n m)(m) is C-1 summable to the operator (n) in the operator
norm.
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Proof. We have

(4.1)

T)I R, dt

because of Proposition 3.2, the limit referring to the operator norm. (4.1) is
equal to

lim
1 f7-’n’IN (e 1 Ira] ) R_tSRtR_drm(T)Rtl dt

N+I

which is the same as

+( Im’ ) 1 f+’ -,,,R(4.2) lim 1 e _,SR,eimtzc,(T) dt

because each rim(T) is in .,a and thus satisfies R_tnm(T)R eim’nm(T).
Finally, (4.2) is equal to

lim 1 r_m(S)rm(T),
N--,o-s N + 1

because of the definition of n,_m(S), which completes the proof.
For general operators, we have the analogue of Proposition 4.1 in the strong

operators topology.

PROPOSITION 4.2. Let S and T be in .W, f B. Then the series

(n m)9(m)f

is C-1 summable to [(ST) (n)]f in the norm topoloyy of B.

Proof Similar to the proof of Proposition 4.1.

5. The Fourier transform takes convolution into multiplication

In this section we define the convolution ! * T of a finite Borel measure # on
T and an operator T in .W and show that (# T)^ /i. . In the case that T
is the operation of multiplication by a function tk,/ * T will be the operation of
multiplication by the function # b, and thus our result includes the fact that
the Fourier transform of the convolution of a measure and a function is the
product of their transforms.

Let T be an operator in .W,/ a finite Borel measure on T. We define the
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operator # T as follows. For each f B, (# T)(f) is defined by the vector
valued integral

(5.1) f+’RtTR_tfd/.l(t)._
By Lemma 3.1, (5.1) is a well defined element of B. Using linearity properties
of the integral it is easy to see that # T is an operator in . If T is almost
invariant, # T can be defined directly by the integral

f’RtTR-tdl2(t)’_
# T will then also be almost invariant since each RtTR_ is in # and
is a norm closed linear subspace of o.
The following lemma gives the justification of our definition of convolution.

LEMMA 5.1. Let B C(T), d? B, T the operator of multiplication by
Then # T is the operator of multiplication by # c, where # c is the function
defined by

Proof. Letf B, s e T. Then

R,TR_tf d#(t) 1 (s)

[RtTR_tf](s) d#(t)

(TR_tf)(s t) d#(t)

c/)(s- t)(R_tf)(s- t)d(t)

qb(s t)f(s) d#(t)

t)_
(12 * dp)(s)’f(s).

Thus (# * T)(f) (# *
Our next result shows that the Fourier transform we have defined takes

convolution into multiplication.
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PROPOSITION 5.2. Let T .Z’, # a finite Borel measure on T. Then

(# T)" (n) (n)’ (n), all n,

where t is the function defined by (n) e- ’ dp(t).

.Proof Letf B. Then

[(, T)(n)]f [x(, T)]f

lfi" ’’R_ T)R,fdte- ,(# *2

e- -t RTR_Rtfd,(s) dt
2

e-’’ R_tTR_o_,)fd#(s) dt
2

e -+R_,TR_o_ofdt d(s)

This proves that (g T) #. .
The foregoing shows that Fourier Stieltjes transforms are universal "scalar

multipliers" for Fourier transforms of operators on B. To be precise, if T e
and V is a finite Borel measure, then there is an operator S in so that
(n) #(n) (n), all n. (And in fact S T.)

6. A generalization of the F. and M. Riesz Theorem

In this section we use the harmonic analysis introduced earlier to obtain a
generalization of the F. and M. Riesz Theorem. The crucial ingredients are
Corollary 3.7, which shows that an almost invariant operator is compact when-
ever all of the terms of its Fourier series are compact, the fact that the compact
invariant operators on C(T) are given by convolution by L(T) functions and
the classical F. and M. Riesz Theorem.
We shall restrict our attention to the space C(T) of continuous complex

valued functions on T. We define C(T) + and C(T)_ by

C(T)+ {f:f C(T), f(n) 0 if n < 0};

C(T)_ {f:fe C(T), f(n) 0 ifn > 0}.

Here is our generalization of the F. and M. Riesz Theorem.
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THEOREM 6.1. Let T be an almost invariant operator on C(T). Assume that

(6.1) T(C(T) +) C(T)

Then T must be a compact operator.

We will present the proof of Theorem 6.1 shortly.
First, observe that an arbitrary operator T on C(T) satisfying (6.1) need not

be compact. For example, take the operator T defined by

(Tf)(t) f(-t), T.

We next show how Theorem 6.1 contains the classical F. and M. Riesz
Theorem. For a finite Borel measure # on n, define the convolution operator
Cu on C(T) by

(C,f)(t)=(l*f)(t)=;+f(t-s)dl(s)’_
It is easy to check that Cu(C(T)+)

_
C(T)_ if and only if fi(n) 0, n

1, 2, 3, 4,... and thus the classical F. and M. Riesz Theorem is a special case
of Theorem 6.1 because of the following.

LEMMA 6.2. Let be a finite Borel measure on T. Then the following are
equivalent"

(a) the convolution operator Cu is compact;
(b) I.t is absolutely continuous with respect to Lebesgue measure.

Proof Denote by M(T) the Banach space of finite Borel measures on T
supplied with the total variation norm I1" IItcT). For any t M(T), s T, the
translated measure/A is defined by

g(x ) dps(x ) g(x + s) dp(x ), g e C(T).

It is well known that # is absolutely continuous with respect to Lebesgue mea-
sure if and only if

(6.2) lim II, sIIM(T) 0, all s T.
t--S

For each function f in C(T), we define the function f by f(t) f(-t), T.
We prove first that (b) implies (a). Let t be absolutely continuous with respect
to Lebesgue measure. We shall show that C# takes the unit ball of C(T) into
a bounded, equicontinuous subset of C(T) and thus (a) follows from Ascoli’s
Theorem. Boundedness is a consequence of
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For the equicontinuity, take anyf in the unit ball of C(T), s and in T. Then

I(C,f)(s) (Cf)(t)l I(# * f)(s) (tt f)(t)l

I(P, * f)(0) (p, f)(0)[

-< I1,- t, IIMTIIflIcT,
SO the equicontinuity follows from (6.2).
We next prove the converse, that (a) implies (b). Suppose that/ is a measure

in M(T) such that C is a compact operator on C(T). Let S be the unit ball of
C(T). Choose any 8 > 0. Then, by Ascoli’s Theorem, there is a 6 so that for
all f S,

I(Cuf)(s) (Cuf)(t)l < if Is- < 6.

Choose s and in T so that Is < ft. Then

I(C,]’)(s) (C,,f)(t)l I(p * f)(O) (t, f)(O)l

(6.3) f ’f(x) ds(x) ;f(x)
< 8.

Since

I1- ,llMCr)--sup { +=f(x) +f(x) f S},
II/ v, ll<x) -< e is a consequence of (6.3), which by (6.2) shows that t must
be absolutely continuous with respect to Lebesgue measure. This completes
the proof.
Two more lemmas are needed before we are able to complete the proof of

Theorem 6.1. In the first, C(T) could be replaced by any homogeneous Banach
space of functions in the sense of Section 2.

LEMMA 6.3. Let E and F be closed translation invariant linear subspaces of
C(T), T a bounded linear operator on C(T). If T(E)

_
F, then rc,(T)(E) F,

all n.

Proof Let n be a positive integer, # E. Then

1 + "R TRtgdt.(6.4) 7ro(T)g -n e- _,

Since # e E, for each e T, Rt# e E. Thus, by the hypotheses of the lemma, for
each e T, R_tTRt# e F. This shows that for each e T, the integrand of the
integral (6.4) lies in F, so the integral lies in F since F is a closed linear subspace.

LEMMA 6.4. Let T be a bounded linear operator on C(T) satisfying

T(C(T) +)
_
C(T)
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Then, for each integer n, n,(T) is an operator of the form M,Cu, where M, is
multiplication by the function ei"" and Cu is convolution by a measure # which
absolutely continuous with respect to Lebesgue measure.

Proof It is known that the invariant operators on C(T) are precisely the
convolution operators Cu, for/ a finite Borel measure on T. (See [5].) Let n
be an integer. Thus, by Corollary 2.4, n.(T) M.C. for some measure /.
By Lemma 6.3, applied to E C(T)+ and F C(T)_,

(6.5) (M,Cu)(C(T)+ )
_

C(T)_.

Since, for each integer n, Cu(e" ") ! * eira" f(m)e" ",

(6.6) /i(m) 0, m -n + 1,-n + 2,-n + 3,...

is a consequence of (6.5). By the classical F. and M. Riesz Theorem, (6.6)
implies that/ is absolutely continuous with respect to Lebesgue measure. This
completes the proof of the lemma.
We are now able to complete the proof of Theorem 6.1. Because of assump-

tion (6.1), Lemma 6.4 and Lemma 6.2 show that each rc,(T) is a compact
operator. That T is itself compact now follows from Proposition 3.4.

Finally let us observe that the conclusions of this section remain valid if
C(T) is replaced by LI(T).

BIBLIOGRAPHY

1. K. DELEEUW, Linear spaces with a compact group of operators, Illinois J. Math., vol. 2
(1958), pp. 367-377.

2. , Fourier series of operators and an extension of the F. and M. Riesz Theorem, Bull.
Amer. Math. Soc., vol. 79 (1973), pp. 342-344.

3. E. HILLE AND R. PHILLIPS, Functional analysis and semigroups, Amer. Math. Soc. Colloq.
Publications, vol. XXXI, Amer. Math. Soc., Providence, R.I., 1957.

4. Y. KATZNELSON, ,4/’/introduction to harmonic analysis, Wiley, New York, 1968.
5. R. LARSEN, ,4/’/introduction to the theory of multipliers, Springer, Berlin, 1971.

STANFORD UNIVERSITY
STANFORD, CALIFORNIA


