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Introduction

In this paper we obtain the following"

THEOREM. Let G be a finite simple group of 2-rank 3 in which all 2-local sub-
groups are 2-constrained. Then G is isomorphic to one of the groups L2(8), U3(8),
Sz(8), or G2(3).

Here to say that G is of 2-rank 3 means that G has an elementary abelian sub-
group of order 8 but none of order 16. Alperin, Brauer, and Gorenstein have
determined all simple groups of 2-rank 2.
We note also that Stroth has recently obtained this same result using a differ-

ent method. In addition, Stroth has determined all finite groups of 2-rank 3 in
which some 2-local subgroup is not 2-constrained.
The proof of this theorem is possibly more interesting than its statement.

Oneway to prove the theorem is to use a recent theorem of Gorenstein and Lyons
[8], to conclude that either G is known, or G possesses a nonsolvable 2-local
subgroup H. Set H H/O(H). If 7 divides the order of H, then a theorem
of Alperin yields the structure of H. Other results then identify G. If 7 does not
divide the order of H, it is possible to show that H/Oz(H is a subgroup of the
automorphism group of A5 or A6, and that O2(H is of restricted type. We do
not employ this procedure. Rather we prove analogues of Glauberman’s
ZJ-theorem. Essentially we prove four propositions which guarantee that G has
exactly two conjugacy classes of maximal 2-local subgroups. These are"

PROPOSITION 1. Let H be a 2-constrained group of 2-rank 3 with O(H) 1.
Suppose that 7 divides the order of H. Then, either

(1) O2(H) is an abelian group or a Suzuki 2-group and H/O2(H) is of odd
order, or

(2) O2(H) is homocyclic abelian of rank 3, and H/O2(H) is isomorphic to

L(2).

As stated above, known results will identify G if H is a 2-local subgroup of G.
When 7 divides the order of no 2-local of G, we wish to obtain a contradiction.
The tools of this attempt are the following three propositions.
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PROPOSITION 2. Let H be a 2-constrained group with O(H) and mz(H)
at most 3. Suppose that 5 divides the order of H. Let S be a Sylow 2-subgroup
of H. Then either

(1) there is a characteristic subgroup D of S with D normal in H and
D mZ(H) 1, or

(2) O2(H) is a Sylow 2-subgroup of U3(4), and H/Oz(H) is a split extension

ofZ by a cyclic group of order dividing 4.

PROPOSITION 3. Let H be a 2-constrained group of 2-rank 3 with O(H) 1.
Let S be a Sylow 2-subgroup ofH. Suppose that 32 divides the order ofH. Then,
either

(1) O2(H) is a Suzuki 2-group, and H/Oz(H) has odd order, or

(2) there is a characteristic subgroup D of S with D normal in H and
DZ(H)# 1.

PROPOSITION 4. Let H be a 2-constrained group of 2-rank 3 and suppose that
O(H) 1. Suppose that H has order 2"3, and let S be a Sylow 2-subgroup ofH.
Then either

(1) there is a characteristic subgroup D of S with D normal in H and
D Z(H) 1, or

(2) A 4

_
H S, x Z2, or

(3) S has a unique normalfours subgroup V and, moreover, V is normal in H.

After this the result follows fairly easily. Interestingly, no fusion analysis is
used.

Section

In this section we obtain some structural results about 2-constrained groups
of 2-rank 3. We begin by limiting the prime factors of their orders. The first
several lemmas serve to bound the 2-rank of certain sections of 2-groups of
2-rank 3.

LEMMA 1.1. Let Q be a 2-group having an elementary abelian subgroup A of
order 2z such that A is contained in Z(Q) and Q/A is elementary abelian of
order 2zk+l with k an integer. Then:

(1) Q has an abelian subgroup B of order 23 such that B contains A and
CQ(B) is of index at most 2 in Q.

(2) Q has an abelian subgroup of order 2 + 3.
(3) m(Q) is at least k + 1.

Proof For (1), takejin A,j- 1. Set ( Q/(j) andA A/(j). As
Q/A has order 22k+ , the classification of extra-special groups implies that
Z(Q/A) properly contains A. Thus, there is an element in Q A such that if
9isinQ, o tortj. Then, withB (A, ), (1) follows.

For (2), we use induction. The result is clear if k 0. Otherwise, take B as
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in (1). Then, there is a subgroup Q1 of Q with B in Z(Q) and Q/A of order
22k. In Q1 QI/A, take a complement to B and take T the preimage of 1
in Q1. Then, T/A has order 22k- 1. By induction, T has an abelian subgroup
S of order 2k+2. Then, SB is abelian of order 2k+3, and (2) follows. Thus,
SB/A is elementary abelian of rank k + 1, and it follows that m(SB) and m(Q)
are at least k + 1. Thus, (3) follows.

LEMMA 1.2. Let Q be a 2-group with mQ) < 3. Suppose that there is a sub-
group A of Z(Q) with A and Q/A elementary abelian. Then, Q/A has order at

most 26

Proof If A has order 23, this follows by Lemma 2.2 of [13]. If A has order
22, the 1emma follows from Lemma 1.1. If A is of order 2, it results from the
classification of extra-special 2-groups.

If Q is a 2-group having a subgroup A in its center such that A and Q/A are
elementary abelian, we define a mapping q: Q/A A as follows: if x is in Q,
q(xA) x2. Since A is central and elementary abelian, q is well defined, q is
called the squaring map. It is well known that q determines the structure of Q.
Since (xy)2 xZy2[x, y], the function b(x, y) from Q/A Q/A into A, defined
by b(x, y) q(x) + q(y) + q(x + y), is bilinear.

LEMMA 1.3. Let Q be a 2-group with A central in Q and A and Q/A elementary
abelian. Let q be the squaring mapfrom Q/A into A. Let B be a subgroup of Q/A
having order at least 23. Then ,, n q(x) O.
Proof If B has order 23, this follows immediately from, and indeed is

equivalent to, the statement that b(x, y) is bilinear. If B is of larger order, take
Bo of index 4 in B. Let B, B2, and B3 be the subgroups of index 2 in B which
contain Bo. Then by induction,

E q(x)+ E q(x)+ E q(x)= O.
B B2 B3

But , , q(x) .,, no q (x) + ,, n_o q(x), and the result follows by
substituting.

LEMMA 1.4. Let P be a 2-group and f an automorphism of P of odd prime
order p. Let T be a minimalf-invariant subgroup ofP on whichfacts nontrivially.

(1) If the smallest nonzero positive integer k such that p divides 2k is odd,
then T is elementary abelian of rank k.

(2) Ifp 3, T is elementary abelian of order 22 or Qs.
(3) lfp 5, T is elementary abelian of order 24, Q8 * D8, or is isomorphic

to a Sylow 2-subgroup of U3(4).

Proof First suppose that T is elementary abelian. Let k be the smallest
nonzero positive integer such that p divides 2 1. Then it is well known and,
in any case, follows easily from Schur’s lemma [6, p. 76-1 that T has order 2k.
Next suppose that T is not elementary abelian. Then, T is special by 1-6, p.
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183], and facts irreducibly of T/Z(T) and centralizes Z(T). By the first para-
graph T/Z(T) has order 2k. Moreover, if B is of index 2 in Z(T), T/B is extra-
special. As Z(T) - 1, it follows that k is even. Thus, (1) follows.
Ifp 3, then {f) is transitive on (T/Z(T)) # and centralizes Z(T). Thus,

all elements of T have the same square j in T. Thus, T/(j) is elementary
abelian. Since T is special, Z(T) {j).

Ifp 5, then (f) has 3 orbits on (T/Z(T)) #. Therefore, at most 3 elements
of Z(T) are squares in T. In addition, by Lemma 1.3, if exactly 3 elements of
Z(T) are squares in T, the sum of the 3 elements is 0. Thus, there is a subgroup
V of Z(T) such that V has order at most 4 and V contains the squares of all
elements of T. Thus, T/V is elementary abelian, and so V Z(T). Then, by
[7, Lemma 3.9-], (3) follows.

LEMMA 1.5. Let C be a critical subgroup of a 2-group P. Set A [C, C]
and let Co be the preimage of)l(C/A). Then:

(1) A and Co are characteristic in P.
(2) A and Co/A are elementary abelian.
(3) A is contained in Z(P).
(4) Iff is an automorphism of P of odd order andf centralizes Co, f- 1.
(5) Letfbe an automorphism ofP of oddprime order p. Let k be the smallest

positive integer such thatp divides 2k 1. Suppose that k is odd andf centralizes
A. Then, Co has rank at least m(A) + k.

Proof (1) and (2) are immediate from the properties of the critical subgroup
[-6, p. 185]. By that reference, [P, C]

_
Z(C). Thus, if x P, and y, z C,

yX ya and z zb, with a,bZ(C). Therefore, [y,z] [yX, z,]
[ya, zb] [y, z]. Thus, (3) follows. (4) follows from the properties of the
critical subgroup and [-6, p. 178]. To prove (5), let B be a minimalf-invariant
subgroup of Co on which f acts nontrivially. By Lemma 1.4, B is elementary
abelian of rank k. Since f centralizes A

_
Z(P), AB is elementary abelian of

rank m(A) + k.

LEMA 1.6. Let P be a 2-group of rank at most 3. Then, the oddpart of the
order of Aut (P) divides 34. 5" 7.

Proof Take C, Co, and A as in Lemma 1.5. By Lemma 1.2, Co/A has order
at most 26. From the order of L6(2), the lemma follows providing we eliminate
the possibilities that 72 or 31 divides the order of Aut (P). In the latter case,
however, an elementfof order 7 or 31 centralizes A, contrary to Lemma 1.5 (5)
and m(P) <_ 3.
We shall next obtain some fairly precise structural information for 2-

constrained groups of 2-rank 3.

PROPOSITION 1. Let H be a 2-constrained 9roup of 2-rank 3 with O(H) 1.
Suppose that 7 divides the order of H. Then, either

(1) O2(H) is an abelian 9roup of a Suzuki 2-group, and H/Oz(H) is of odd
oi’del’ Ol"
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O2(H is homocyclic abelian of rank 3, and H/O2(H is isomorphic to

Proof Set P Oz(H). Take fin H of order 7. Since H is 2-constrained,
fdoes not centralize P. First we show thatfdoes not centralize Z(P). Indeed,
suppose that fcentralizes Z(P). Let B be a minimalf-invariant subgroup of P
on which facts nontrivially. By Lemma 1.4, B is elementary abelian of order 8,
and by choice B Z(P) 1. Thus, B.Z(P) has rank at least 4, a contradic-
tion.

Set A fI(Z(P)). By the above IA[ > 8. Since m(P) 3, A contains all
involutions of P, and P is a Suzuki 2-group or is abelian. By a result of Higman
[11], in the first case P has order 26 or 29.
Next we show that P is a Sylow 2-subgroup of CH(A).
If P is a Suzuki 2-group of order 26, then the squaring map from P/A into A

is one-one. Thus, if d Cu(A), d centralizes P/A. By Burnside’s theorem, it
follows that Cu(A) is a 2-group. Thus, Cu(A) P O2(H). A similar proof
is valid when P is abelian. Lastly, suppose that P is a Suzuki 2-group of order
29. By Lemma 1.6, 7 does not divide the order of Cu(A). Thus, by the Schur-
Zassenhaus theorem, f normalizes some Sylow 2-subgroup S of CH(A). Since
m(S) 3, A contains all involutions of S. Thus, it follows that S is a Suzuki
2-group. Since S has order at most 29, S P.
Now H/C(A) is some subgroup of L3(2 of order divisible by 7. If H/Cu(A)

is of even order, it follows that H/Cu(A) is isomorphic to L3(2). Then, (2)
follows by a theorem of Alperin [1]. Suppose then that H/Cu(A) is of odd
order. Then, since P is a Sylow 2-subgroup of Cu(A), HIP is of odd order, and
(1) follows.
Next we obtain analogous results for 2-constrained groups of order divisible

by 3 or 5. In the following if Q is a 2-group, Aut* (Q) will denote the group
Aut (Q)/Oz(Aut (Q)). Consequently, if H is a 2-constrained group with
O(H) and Q is a normal and self-centralizing 2-subgroup of H, then
H/O2(H) is a section of Aut* (Q).

LEMMA 1.7. Let Q be a 2-group with m(Q) < 3. Suppose that Q/Z(Q) is

elementary abelian. Set A D(Z(Q)).
Suppose that Q admits an automorphism f of order 5 and an automorphism 9

of odd order which does not centralize A. Take T [Q,f] and R Co(f).
Then:

(1) Q TR and [ T, R]
(2) T is isomorphic to a Sylow 2-subgroup of U3(4).
(3) T R Z(T)= IT, T].
(4) Aut* (Q) has abelian Sylow 2-subgroups.
(5) Either
(a) Q-- Tor T x Zz, or

(b) R and A T are characteristic in Q and, moreover, there is an element j
in A Z(T) such that (j) is characteristic in Q.
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Proof Since Q/Z(Q) is elementary abelian, [Q, Q]
___

A. Take Qo to be
the preimage in Q of I(Q/A). By Lemma 1.2, m(Qo/A) is at most 6. Therefore,
m(Q/Z(Q)) is at most 6.
Take T to be a minimal f-invariant subgroup of Q on which f acts non-

trivially. Using Lemma 1.4 and m(Q) < 3, it follows that T is isomorphic to
Q8 * D8 or a Sylow 2-subgroup of U3(4).

Since m(Q) < 3,fcentralizes Z(Q). Since Tis special, Z(T) @(T). Since
go(Q)

_
Z(Q), Z(T)

_
Z(Q). Since Z(T) is elementary, Z(T)

_
A. Since f

centralizes Z(Q) and Cr(f) Z(T), T c Z(Q) Z(T).
Since m(Q/Z(Q)) < 6, Tcovers [-Q,f], where- Q/Z(Q). Thus, [Q,f]

T. Z(Q). Since f centralizes Z(Q), [Q,f] T. By [-6, p. 18], T is normal in
Q. Set R Co(f). Then, by [-6, p. 180-], Q TR.
We claim next that R centralizes T.
Recall that if L is a group, K a normal subgroup of L, and x an element of L,

then [CL]K(,)[ [CL(X)[.
Take x in R. Then, CT(X) is f-invariant. Since f acts irreducibly on

T/Z(T) ’, x centralizes . Since ICT(X)l >-IC(x)l, CT(X) has order at
least 24. Since CT(X) isf-invariant, CT(X) T, and (1) follows.
Next suppose that T is isomorphic to Qs * D8. Then, if A has order 23, take
an involution of T- Z(T). Then, (t, A) has order 16 and is elementary

abelian, in contradiction to m(Q) < 3. Thus, [A[ < 4. As g does not centralize
A, [A[ 4 and CA(g) 1. Since Z(T)

_
A, Z(T) =/= Z(T). But both T

and To are normal in Q. Therefore, if T c To 4= 1, Z(T)
_
T. But then, as

Z(T) Z(Q), Z(T) Z(T), a contradiction. Thus, T c To 1, and TT
has rank 4, a contradiction. Thus, (2) follows. Since T is special and R cen-
tralizes T, (3) is immediate.

Next we shall show that if Z(T) A, then T Q. So we suppose that
Z(T) A and Q properly contains T.

Since T/Z(T) is elementary abelian and Z(T)
_

A, T
_

Qo. Moreover,
go(Q)

_
Z(Q) and T c Z(Q) Z(T). Thus, in the group Q/A no element of

T/A is a square. Thus, T is properly contained in Qo.
First we show that Qo admits no automorphism h of order 3 such that h acts

freely on Qo Qo/A. Indeed, if so Qo has order 26. NOW Qo has a subgroup
Q1 with A c Q1 and Q1/A of order 25. By Lemma 1.1, there is an involutionj
in Q1 A. Let V be a minimal h-invariant subgroup of Qo which contains .
Then, the preimage of V is elementary abelian of order 16, a contradiction.

Since 9 does not centralize A and A is of order 4, we may assume without loss
that g has order a power of 3. If oo has order 9, then both 9 and 93 act freely on
Qo, in contradiction to the last paragraph. Thus, g has order 3 and COo(g) 1.
Since CA(g)= 1, ACoo(g) is elementary abelian. Consequently, Coo(g) has
order 2. It follows that Q/A is abelian of type (2, 2, 2, 2, 2k).

Consequently, R/A is cyclic of order 2k, and R is abelian of type (2, 2, 2k) or
(2, 2k+ 1). Now R centralizes T and Q RT. Since R is abelian, R Z(Q).
Thus, if R is of type (2, 2, 2k), we have a contradiction to the fact that A is of
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rank 2. If R is of type (2, 2k+ 1) and k -# 0, g does not act freely on A, again a
contradiction. Thus, Q T.

In the remainder of the proof, then, we assume that A properly contains
Z(T). If R A, the Q T x Z2. Thus, we suppose that R properly contains
A, and prove (b) of (5).

Set Ro R c Qo. Then, Ro c T Z(T), and Qo is a direct sum of and
Ko. Since A

_
Z(Q), all involutions of Q lie in A.

Next we show that if x Qo (TA), then x2 Z(T). First, suppose that
x e Ro A. If x2 Z(T), there is an element y2 of T Z(T) with y2 xz.
Then, (xy)2-- xZy2 1, and xy A, a contradiction. Next suppose that
x Qo (TA). Then, x ab with ain Tand bin Ro A. Thus, x2 a2b2.
Now a2 Z(T) and b2 Z(T). So x2 6 Z(T).
Now we can show that AT is characteristic in Q.
Let h be an automorphism of Q. If Z(T)h Z(T), then all elements of Th

have squares lying in Z(T). Thus, by the last paragraph, Th

_
AT. Since

Ah A, (AT)h AT. Thus, we may suppose that Z(T)h # Z(T). Since A
has order 23, C Z(T) c Z(T)h is of order 2. As o has order at most 26,
c h has order at least 22. Therefore, there is a subgroup V of such that

V has order 4 and all squares of elements in lie in C. It follows that T has a
subgroup D which is quaternion of order 8. But this implies that TIC has an
elementary abelian subgroup of order 8, namely (Z(), ). This contradicts
the fact that TIC is isomorphic to Q8 * Ds.

Since R Co.(AT), it follows that R also is characteristic in Q. Thus,
Ro R c Qo is characteristic in Q. If Ro/A has order 2, then Ro is abelian
of type (4, 2, 2) and clearly a j as in (5) exists. If Ro/A has order 22, one of the
following holds"

(a) Three distinct elements of A Z(T) are squares in Ro and a unique
element j of A Z(T) is not a square in Ro.

(b) One element ofA Z(T) is a square in two cosets ofRo/A and a unique
element j of A Z(T) is a square in one coset of Ro/A.

(c) A single element j of A Z(T) is a square in Ro.

Thus, in all cases (5) follows.
To prove (4), observe that Aut* (AT) is a split extension of Z15 by Z,,

Aut* (R) is some subgroup of $3, and Aut* (Q) is a subgroup of the direct
product of Aut* (AT) and Aut* (R).
We now have:

PROPOSITION 2. Let H be a 2-constrained group with O(H) and mz(H)
at most 3. Suppose that 5 divides the order ofH. Let S be a Sylow 2-subgroup of
H. Then either

(1) there is a characteristic subgroup D of S with D normal in H and
D Z(H) # 1, or
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(,2) O2(H) T is a Sylow 2-subgroup of U3(4), and H/O2(H) is a split
extension of Zx 5 by a cyclic group of order at most 4.

Proof Set P O2(H) and take C and Co as in Lemma 1.5. Set A
EI(Z(Co)). Since H is 2-constrained, B fI(Z(S)) is contained in P. Since C
is critical, B

_
Co and B

_
A. Takefin H of order 5. Now if all elements of

odd order act trivially on A, then B is contained in the center of H. Since B is
characteristic in S, the lemma follows with D B. Thus, we may suppose that
some element g of odd order in H acts nontrivially on A. Thus, the group C
satisfies the hypotheses of the previous lemma.

First suppose that C does not satisfy (5) (a) of the previous lemma. Take R
and T as in that lemma.
By the lemma, A (Z(T),j). By Lemma 1.5(3), [C, C]

_
Z(P). Since

Z(T) IT, T]
_

[C,C], Z(T) Z(P). Also, as (jcharC, jZ(P).
Thus, all involutions of P lie in A. We claim that A is characteristic in S. By
(4) of the last lemma, HIP has abelian Sylow 2-subgroups. Thus, SIP is abelian,
and P contains the commutator subgroup S’ of S. Let h be an automorphism
of S. Since Z(T) S’,Z(T)h S’

_
P. Thus, Z(T)

_
A. Since (j)char C

and C <a S, j B. Since B char S, jh lies in B. As B
_

A, jh A. Since A is
generated by Z(T) and j, A A. Thus, A is characteristic in S. Since
char C, j lies in Z(H). Thus, the proposition follows with D A.

Thus, in the remainder of this proof we may suppose that C T or T Z2,
where T is a Sylow 2-subgroup of U3(4). Since Aut* (C) is an extension of Z15

by Z,, we may choose an element g of order 3 in H so that g commutes withf
First we shall show that C,(f) A. Set E Cp(f). Since T [C,f], T

is E-invariant. Then, an argument of the last lemma shows that E centralizes T.
Thus, E/A acts on A and centralizes Z(T). On the other hand, C TA and C
is self-centralizing, as C is critical in P. Consequently, E/A acts faithfully on A
while centralizing Z(T). Thus, E/A has order 22 at most. Since g centralizes f,
E is g-invariant. Since g does not centralize Z(T), g acts faithfully on E/A.
Thus, E/A has order exactly 22. Set E/Z(T). Then, is isomorphic to Q8
or is elementary abelian of order 8.

In the first case, E (, fi), with and y of order 4. Then, the preimages of. and fi are each contained in abelian groups of order 16 which contain A. So
A is contained in Z(E), a contradiction if E A. In the second case, it follows
easily that [J, g] has as preimage in E an abelian group V of type (4, 4). But T
also possesses an abelian group U of type (4, 4). Moreover, V and U commute
and intersect in Z(T). Therefore, VU has rank 4, a contradiction. It follows
that Ce(f) A.
Next we show that A

_
Z(P). Since A is abelian of order at most 8, Up(A)

has index at most 8 in P. Since f is of order 5, f centralizes P/Up(A). Thus,
P Cp(A)Cp(f), and so P Cp(A).
Now C TA. Suppose first that A Z(T). Then C T, and we shall

show that P T. From this, conclusion (2) of the proposition follows.
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Now CZ(T)() and Z(T) contains all involutions of T. Thus, CT(,q) 1.
Let F C,(g). Then F is 3invariant, sincef centralizes g. Since F c A l,
Ce(f) 1. Thus, if F 4= l, m(F) is at least 4, a contradiction. So F 1.
By [4, p. 90-], P has class at most 2. Since Z(P) is]:invariant of rank at most

3, Z(P) is centralized by f. Consequently, Z(P)= Z(T) A. Thus,
P/Z(T) is abelian of rank at most 6. Since C(f) l, P has rank 4. Since
T [P, f], is elementary abelian and P T.
Next suppose that ,4 has order 23. Letj be an involution of S. Now HIP is a

subgroup of the semidirect product of Z15 by Z4. Thus, any involution of HIP
centralizes , the homomorphic image ofg in HIP. Thus, ] jP centralizes .
From the action ofg on ,4, it follows that j centralizes A. Consequently, j e A.
Thus, ,4 contains all involutions of S. Clearly, A Z(H)4: l, and the
proposition follows with D ,4.

LEMMA 1.8. (1) Let P be a 2-group of rank at most 3. Suppose that Aut (P)
has an abelian subgroup B of type (3, 3). Let b l, b2, b3 represent 3 distinct cyclic
subgroups of B of order 3, and suppose that for 1, 2, 3, Cl,(bi) is of rank 1.
Then, Q(Ce(bi))

_
z(e),for 1, 2, 3.

(2) Let P be a 2-group ofrank at most 3. Suppose that P admits a group B of
automorphisms of order 9 which does not centralize f(Z(P)). Then, (Z(P))
has order 23

Proofi For (1), we proceed by induction on the order of P. By Burnside’s
theorem, B acts faithfully on P, the Frattini factor group of P. Then there are
B-submodules V and V2 of P, with V and V2 of order 4, and P V 0) V2 0)

U, where U is B-invariant. Let R1 be the preimage of V + U and R2 be that of

V2 + U. Since Cl,(bi) has rank 1, f(Ce(bi)) lies in R and R2. Now if B acts
faithfully on R and R2,

f(Ce(bi))
_
Z(R) Z(Rz) Z(P).

Therefore, it suffices to treat the case in which some element of B, say b, cen-
tralizes R, where b 4= 1. Let Qo be a minimal b-invariant subgroup of P on
which b acts nontrivially. Then Qo is isomorphic to an elementary abelian
group of order 4 or Q8. Then Qo covers V2, and so P RaQ0. Since b cen-
tralizes R1, Qo I-P, hi. It follows that Qo is normal in P. Now if Q0 is
quaternion of order 8, the unique involution j of Qo is central in P. Since
Qo ]-P, b], B normalizes Qo and centralizes j. Thus, j lies in Cl,(bi) for all i,
and (1) follows. Thus, we may suppose that Qo is elementary abelian of order 4.
Then, as both Rx and Qo are normal subgroups of P, it follows that P R1
Qo. Since P has 2-rank 3 or less, R has rank 1. Since P admits a group of
automorphisms of type (3, 3), R is isomorphic to Qs. Thus, fx(R) is con-
tained in Z(P) and centralizes bl, b2, b3.
Next we prove (2). Let A fx(Z(P)). If (2) fails, A has order 22. If B is of

type (3, 3), some b in B # centralizes A, but B itself does not centralize A. Then,
if b, b2, b3 represent the remaining cyclic subgroups of B, Ca(bi) 1. Since
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m(P) is at most 3, C,(bi) must be of rank 1. Now the first part gives a con-
tradiction.

Thus, we may suppose that B is cyclic of order 9. Take C and Co as in Lemma
1.3. Then, ’o Co/C has order at most 26. Since Co admits the action of B,
Co has rank exactly 6 and B acts irreducibly on Co. Now A is contained in C
and Co, as C is critical. Since B is irreducible on Co, A is contained in Co.
Thus, C has order at least 22. If C has order exactly 22, then there is some in-
volution j in Co C. Let 9 generate the subgroup of B or order 3. Then, the
preimage of a minimal 9-invariant subgroup of Co which contains j is elementary
of order 16, a contradiction. Consequently, C has order 8. Lemma 1.5 now
implies that C is contained in Z(P), and the result follows.

LEMMA 1.9. Let Q be a 2-tTroup with m(Q)= 3 and suppose that Z(Q)
contains an elementary abelian group A of order 23 such that Q/A is elementary
abelian. Let L be the subgroup of Aut (Q) which centralizes A. Then:

(1) IfL has an abelian subgroup of type (3, 3, 3), then Q is a direct product of
3 copies of Qa.

(2) L contains no extra-special group of order 33 and exponent 3.

Proof First suppose that B is a subgroup of L of type (3, 3, 3). By Lemma
1.2 and the action of B, Q/A has order 26. Also, ) V1 V2 03 V3,
where V1, V2, and V3 are B-invariant of order 22 and there are elements bl, b2, b3
of B such that [Q, bi] Vi. Now if Qi is a minimal bi-invariant subgroup of Q
on which b acts nontrivially, Q is either elementary abelian of order 22 or a
quaternion group of order 8.

In the first case, since b centralizes A, QiA has rank 5, a contradiction. There-
fore, Qi is quaternion of order 8 and Qi covers Vs. Consequently, Qi [Q, bi]
and Qi is a normal subgroup of Q. Moreover, Qi is bj-invariant. Now if 4: j,
Q c Qj is contained in A. Thus, b centralizes Q, if - j. Then, as Q
[Q, b], and bj centralizes Qi, Qj centralizes Qi. Thus, QiQ is isomorphic to
Qa Q8 or Q8 Q8. In the first case, some involution of Q does not lie in A,
a contradiction. Thus, Q1Q2--Q8 Qs, and Q3 centralizes Q1Q2. If
(QIQ2) Q3 - 1, there is an element x in Q3 and an element y in QQ2 with
x2 y2

_
1. Then (xy)2 1, and xy is not in A, a contradiction. Thus, (1)

follows.

Next take B in L to be extra-special of order 33 and exponent 3. Again by the
action of B, has order 26. Let q be a quadratic form on O preserved by B. We
shall show that q is uniquely determined.
Note that B has one orbit on (Q)# of length 27 and all remaining orbits of

length 9. Moreover, B is irreducible. It follows that q is nondegenerate (if
q - 0), and the orthogonal group determined by q is O-(2), whose commutator
subgroup is isomorphic to PSp(4, 3) and has Sylow 3-subgroup Z3 wr Z3. It
follows quickly that the Sylow 3-subgroup of O-(2) has one conjugacy class of
subgroups isomorphic to B, and moreover such a B is transitive on the 27 iso-
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tropic vectors with respect to q. Thus, the zeros of q are precisely the points of
in the orbit of B of length 27. Consequently, q is uniquely determined.
Now if q is the squaring map from Q/A into A, and el, e2, e3 is a basis for A,

q(x) q(x)e + qz(x)e2 + q3(x)e3, where q, q2, q3 are quadratic forms on
Q/A. By the above, qa q2 q3. Thus, there is some involution in Q A,
contrary to m(Q) 3.
The following involves a calculation in a known group and the proof will be

omitted.

LEMMA 1.10. Let L be a subgroup of L6(2) of order 2a3b with O2(L) 1.
Then, L is a subgroup of $3 wr $3 or GU(3, 2), the latter being a split extension

ofan extra-special group oforder 33 and exponent 3 by GL(2, 3).

LEMMA 1.11. Let H be a 2-constrained group of2-rank 3 in which O(H) 1.
Suppose that A f(Z(O2(H))) is of order 23 and H/Cn(A) is isomorphic to

Z3 or $3. Let S be a Sylow 2-subgroup of H. Then, either

A4
_
H Z2 S4,

or there is a characteristic subgroup D ofS with D normal in H and

O c Z(H) 1.

Proof Set P 02(9) and let R be a Sylow 2-subgroup of Cn(A) which is
contained in S. Then, by hypothesis, R has index at most 2 in S. Moreover, A
contains all involutions in R.

First suppose that A lies in the Frattini subgroup of S and let h be an auto-
morphism of S. Then, also Ah is contained in the Frattini subgroup of S. Since
R is of index 2, Ah

_
R. Thus, Ah A, and the lemma follows with D A.

Thus, we may suppose that A do(S). Then, A do(P). First, suppose that
A c do(P) V has order 4. Then, V is characteristic in P and normal in H.
By the action of H/Cn(A) on A, A (j) @ V, where j is central in H.
Take h an automorphism of S. Then, as V

_
do(S), Vh

_
do(S)

_
R. Since

A contains all involution of R, Vh

_
A. Also, as j lies in Z(S), jh lies in Z(S).

Since Z(S)
_

P, as H is 2-constrained, it follows that jh p. As A (V, j),
Ah A. The lemma follows with D A.

Thus, we may suppose that A & do(P) has order 2 at most. Then P V L,
where L is of rank 1. First, suppose that L has order at least 8 and set (j)
D fl(L). Since j is the only square in P, D char P. Thus j lies in Z(H).
Moreover, if h is an automorphism of S, Lh c P has order at least 4 and j is a
square in Lh c P. Thus, D D, and the lemma follows. When ILl _< 4, the
treatment is similar and not difficult.

PROPOSITION 3. Let H be a 2-constrained group of 2-rank 3 with O(H) 1.
Let S be a Sylow 2-subgroup ofH. Suppose that 32 divides the order ofH. Then
either

(1) O2(H) is a Suzuki 2-group and H/O2(H) is of odd order, or
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(2) there is a character&tic subgroup D of S with D normal in H and
D Z(H) # 1.

Proof. Set P O(H) and A (Z(P)). If 5 or 7 divides the order of H,
(1) or (2) follows. So we may suppose that H has order 23. Let C and Co be
as in Lemma 1.5. Then Cola and C/Z(C) are elementary abelian of order at
most 2. By [6, p. 1853, [P, C]

___
Z(C). It follows that O(H/P) 1. Then,

using Lemma 1.10, it follows that HIP is a subgroup of Ss wr Ss or GU(3, 2).
Set E 2(Z(S)). Since H is 2-constrained, E

_
A. If all elements of H of

odd order act trivially on A, (2) follows with D E. So some 3-elementfof H
does not centralize A. By Lemma 1.8, A is of order 2s. Thus, H/Ct(A) is some
subgroup of $4 of order divisible by 3.

First suppose that HICk(A) contains A4. Then by the structure of H/P there
is a subgroup B of order 3s in H, where B centralizes A and is of exponent 3. By
Lemma 1.9, Co Os Os Os. Letj, j,js be the three involutions lying
in the direct factors of Co. The Krull-Schmidt theorem implies that Aut (Co)
permutes Ja,J2,J3. Thus, JJ2J3 is fixed by Aut (Co), contrary to ,44

___
H/Cn(A).
Now the proposition follows from Lemma 1.11.

PROPOSITION 4. Let H be a 2-constrained group of 2-rank 3 and suppose that
O(H) 1. Suppose that H has order 23, and let S be a Sylow 2-subgroup ofH.
Then either

(1) there is a characteristic subgroup D of S with D normal in H and
D Z(H) 1, or

(2) A,
_
H S4 Z2, or

(3) S has a unique normalfours subgroup V with V normal in H.

Proof Let P O2(H). Then HIP is isomorphic to $3 or Z3. Set A
)a(Z(P)), B (Z(S)). Then B

_
A. If IAI 2, (1) holds with D B. If

IAI 23, (1) or (2) follows by Lemma 1.11.
Thus, we may assume that ]A] 2z. Set V A. Takefin H for order 3. If

fcentralizes V, (1) holds with D B. So we suppose thatfdoes not centralize V.
If V O(P), then the action off implies that V c (P) 1. Thus, P

V L, with m(L) < 1. Since m(Z(P)) 2, L 1, and (2) holds.
Thus, in the remainder we assume that V

_
(P). We suppose that S has a

normal fours group U with U # V and derive a contradiction from this.
First suppose that U does not centralize V. Then, U P. Since B

_
V, but

V Z(S),itfollowsthat[B[ 2. Since Uand VarenormalinS, B U c V.
It follows that [-S, U]

_
B, IS, V]

_
B. Thus, [S,(U, V>]

___
B, and

<U, V> is dihedral. Set L Cs(( U, V>). Then it follows by [6, p. 195] that
S <U, V>.L. Clearly, LisnormalinSandL <U, V> B. Thus, S/L
is elementary abelian of order 22. It follows that V is not contained in the
Frattini subgroup of P, a contradiction. Thus, we may suppose that [ U, V]
1, and P

_
U.
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Let E (U, V). Then, E is elementary abelian of order 8. First we show
that f normalizes E. Let F (E, EI, EI2), and suppose that E F. Since
E/V lies in Z(P/V), F/V has order 23 at most.

If F/V has order 22, then f acts freely on F. Since there is an involution in
F- V, F is elementary abelian of order 16, a contradiction. Thus, F/V has
order 23. Let L IF, f]. It follows as before that L is abelian of type (4, 4),
as facts freely on L. Also, CF(f) has order exactly 2. Thus, some involution j
of F L centralizes f. Now the involution j does not centralize L. For if so,
it follows that F is abelian and E I(F) is normalized byf. Since C.(j) is
f-invariant, [CL(j)[ 4. Thus, j and all involutions of F L have four con-
jugates in F. Thus, we have a contradiction to the fact that F contains the
normal fours subgroups U and V, not both of which lie in L. Therefore, f
normalizes E.

Thus, E is normal in H. Since V lies in Z(P) and Cp(U) has index at most 2
in P, Cp(E) has index at most 2 in P. If Cp(E) has index exactly 2 in P, then in
the group H/Cp(E), f normalizes and so centralizes an element of order 2. This
contradicts the structure of the group L3(2). Thus, Cp(E) P, contrary to
m(Z(P)) 2. Thus, it follows that Vis the unique normal fours subgroup of S.

Section 2

Now let G be a finite simple group all of whose 2-local subgroups are 2-
constrained, and suppose that the 2-rank of G is exactly 3. Then a theorem of
Gorenstein and Walter [9], together with a theorem of Aschbacher [2-1, imply
that if H is any 2-local subgroup of G, then O(H) 1.
Now let H be some 2-local subgroup of G. If the order of H is divisible by 7,

Proposition yields the structure of H. First suppose that H satisfies the first
conclusion of that proposition. Then H N6(Oz(H)) and H/Oz(H is of odd
order. Then H contains a Sylow 2-subgroup of G. From the structure of Oz(H)
it follows that O2(H) contains an elementary abelian 2-subgroup which is
strongly closed in O2(H with respect to G. By a theorem of Goldschmidt [5],
G is isomorphic to one of the groups L2(8), U3(8), or Sz(8). Next if H satisfies
the second conclusion of Proposition 1, then O2(H is a homocyclic abelian
group and H/Oz(H is isomorphic to L3(2). When O2(H) is of exponent 4 or
more, then the result of [12] shows that G is known. However, not all 2-local
subgroups of G are 2-constrained. If, on the other hand, O2(H) is elementary
abelian, a theorem of Harada [10] and a theorem of Gorenstein-Harada [7]
imply that G is isomorphic to the group G2(3). Thus, for the remainder of this
section we assume that 7 divides the order of no 2-local subgroup of G, and from
this we derive a contradiction.

LEMMA 2.1. Let L be a maximal 2-local subgroup of G having Sylow 2-sub-
9roup S. Then S is a Sylow 2-subgroup of G and either

(1) L C(j), for some involution j of S, or
(2) S has a unique normalfours subgroup V, L N(V), and ILl 2k3.
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Proof Set P O2(L). By Lemma 1.6, the odd part of the order of L
divides 345.

First suppose that 5 divides the order of L. Proposition 2 is then applicable
to L. In the second conclusion to that proposition, P is isomorphic to a Sylow
2-subgroup of U3(4) and Z(P) is normal in L. Thus, L No(Z(P)). Now
SIP is abelian and so it follows that Z(P) contains all involutions of the com-
mutator subgroup S’ of S. Thus, Z(P) is characteristic in S, and so S is a Sylow
2-subgroup of G. Clearly, S has sectional 2-rank 4, and a contradiction results
applying a theorem of Gorenstein-Harada [-7].

Thus, the first conclusion of Proposition 2 is valid in L. Therefore, there is a
characteristic subgroup D of S with D normal in L and D c Z(L) # 1. By its
maximality, L No(D). Thus, as D is characteristic in S, S is a Sylow 2-
subgroup of G, and (1) follows.

If 32 divides the order of L, (1) follows as above, using Proposition 3. Then,
if exactly 3 divides the order of L, Proposition 4 guarantees that (1) or (2) holds,
unless L is some subgroup of Z2 x $4. But then G has a self-centralizing sub-
group of order 8, and a theorem of Harada [-10-I yields a contradiction as before.

If L S, then clearly S is a Sylow 2-subgroup of G. What we have proved
above shows that S is not a maximum 2-local, unless all 2-local subgroups of G
are 2-groups. But in the last case, Frobenius’ theorem shows that G is non-
simple.

If all 2-local subgroups of G are solvable, G is known by a theorem of Goren-
stein and Lyons [-8-], and a contradiction results. We take Hto be a nonsolvable
2-local subgroup of G, and S a Sylow 2-subgroup of H. Without loss we may
suppose that H is a maximal 2-local subgroup of G. Then the last lemma implies
that S is a Sylow 2-subgroup of G.

LEMMA 2.2. If is an involution of Z(S), H Co(t).

Proof Since H is nonsolvable, 5 divides the order of H. Let B fI(Z(S)),
P O2(H), and take C a critical subgroup of P. If all elements of H of odd
order centralize B, the lemma follows. Otherwise, by Lemma 1.7, the structure
of C is known. It follows that Aut (C) is solvable, a contradiction.
Now if all maximal 2-local subgroups of G are conjugate to H, G has a strongly

embedded subgroup, and Bender’s theorem [3] gives a contradiction. Thus,
we may suppose that there is a maximal 2-local subgroup M with M not con-
jugate to H. By Lemma 2.1, and conjugating if necessary, we may suppose that
S is contained in M. By Lemma 2.1 and 2.2, S has a unique normal fours sub-
group V, where V is normal in M, and M has order 2k3. Let P O2(H) and
R O2(M). Let C be the critical subgroup of P, and take Co as in Lemma 1.5.

LEMMA 2.3. (1) Z(P) is cyclic.
(2) CO is isomorphic to Q8 * D8, Q8 * Da * Z4, or Q8 * Da * D8.
(3) V is contained in Co.
(4) H/O2(H) is isomorphic to S5.

t,5) V is not contained in the Frattini subgroup of P.
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Proof First we claim that H has no elementary abelian normal 2-subgroup
of order 4 or greater. Indeed, let E be such an elementary abelian normal sub-
group of H. Since E is normal in S, E contains a normal fours subgroup of S.
Since S has a unique normal fours group V, it follows that V

_
E. Since E has

order 8 at most, E is centralized by an element of H of order 5. Thus, V is
centralized by some element of order 5. This contradicts the fact that M
NG(V) has order 2k3, and the claim follows.
Now it follows that Z(P), Z(Co), and C are all cyclic. Also Co/C is ele-

mentary abelian of order at most 26. Then the classification of extra-special
groups and the fact that Aut (Co) is of order divisible by 5 gives the above
structure for Co.

Letj be the unique involution in Z(Co). Now the number of fours subgroups
of Co which contain j is 5, 15, or 27. according to the structure of Co. In par-
ticular, this number is odd. Thus, one fours group of the above is normalized
by S. It follows then that V lies in Co, yielding (3).
Now Aut* (Co) is a subgroup of O-(2)= Aut (PSp(4, 3)). Thus, L

H/OE(H) is a subgroup of O(2) and is nonsolvable. Moreover, O2(L) 1.
Consequently, L is As, Ss, or contains some subgroup isomorphic to
On the other hand, observe that since M Na(V) is not contained in H,

Nn(V) S.
Suppose first that K A6 is contained in L. Let X be the orbit of L on the

27 or fewer fours subgroups of Co which are conjugate to V. Since S fixes V,
IX[ is odd. Since IXl _< 27, every element of X is fixed by some element of K
of odd order # 1, contrary to Nn( V) S. Thus, LisAs or Ss. IfLisAs,
then S is normalized by an element of H of order 3. Since V is characteristic in
S, V is normalized by an element of H or order 3, a contradiction. So (4)
follows.

Suppose 1/ (P). Then if # is any element of H, 1/ (P). As V is
normal in P, so is 1/. Therefore, V and V commute. Thus, the normal
closure of 1/in H is abelian, contrary to the above.

LEMMA 2.4. ISI < 28.

Proof Recall P O2(H) and R O2(M). Now IS:el- 23, and

IS: RI < 2. By the last lemma, V
_

P, but V Z(P). Moreover, R Cs(V).
Thus, V is not central in S, and so IS: RI 2. Thus, IR: P ca RI 22. Letf
be an element of M of order 3.
Now V ; (I)(P) implies that V ; (R ca P). So there exist Jx, J2 V#,

Ja :/: Jz such that j, Jz (R ca P). Then, j{, J2 $ (R ca P). Therefore,

J,, J2, J{, J2y 6 <I)(R P ca P+).

Sincef acts freely on V, it follows that V c <I)(R ca P ca PY) 1. But R ca P
is normal in R as P is normal in S. Therefore, R ca PY is normal in R. Thus,
R c P ca PY is normal in R. Consequently, +(R ca P ca PY) is normal in R.
Thus, if <I>(R ca P ca PY) -: 1, there is an involutionj in Z(R) V. Thus, there
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is an abelian subgroup A of order 23 in Z(R). Since IS: R[ 2, it follows that
Z(S) is not cyclic. But Z(S)

_
Z(P), and so Z(P) is not cyclic, a contradiction.

Thus, it follows that R P c pS is elementary abelian. Consequently,
[R P PSi < 23.
On the other hand, IR: P c R[ 22 implies that IR: R c Pf[ 22. Thus,

IR" R c P c Ps _< 24.

Thus, JR[ < 27, and the lemma follows.
We now obtain a final contradiction. Since H/O2(H) $5, O2(H) has order

at most 25. By Lemma 2.3, O2(H) Co Q8 * Da. Moreover, O2(H) has
exactly 5 subgroups of type (2, 2). Consequently, every subgroup of O2(H) of
type (2, 2) is normalized by some nonidentity element of H of odd order. This
contradicts Nn(V) S.
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