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In this paper we shall study extensions in the theory of ergodic actions of a
locally compact group. If G is a locally compact group, by an ergodic G-space
we mean a Lebesgue space (X,/) together with a Borel action of G on X, under
which # is invariant and ergodic. If (X, #) and (Y, v) are ergodic G-spaces,
(X,/) is called "an extension of (Y, v) and (Y, v) a factor of (X,/) if there is a
Borel function p" X Y, commuting with the G-actions, such that p.(/) v.
Various properties that one considers for a fixed ergodic G-space have as natural
analogues properties of the triple (X, p, Y) in such a way as to reduce to the
usual ones in case Yis a point. This is the idea of"relativizing" concepts, which
is a popular theme in the study of extensions in topological dynamics. In
ergodic theory, relativization is a natural idea from the point of view of Mackey’s
theory of virtual groups [16]. Although familiarity with virtual groups is not
essential for a reading of this paper, this idea does provide motivation for some
of the concepts introduced below, and a good framework for understanding our
results. We shall therefore briefly review the notion of virtual group and in-
dicate its relevance.

If X is an ergodic G-space, one of two mutually exclusive statements holds:
(i) There is an orbit whose complement is a null set. In this case, X is called

essentially transitive.
(ii) Every orbit is a null set. X is then called properly ergodic.

In the first case, the action of G on X is essentially equivalent to the action
defined by translation on G/H, where H is a closed subgroup of G; furthermore,
this action is determined up to equivalence by the conjugacy class of H in G.
In the second case, no such simple description of the action is available, but it is
often useful to think of the action as being defined by a "virtual subgroup" of G.
Many concepts defined for a subgroup H, can be expressed in terms of the action
of G on G/H; frequently, this leads to a natural extension of the concept to the
case of an arbitrary virtual subgroup, i.e., to the case of an ergodic G-action
that is not necessarily essentially transitive. Perhaps the most fundamental
notions that can be extended in this wa are those of a homomorphism, and
the concomitant ideas of kernel and range. These and other related matters
are discussed in [!6].
From this point of view, the notion of an extension of an ergodic G-space

has a simple interpretation. A measure preserving G-map b:X Y can be
viewed as an embedding of the virtual subgroup defined by X into the virtual
subgroup defined by Y. Thus, it is reasonable to hope that many of the concepts
that one considers for a given ergodic G-space, i.e., a virtual subgroup of G,
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can also be defined for extensions, i.e., one virtual subgroup considered as a
sub-virtual subgroup of another. We now turn to consideration of one such
concept which admits a very fruitful relativization.
For any ergodic G-space X, there is always a naturally defined unitary

representation of G on LZ(X), and it is natural to ask what the algebraic structure
of the representation implies about the geometric structure of the action. One
of the earliest results obtained in this direction, when the group in question is
the integers, is the now classical von Neumann-Halmos theory of actions with
discrete spectrum [6], [17]. For the integers, a unitary representation is
determined by a single unitary operator, and von Neumann and Halmos were
able to completely describe those actions for which this operator has discrete
(i.e., pure point) spectrum. Their most important results are contained in the
uniqueness theorem (asserting that the spectrum is then a complete invariant
of the action), the existence theorem (describing what subsets of the circle can
appear as the spectrum) and the structure theorem. This last result asserts that
every ergodic action of the integers with discrete spectrum is equivalent to a
translation on a compact abelian group. As indicated by Mackey in [15], the
methods of von Neumann and Halmos enable one to obtain an equally com-
plete theory, for actions with discrete spectrum, of an arbitrary locally compact
abelian group. When the group is not abelian, the situation is somewhat more
complicated. Using techniques different from those of von Neumann and
Halmos, Mackey was able to prove a generalization of the structure theorem
for actions of nonabelian groups [ 15]. He pointed out, however, that the natural
analogue of the uniqueness theorem fails to hold. Nevertheless, we shall see
that for a suitably restricted class of actions (which includes all actions of
abelian groups with discrete spectrum), the uniqueness and existence theorems
have natural extensions, even for G nonabelian. These actions are the normal
actions, so called because they are the virtual subgroup analogue of normal
subgroups. Thus, restricting consideration to normal actions, one has a com-
plete generalization of the von Neumann-Halmos theory.
With this in hand, one can now ask to what extent the whole theory gener-

alizes to the case of extensions. The highly satisfactory answer is that it extends
intact, providing a significant new generalization of the von Neumann-Halmos
theory even for the group of integers and the real line. If X is an extension of Y,
one can define the notion of X having "relatively discrete spectrum" over Y.
This can be loosely described as follows. Decompose the measure # as a direct
integral over the fibers of p, with respect to v. This defines a Hilbert space on
each fiber, and these Hilbert spaces exhibit Lz(X) as a Borel G-Hilbert bundle
over Y. If LZ(X) is the direct sum of finite dimensional G-invariant subbundles
over Y, we say that X has relatively discrete spectrum over Y. The structure
theorem below, generalizing Mackey’s theorem, describes the geometric
structure of the extension when this "algebraic" condition is satisfied. It
asserts that X can be written as a certain type of skew-product; these are factors
of Mackey’s "kernel" actions, and are a generalization of Anzai’s skew products.
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Similarly, the notion of normality can be relativized and it is meaningful
to say that X is a normal extension of Y. In virtual group terms, this of course
means that Xdefines a normal subvirtual subgroup of Y. For normal extensions,
we prove analogues of the uniqueness and existence theorems. We remark that
for a properly ergodic action of the integers, there always exist nonnormal
extensions with relatively discrete spectrum. Thus, even for abelian groups the
question of normality is highly relevant in these considerations.

In a subsequent paper [23], we use this theory to develop the notion of
actions with generalized discrete spectrum. This makes contact with Fursten-
berg’s work in topological dynamics on minimal distal flows, Parry’s notion of
separating sieves, the theory of affine actions, and quasi-discrete spectrum. It
promises other applications as well.
The entire theory sketched above depends in an essential way on the concept

of a cocycle of an ergodic G-space. Cocycles have appeared in various con-
siderations in ergodic theory [16], [18], [9], and from the virtual group point
of view are the analogue of homomorphisms for subgroups. This "analogy"
rests on the fact that for transitive G-spaces, there is a correspondence between
cocycles and homomorphisms of the stability groups. This is, in fact, an
essential part of Mackey’s well-known imprimitivity theorem. (See [20] for
an account of the imprimitivity theorem from this point of view.) For properly
ergodic ations, the fundamentals of a general theory of cocycles were sketched
by Mackey in [16]; some aspects of this theory are worked out in detail by
Ramsay in [19]. We have continued the detailed development of certain areas
within the theory, particularly the study of cocycles into compact groups. These
results are basic to the rest of the paper.
The organization of this paper is as follows. Part I is preparatory, and the

material is used throughout this paper as well as [23]. Aside from establishing
notation and recalling various results, there are three main features. One is a
general existence theorem for factors of a Lebesgue space; this appears in
Section 1, and in equivariant form in Section 2. The latter section also discusses
the basic connections between extensions and cocycles. This includes the
notions of restriction and induction of cocycles, analogous to those for group
representations, and a version of the Frobenius reciprocity theorem. Lastly,
the general theory of cocycles into compact groups is developed in Section 3.
Part II contains the relativized version of the yon Neumann-Halmos-Mackey
theory. The structure theorem is proved in Section 4, as well as a generalization
that subsumes another theorem of Mackey on induced representations (which
is in fact a generalization of his own structure theorem.) The virtual subgroup
analogue of normality is discussed in Section 5, and is then used to complete
the extension theory with the uniqueness-existence theorems in Section 6.
Some of the results of this paper were announced in [22].
The author would like to express his thanks to Professor G. W. Mackey for

many helpful discussions and suggestions made during the preparation of this
paper.
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I. G-spaces, factors, and cocycles

1. Factors of Lebesgue spaces. We begin by recalling and discussing some
facts about Borel spaces. By a Lebesgue space we mean a standard Borel space
X, together with a probability measure #. (See rl2] or [19] for detailed def-
initions of these and other related concepts to follow.) Associated with any
Lebesgue space, we have the Boolean a-algebra B(X, !), which consists of the
Borel sets of X, any two being identified if their symmetric difference is a null
set. If Y is a standard Borel space and b" X - Y is a Borel function, then we
have a measure b,(#) defined on Y by b,(/z)(B) /(b-l(B)), for B c Y a
Borel set. If (Y, v) is a Lebesgue space, we will call a Borel map b" X - Y a
factor map if b,(/) v. We will call Y a factor of X or X an extension of Y.
Now if " X - Y is a factor map, we have an induced map b*" B(Y, v)
B(X, Iz) that is injective. Conversely, it is well known that if ,4 c B(X, !) is
a cr-subalgebra, then there exists a Lebesgue space (Y, v) and a factor map
b" X - Y such that ,4 dp*(B(Y)) rl9, Theorem 2.1].

Since b,(/) v, the mapf - fo b induces an isometric embedding of LE(y)
as a subspace of L2(X). It is easy to see that this subspace can be characterized
as {re L2(X)If is measurable with respect to the a-field of Borel sets in X
whose equivalence class in B(X) belongs to b*(B(Y))}. We shall on various
occasions need criteria for determining when a given subspace of LE(x) is of
the form LE(y) for some factor Y of X. A useful result in this direction is the
following theorem.

LEMMA 1.1. Let A be a collection of subsets of a given set and suppose ,4 is
closed under complements. Let B be the set offinite intersections of elements of
A, and C be the set of disjoint finite unions of elements of B. Then C is the field
generated by A.

THEOREM 1.2. Let X be a Lebesgue space and ,4 L(X) a *-subalgebra
(not necessarily closed). Let B be the a-field of Borel sets in X generated by the
functions of,4. Then as subspaces of L2(X),

LE(x, B) (fe L2(X) lfmeasurable with respect to B}.

Proof. (i) If f6 , then f limf, fn ,4, where the limit is in LE(x).
Now it follows from the proof of the Riesz-Fisher theorem that there exists a
subsequence fj such that fnj f pointwise on a conull set. Since each f, is
measurable with respect to B, so is f. Hence . L2(X, B).

(ii) We now claim that L2(X, B) . Since ,4 is closed under complex
conjugation, it is easy to see that B is the a-field generated by

D {f-l(M)Ife A, fe L(X, R), M R Borel}.

Let Bo be the field generated by D. As every element of L(X, B) is an L2-1imit
of linear combinations of characteristic functions of elements of B, it suffices
to see that Zs e g for S e B. Since Bo generates B as a a-field, it suffices to see
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that gs e , for S e Bo [1, p. 21]. By Lemma 1.1, it suffices to see that 7.s
whenever S is the finite intersection of sets of D. Suppose fi A c L(X; R),
and let Ri []f[Io, 1,..., k. Choose M [-R, Ri] to be a Borel set.

For each positive integer n, suppose p,,..., Pk, are polynomials. Then

k

H pi, ofi -A foralln,
i=1

since f e L(X; R) and A is an algebra. Now suppose that 9,, 1,..., k,
n 1, 2,..., are bounded Borel functions such that

k

H gin fi " and lim gin g
i=1

in bounded pointwise convergence. Then

k

II g,.o f, II g, f,
i=1 i=1

in bounded pointwise convergence, and hence the limit also holds in LE(x).
Thus we also have I-I,k.= g f . For each i, the smallest set of functions
on [-Ri, Ri] closed under bounded pointwise convergence and containing the
polynomials is the set of bounded Borel functions. Hence ]--Ik= 9i fi fi" for
all bounded Borel gi defined on [-Ri, Ri]. Letting g itM,, we obtain

k

i=1 i=1

This completes the proof.
Combining this theorem with the preceding remarks, we have"

COROLLARY 1.3. Let X be a Lebesgue space and A a *-subalgebra of L(X).
Then ft, LE(y) for somefactor Y of X.

We remark that techniques similar to those of the proof above appear in
I10, Theorem 2.2].

If " X - Y is a factor map, the measure/t may be decomposed over the
fibers of . More precisely, for each y e Y, let Fy b-l(y). Then for each y,
there exists a measure y on X, that is supported on Fy, such that for each Borel
functionf on X, y w- j’ f d/ty is Borel on Y, and

If {/y} is such a collection of measures, we write / */y dv. This de-
composition of t is almost unique" If # j’* uy dv #’ dr, then y #
almost everywhere. A decomposition of/t yields a decomposition of LE(x) as
a Hilbert bundle over Y"

L(X) L(F, dl,) dv (see [19]).
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We now consider a construction which proves to be of much use when studying
factors. Suppose p: (X, t) - (Z, e) and q: (Y, v) - (Z, e) are factors. Define

X Xz Y {(x,y)X Ylp(x) q(y)}.

This is called the fibered product of X and Y over Z, and is a Borel subset of
X Y. There is a natural Borel map t:X Xz YZ, given by t(x,y)
p(x) (=q(y)), so t-(z) p- (z) q- t(z). Suppose

P Pz de v vz

Then it is easy to check that for A c X x z Y Borel,

( z v)(4) .( (z Vz)(A)d(z)

defines a measure on X z Y, and that/z z v j’ (p v) de. In the case
that Z is one point, (X z Y, P z v) reduces to the usual Cartesian product,
with the product measure.

There is a useful universal characterization of the fibered product. To state
this, we first consider the concept of relative independence.

PROPOSITION 1.4. Consider a commutative diagram offactor maps ofLebesgue
spaces:

Xo -- Y

X

__
Z

Let m denote the measure on Xo, and m m de. We consider all the L-spaces as subspaces of L(Xo). Then thefollowin are equivalent:
(i) (L2(X) 0 L2(Z)) d_ (L2(y) 0 L2(Z))
(ii) If f e L2(X), 9 e L2(y), then E(f 9 Z) E(f Z)E(g Z). (Here

E(. Z) is a conditional expectation.)
(iii) IfA X and B Y, then for almost all z Z, dp- (A) and-(B) are

independent sets in (Xo, m).

Proof (i) (ii) Letf L2(X), g L2(y). Condition (i) implies E(gl X)
E(g Z). Hence E(U" g X) fE(# X) UE(g Z). Now take E([Z)
of this equation; we get E(f g Z) E(f[ Z)E(g Z).

(ii) =:, (i) If f L2(X) LZ(z), g LZ(Y) LZ(z). Then E(f[ Z)
EOIZ) 0. Thus E(f’OIZ) 0 by (ii) which impliesf_k g.

(ii) =,-(iii) This is immediate when one notes that for a set S Xo
E(Zs Z) is just the function z w- mz(S).

(iii) = (ii) We know E(f.g[Z) E(fIZ)E(g[Z) when f and g are
characteristic functions, and the general result follows by the usual approx-
imation arguments.
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We remark that when Z is one point, these conditions are equivalent to the
r-fields in Xo determined by X and Y being independent. Hence, we shall say
that X and Y are relatively independent over Z if the conditions of the pro-
position hold.
We now characterize the fibered product in terms of relative independence.

PROPOSITION 1.5. Given a commutative diagram as in Proposition 1.4, X and
Y are relatively independent over Z if and only if there exists a factor map
h: Xo X x z Y such that the following diagram commutes:

Xo

xzY

Proof Define h by h(xo) ((Xo), (Xo)). If A c X, B c Y are Borel,
let A z B (A B) c (X z ). To see that h is a factor map, it clearly
suffices to show that

Now
m(h-l(A x z B)) (t,t z v)(A z B).

m(h- a(A z B)) [z mz(dP- (A) - (B)) dz

.fz mz(dp- (A))mz(9- (B)) dz.

The uniqueness of decomposition for measures implies ,(m,)= p,. and
,(m) v almost everywhere. Thus the integral becomes

fz (A)v(B) dZ fz ( v)(A x z B) ( X z V)(A z B)"

The converse assertion is more or less immediate.

2. G-spaces: Introductory remarks. Let X be a standard Borel space, and
G a standard Borel group. We call X a Borel G-space if there is a (right) action
of G on X such that the map X G - X is Borel. If X is a Lebesgue space
and G is a locally compact group, we shall call X a Lebesgue G-space if it is a
Borel G-space and if G preserves the measure. (We shall throughout take
"locally compact" to mean locally compact and second countable.) If X’ X,
we will call X’ an essential subset if it is Borel, conull, and G-invariant. A factor
map :X Y between G-spaces will be called a G-map if c(xg) dp(x)g
for all (x, g) X G. We will call Y a factor of X if there exists a factor
G-map X’ Y where X’ c X is essential. Now G acts on B(X), and if is
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a factor of X, B(Y) can be identified with a G-invariant a-subalgebra of B(X).
We now show that every G-invariant subalgebra of B(X) arises in this way.

PROPOSITION 2.1. Let (X, ) be a Lebesyue G-space and A B(X) a G-
invariant sub a-alyebra. Then there is a factor Y ofX such that B(Y) A.

Proof. This argument is a small modification of the proof of 1-14, Theorem
2-1. A is a Boolean G-space [14] and by [14, Theorem 1-], there is a Borel G-
space Y and a quasi-invariant measure v such that B(Y, v) A as Boolean
G-spaces. Since A has an invariant measure inherited from the measure on
B(X), we can assume that v is invariant. Now let 0: X Y be a Borel map
such that 0*: B(Y) B(X) defines the isomorphism B(Y) A [ 19, Theorem
2.1]. Y is standard, so we can choose a Borel isomorphism i: Y I where I
is a subset of the unit interval. Let F be the universal Borel G-space as defined
by Mackey in [14]. Define b: Y F, by dp(y)(9) i(ytT) and : X F
by $(x)(9) i(O(xg)).
By the proof of [14, Lemma 2], b and $ are Borel G-maps, and b is a Borel

isomorphism onto an invariant Borel subset ofF. Since 0* is a Boolean G-map,
it follows that for each 9, O(x9) O(x)# for almost all x. Thus, by Fubini’s
theorem,

[(dp.O)(x)](g) i(O(x).g)= i(O(xg)) (x)(g)

for almost all (x, 9); i.e., b 0 almost everywhere. Thus X’-
(range b) is conull, Borel and G-invariant. The map b-o : X’ is a
G-map, and since it agrees with 0 almost everywhere, it induces the given
Boolean G-isomorphism 0* B(Y) A.
When it is convenient, we shall apply (often without explicit mention) various

definitions and constructions that we have given for factor maps to factors in
general. By this we understand that we have passed to an essential subset for
which there is a factor map, and that the notion at hand is independent (at
least up to some obvious isomorphism) of the choice of such a set.

Using the correspondence between factors and a-subalgebras, it is easy to
deduce the following equivariant version of Corollary 1.3.

COROLLARY 2.2. Let X be a Lebesgue G-space and A a G-invariant *-sub-
algebra of L(X). Then in LZ(X), we have LZ(Y)for some G-factor Y
of X.

A Lebesgue G-space X is called ergodic if the action of G on B(X) is ir-
reducible; i.e., there are no elements in B(X) left fixed (by all elements of G)
except b and X. Mackey has shown that an equivalent condition is that for any
Borel function f on X, f.g f everywhere (for each g G) implies that f is
constant on a conull set [14, Theorem 3]. It is trivial that a factor of an ergodic
G-space is also ergodic.

If X and Y are transitive G-spaces, then X and Yare essentially isomorphic to

G/H and G/K respectively, where H and K are closed subgroups of G. X will
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be an extension of Yif and only if H is contained in a conjugate of K. The map
X G/H G]K Y is determined by the embedding of H in this conjugate
of K. Thus, in terms of Mackey’s notion of virtual groups [16], a factor map
X Y where X and Y are ergodic but not necessarily transitive G-spaces
corresponds to an embedding of the virtual subgroup defined by X into the
virtual subgroup defined by Y.
We now turn our attention to cocycles of ergodic G-spaces, a concept central

to this paper. The reader is referred to [19], [20], [-16] as general references
for cocycles, and particularly the latter for an explanation of why cocycles are
the virtual subgroup analogue of homomorphism (and representation). Most
of the remainder of Section 2 is devoted to setting out examples and results for
cocycle representations of ergodic G-spaces that have well-known analogues for
representations of locally compact groups.

Let S be an ergodic Lebesgue G-space and K a standard Borel group. We
call a Borel function : S G K a cocycle if for 9, h G, (s, 9h)=
(s, 9)(s9, h) for almost all s S. A useful extension of this notion arises in
the context of Hilbert bundles. Let {Hs} be a Hilbert bundle on S, and suppose
that for each (s, 9)e S G, we have a bounded linear map (s, 9):Hso H
such that:

(i) For each 9, (s, 9) is unitary for almost all s.
(ii) For each pair of bounded Borel sections of the bundle f {f},

f’ {f}, the function (s, g) ((s, g)fo If’)s is Borel.
(iii) For each g, h G, a(s, gh) a(s, g)a(sg, h) for almost all s.

We then call a a cocycle representation of (S, G) on the Hilbert bundle {H}.
If a, fl" S x G K are cocycles, we call them cohomologous, or equivalent,

if there is a Borel map 4): S K such that for each g,

dp(s)a(s, g)ck(sg)-1 fl(s, g) for almost all s S.

Similarly, if a is a cocycle representation on the bundle {H} and fl a cocycle
representation on the bundle {H’}, we call them equivalent if there exists a
Borel field of bounded linear maps U(s)" H - H’s such that"

(i) U(s) is unitary for almost all s.
(ii) For each g, U(s)a(s, g)U(sg)- fl(s, g) for almost all s S.

Suppose a is a cocycle representation in the product bundle H S x Ho.
From condition (ii) in the definition of cocycle representation, the map (s, g)
a(s, g) is a Borel map from S G into L(Ho), the bounded linear operators on
Ho, where the latter is given the weak topology. L(Ho) is standard under the
weak Borel structure, and the unitary group U(Ho) is a Borel subset [2]. Hence
{(s, 9)[ a(s, 9) U(Ho)} is Borel, and so by changing on a conull Borel set,
we obtain an equivalent cocycle representation fl on S x Ho such that:

(i) fl(s, g) is unitary for all (s, g) S x G.
(ii) For each g, a(s, g) fl(s, g) for almost all s.
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Thus, up to equivalence, any cocycle representation on the product bundle can
be considered as a cocycle into the unitary group U(Ho).
As pointed out by Ramsay [-19, p. 264], if {Hs) is a Hilbert bundle on S,

there exists a decomposition of S into disjoint Borel sets (S, So, $1,...) such
that for each n, there exists a Borel field of unitary operators on S,, U(s): Hs -H,, where H is a fixed Hilbert space of dimension n. Thus

Hs - S,, x H,,.

If some S,, is conull, we say that {H,} is of uniform multiplicity n. If S is ergodic
and a(s, g) is a cocycle representation on the Hilbert bundle {H,}, then {H,} is
of uniform multiplicity [20, Lemma 9.10-]. Thus, every cocycle representation
of an ergodic G-space is equivalent to one on a constant field of Hilbert spaces,
and hence equivalent to a cocycle into a unitary group.

Example 2.3. We now describe a general method of constructing cocycle
representations. Suppose b" X--+ Y is a G-factor map of ergodic G-spaces.
Write It 5 p dv. For a fixed g G, p .g /, and hence by the uniqueness
of decompositions, we have Pr’9 Pro for almost all y Y.

LEMMA2.4. The set A {(y,g) Y G p" g Pro} is Brel"

Proof Let M(X) be the space of measures on X with the usual Borel
structure (see e.g., [5] or [11]). Then the map y -/, is Borel and thus (y, g)
Yg --+ Pro is Borel. Thus to see that A is Borel, it suffices to see that (y, g) --,/,. g
is Borel. But it follows from [11, Theorem 5.2] and [20, Theorem 8.7], that
the action of G on M(X) is a Borel action, and hence that (y, g) --+ (/r, g) --+

py -g is Borel.
Now

L2(X) _t LE(Fr,/*r) dv

is a Hilbert bundle. If (y, 9) e A, then 9 maps (Fr, #r) onto (Fro,/ro) in a measure
preserving way. Let (y, #): LE(Fro) L2(Fr) be the induced unitary map. It
is straightforward, in light of Lemma 2.4, that can be extended to a (Borel)
cocycle representation (which we also denote by ) of (Y, G) on the Hilbert
bundle LE(x). We call t the natural cocycle representation of the factor map
We remark that up to equivalence, (in fact up to equality on conull sets) is
independent of the various choices made in its construction.

Example 2.5. The preceding example admits a natural generalization.
Suppose fl(x, 9) is a cocycle representation of (X, G) on a Hilbert bundle (V}.
We define an associated cocycle representation of (Y, G) which we call the
induced cocycle representation of ft. For each y, let

I, v d,(x).
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Then {Hy} is a Hilbert bundle on Y. Furthermore, for (y, 9) A, the map

a(y, g)" Hyg Hr, cz(y, g) fl(x, g),
Fy

is defined, and for each 9, will be unitary for almost all y e Y. Again, can be
extended to a cocycle representation on the Hilbert bundle {Hy}. In the case
where Vx C for each x e X, and fl(x, 9) for all (x, 9), is just the cocycle
of Example 2.3.

If X G/H and Y G/K with H = K, then a cocycle representation fl of
X x G corresponds to a representation Ha of H [20, Theorem 8.27-], and the
induced cocycle will correspond to a representation l-I, of K. One can check
that FI, is the representation induced by Ha. Thus, in the general case, regarding
fl as a representation of the virtual subgroup defined by X, we can regard as
the representation of the larger virtual subgroup defined by Y that is induced
by ft.

In case Y {e}, a (Y, G) cocycle representation is simply a unitary repre-
sentation of the group G. Since {e} is a factor of any G-space, the above con-
struction yields, for any cocycle representation cz of (X, G), a unitary repre-
sentation of G, called the representation induced by ct, and which we denote
by U". We recall, for later use, one well-known fact about the relationship
between cz and U".

THEOREM 2.6. Let , fl be cocycle representations of (X, G) on the Hilbert
bundles {Hx} and {H} respectively. For each E c X, let PE(P;) be the associated
projection operator in Hx( H;,). Then every intertwining operator T of
U and Ua with the additional property that PkT TPE can be written as a
bounded BorelfieM of operators

T Tx, Tx’Hx-H;

such that
(,) for each g G, Tot(x, g) fl(x, g)Txg for almost all x X.

Conversely, any bounded Borelfield satisfying (,) defines an intertwining operator
T of U and Ua satisfying P[zT TPe. We will call a fieM satisfying (,) an
intertwining fieMfor the cocycles and ft.

Proof Suppose P’eT TPe and TU UaT. From the first condition,
we have T j’* T, T’Hx H, where T is a bounded Borel field. Iff

* fx Hx, then

(**) (TUfL Txo(x, g)fx and (U{Tf) fl(x, #)Txfxo.
Choosefi e Hx such that {f/x) is dense in H for each x X. Then for each
i, and each g e G, (**) implies

Txa(X, g)f fl(x, g)Txgfg
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for all x in a conull set Nt,o. Then for x 0t Nt,o, we have

r,,o(x, g) fl(x, g)r,o.

The converse is immediate from (**).

Example 2.7. The notion of induced cocycle is an analogue of the notion
of induced representation for groups. We now consider an analogue of re-
striction of representations.
Suppose b" X--* Y is a factor G-map and {Hy} a Hilbert bundle on Y.

Then the assignment x V Ho(x) is a Hilbert bundle on X, with a funda-
mental sequence [3] defined as follows. If {f} c j’*Hr is a fundamental
sequence for the Hilbert bundle {Hr}, g" L(R)(X) is such that {g} is a funda-
mental sequence for Lz(x) as a Hilbert bundle over Y, and

h .(x) O (x)f4,(,)e V,,

then finite linear combinations of {ht,,(x)} form a fundamental sequence for
the bundle {V}.

Suppose fl is a cocycle representation of Y x G on the Hilbert bundle {Hy}.
Define (x, g)" V0 V by (x, g) fl(d?(x), 9). Then is called the restriction
of fl to (X, G).

If X G/H and Y G/K with H c K, and fl is a cocycle corresponding
to a representation rc of K, then will be a cocycle corresponding to the
restricted representation rc[H of H. Hence, in general, restriction of cocycles
can be thought of as the virtual subgroup analogue of restriction of
representations.

In further analogy with group representations, we now discuss the algebraic
operations of direct sum, tensor product, and conjugation for cocycle represen-
tations of ergodic G-spaces. If and fl are cocycle representations of (S, G) on
the Hilbert bundles {H} and {H’} respectively, then one can form the cocycle
a fl on the bundle {H O) H’}, by defining

( @ fl)(s, g) a(s, g) @ fl(s, g)" Hg @ H’g --. H @ H’.
Similarly, one can define countable direct sums of cocycles. Given a cocycle
representation a, one can ask when it is cohomologous to a representation of
the form a @ az. If it is, a will be called reducible, and at sub-cocycle re-
presentations of a. Otherwise, a is called irreducible. An alternate phrasing
of this is made possible by the following easily checked result.

PRO’OSmO 2.8. If {V} is a sub-Hilbert bundle of {H}, then the following
are equivalent:

(i) V ds is a U-invariant subspace.
(ii) For each g, a(s, g)(Vg) Vfor almost all s.
(iii) is cohomologous to @ , where at are cocycles into U(Hi) and
V is unitarily equivalent to S H, V is unitarily equivalent to S x Hz

(as Hilbert bundles).
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Thus, saying 0 is irreducible is equivalent to saying that there are no U"-
invariant sub-Hilbert bundles of j’* Hs.

Suppose {T} is a nontrivial intertwining field for cz and ft. Let U(s) be the
unitary part of the polar decomposition of T. Then U j’ U(s) intertwines
U" and U, and gives a unitary equivalence of

U ker (T)+/- and Ut range (T).

From this it follows that cz and fl have equivalent subcocycle representations.
In particular, if (or fl) is irreducible, and Ts 4:0 on a set of positive measure,
then 0 is a subcocycle representation of fl (or vice-versa).

If {Hs} and {H’} are Hilbert bundles, then {H (R) H’s} is also, and one can
form the cocycle representation cz (R) fl on this bundle. Similarly, if is a co-
cycle representation on the constant field S Ho, one can define the conjugate
cocycle , as follows" Choose a conjugationf f in Ho [-8, p. 15], and for any
A" Ho Ho, let . be the operator defined by (flg)= (All0), i.e.,
(f) A(f). Let (s, g) (s, g). It is clear that is a cocycle and one can
check as in [8, p. 16] that the equivalence class of is independent of the choice
of conjugation.
For group representations, a useful relation between these various algebraic

concepts is the Frobenius reciprocity theorem. We prove a version of this
theorem in the context of induced cocycle representations of ergodic actions.
Our theorem is modeled after the group theoretic version given by Mackey
[13, Theorem 8.2].

DEFINITION 2.9. If CZ and fl are cocycle representations of Y G, let
S(, fl) be the set of intertwining fields T j’ Ty such that each T is a Hilbert-
Schmidt operator. S(, fl) is a vector space, and dim S(, fl)= j(, fl) is
called the strong intertwining number of and ft.

THEOREVi 2.10. (Frobenius reciprocity). Let dp’X Y be a factor G-map,
z a cocycle representation of X G, and fl a cocycle representation of Y x G.
Let ind (cz) and res (fl) be the induced and restricted cocycles. Then j(ind , fl)
j(z, res fl).

We begin the proof with several lemmas.

LEMMA 2.11. Suppose fl is a Y G cocycle representation on {H} and I is

the 1-dimensional identity cocycle. Then j(fl, I) is the dimension of the space of
G-invariant elements in Hv.
Proof If T j’* T’*Hyj’C, then each Tv’HvC and hence

there is an element v j’* v.y e j’* H such that for any f j’* f, (Tf)
(f vv). It is straightforward to see that T S(fl, I) if and only if v is
G-invariant. Thus T v defines a vector space isomorphism (conjugate
linear) between S(fl, I) and the G-invariant elements.
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LEMMA 2.12. If is an X G cocycle, then j(t, I) j(ind (g), I).

Proof. If is a cocycle representation then U g Uind (a), SO the dimensions
of the spaces of G-invariant elements are equal. The result now follows by
Lemma 2.11.

LEMMA 2.13. Suppose and [3 are S x G cocycles. Then j(, fl)=
j( (R) , I).

Proof We recall first that for Hilbert spaces Ha and H2, there is an iso-
morphism of (Ha (R) H2)* with L2(H1;H2) the Hilbert-Schmidt maps from
Ha to H2, defined by

L2(Ha, H2) (Ha (R) H2)*, T A,

where A is given by A(v (R) w) (Tv ).
To prove the lemma, we can suppose that e and fl are cocycle representations

on the product bundles S x Ha and S x H2 respectively. Via the above
correspondence, there is a vector space isomorphism between bounded Borel
fields of Hilbert-Schmidt operators Ts: Ha H2 and bounded Borel fields

As: Ha (R) H2 --* C. To prove the lemma it suffices to show that

{TA e s(,/) {AA e S( (R)/7, I).
Now

A( (R) )(s, g)(v (R) w) A((s, g)v (R) (s, g)w)

A,((s, a)v (R)/(s,

(fl(s, g)-T(s, g)vl ).

But Aso(v (R) w) <Tov >. Thus

A( (R) fl)(s, g) Aso if and only if

The result now follows.

(s, g)- T(s, g) T,.

LEMMA 2.14. Let ok: X Y a factor G-map, a an X x G cocycle repre-
sentation on the Hilbert bundle {H,} and fl a Y x G cocycle representation on
{Wy}. Let ind () and res (fl) be the induced and restricted cocycles. Then as
Y G cocycle representations, ind () (R) fl - ind (g (R) res (fl)).

Proof Let 7a ind () (R) fl and 72 ind ( (R) res (fl)). Let

f nx d(x).
-(y)
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Then 71 is a cocycle on the Hilbert bundle y --+ Vy (R) Wy and

a): v,, (R) v, (R) %
is defined by

7(Y, 0) ind (e)(y, 0) (Y, ) (x, 0) @ (Y, ),- ()

(for each #, almost all y).
On the other hand, @ res (fl) is a cocycle representation on the bundle

x H @ W<,)and

Y2(Y, g)" [Hx W,o] d,o(x) (Hx W,) d,(x)

is given by (for each g, almost all y),

4- (y)

Now up to ismorphism, tensor products commute with direct integrals. Hence

(y)

and under this isomorphism, y corresponds to 2.
We are now ready to prove the reciprocity theorem.

Proof of Theorem 2.10. We can suppose a and fl are representations on
product bundles. By Lemma 2.13, j(ind (a), fl) j(ind (a) fl, I). By
Lemma 2.14, this is j(ind (a res(fl)),I) and by Lemma 2.12, equals
j(a res (fl), I). Lemma 2.13 now implies that this is j(a, res (fl)).

COROLLARY 2.15. Suppose ai: S x G U(H,) are equivalent, 1, 2;
dim H, < . Then ax 2 contains the identity as a subcocycle representation.

Pro& This follows immediately from Lemma 2.13.

3. Cocycles into Compact Groups. We now turn to a consideration of some
basic facts about cocycles into compact (second countable) groups. Many of
the results in this section have natural interpretations in terms of Mackey’s
definitions of kernel and range for homomorphisms of virtual subgroups [16].
Some of these results have been indicated (without complete proof) by Mackey
in
We will find useful a slight weakening of the notion of a G-space.

DEFINITION 3.1. Let S be a Lebesgue space. By a near-action of G on S,
we mean a Borel map S x G S, (s, g) sg such that:

(i) For each g, h e G, (sg)h s(gh) for almost all s.
(ii) s. e s for almost all s.
(iii) Each 9 e G preserves the measure on S.
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Each near-action of G on S determines an essentially unique action of G on
S. More precisely, we have the following result:

PROr’OSITION 3.2. If S is a near G-space, then there is a natural induced
action of G on B(S). Furthermore, there is a Borel action of G on S, which we
denote s t7 such that:

(i) For each tT, st7 s t7 for almost all s.
(ii) The induced actions on B(S) are equal.

Proof The first statement is [19, Lemma 3.1]. The second statement
follows from [19, Lemma 3.2] by defining s t7 -l(b(s).tT) where p is as
in that lemma.
We shall assume for the remainder of this section that S is an ergodic

G-space.
Given a cocycle : S x G K, where K is compact, we define a near-action

of G on S K by (s, x)t7 (stT, x(s, tT)). If the cocycle identity holds for
(s, tT, h) e S G G, then (s, x)(gh) [(s, x)g]h, so that (i) and (ii) of
Definition 3.1 hold, and it is straightforward to check that each t7 G preserves
the product measure on S K. Thus, for a cocycle ct, there is, by Proposition
3.2, an essentially unique action of G defined on S K agreeing almost every-
where with the near action. When necessary, we shall write S , K to specify
the action of G. K also acts on S K by (s, x). k (s, k-ix). This action
commutes with the near-action of G, but not necessarily with the G-action it
defines. However, for each (tT, k) G K, we have, for almost all y S K,
(yog)k (yg)k (yk)g (yk) og. Thus we have a naturally induced
action of G K on B(S K).

LEMMA 3.3. If and fl are cohomolotTous, then B(S K) and B(S p K)
are isomorphic Boolean G K spaces.

Proof Let b: S K such that for each t7 G,

ck(s)fl(s, g)dp(stT)-1 (s, tT) for almost all s e S.

Defineamap0:S ,K S tKby0(s,x) (s,x.dp(s)). Then0isan
isomorphism of Lebesgue spaces, and for each (tT, k) e G K,

O((s, x) (tT, k)) O(s, x) (g, k) for almost all (s, x).

Hence 0": B(S K) B(S K) is a Boolean G K-isomorphism.

COROLLARY 3.4. If and fl are cohomologous, then S K and S K are
essentially isomorphic G-spaces.

An important question which we now consider about cocycles into compact
groups is to determine when they are equivalent to cocycles into proper closed
subgroups. This question is related to the properties of the Boolean G K-
spaces defined above, as well as to Mackey’s definition of the kernel and range
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of oz. The reader is again referred to [16] for an explanation of these concepts,
and their relation to the G x K-space S K.

Consider the a-subalgebra B of B(S x K) consisting of elements left fixed
by the action of G {e). Since the actions of G x {e) and {e) x Kcommute,
B is a Boolean K-space. Since the action of G K on B(S x K) is irreducible,
the action of K on B must also be irreducible. Hence there is an ergodic K-
space Y such that B(Y) - B as Boolean K-spaces [14]. Since K is compact,
we can choose Y K/Ho for some closed subgroup Ho c K. The following
result was indicated without proof by Mackey I16], and motivates the definition
of the K-space Y as the "range-closure" of a.

THEOREM 3.5. is cohomologous to a cocycle into a subgroup H K if and
only if K/H is afactor of the K-space .
Proof (i) Suppose fl and fl(s, 9) H for every (s, 9). It follows from

Lemma 3.3 that the Boolean K-space B is K-isomorphic to the Boolean K-space
B’ of elements of B(S K) that are left fixed by G x {e). Now let K/H be
the space of left cosets, and p’S KK/H be p(s,k) [k]. Then p
commutes with the K-actions and hence p*" B(K/H) B(S x a K) is an
injective map of Boolean K-spaces. Thus it suffices to see that p*(B(K/H))
B’. Now

p((s, k)g) p(sg, kfl(s, g)) [kfl(s, g)] [k]
since fl(s, g) e H. Therefore p((s, k)g) p(s, k). It follows readily that for
A e B(K]H), p*(A).g p*(A) for each g e G. Since this also holds for g-a,
we have p*(A) g p*(A), i.e., p*(B(K/H)) = B’.

(ii) Now suppose that K/H is a factor of Y K/Ho. Then Ho is contained
in a conjugate of H, so it suffices to see that is cohomologous to a cocycle
into Ho. Let q" B(Y) B B(S K) be an isomorphism of Boolean K-
spaces. Then there exists a K-invariant Borel null set N = S K and a K-map
2" (S K) -N Y such that 2" q. As a K-invariant null set, N must
clearly be of the form A K where A c S is Borel and null. For each g e G,
we must have

2((s, k).g) 2(s, k) for almost all (s, k) e [(S A) c (S A).g-] K.

(This last condition so that the equation is well defined.) This follows since
2" q and g leaves elements of B fixed. Thus

D {(s, , k) s e (S A) c (S A). g- ; ((s, ). ) ,(s, k)}

is a Borel conull set by Fubini’s theorem. Thus, there exists ko e K such that

DO {(s, g)I (s, g, ko) e D}

is conull. We phrase this condition in a form we will need" If (s, g) e Do, then

,(s, ko) ,(sa, ko(S, )).
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Since 2 is a K-map, we can write this as

2(s, e)k 2(sg, e)a(s, g)- k 1.

Equivalently for all (s, g) Do,

(,) 2(s, e)o(s, g) 2(sg, e).

To construct a cocycle equivalent to a with values in H, we first construct a
cocycle fl such that fl(s, g) H for almost all (s, g). Choose a point Yo e Y
and let

Ho {k K lyo" k Yo}.

By [13, Lemma 1.1], there exists a Borel map 0" Y K such that Yo O(y) y
for all y Y. Define u" S K by u(s) 0(2(s, e)). Now define

fl(s, g) u(s)a(s, g)u(sg)-1.

We claim that for (s, g) Do, fl(s, g) e Ho, i.e., yo u(s)e(s, g)u(sg)- Yo.
We have

Yo u(s)(s, g) Yo 0(2(s, e))a(s, g) 2(s, e)(s, g).
Similarly,

Yo u(sg) Yo O(2(sg, e)) 2(sg, e).

Thus for (s, g) Do, Yo" fl(Y, g)= Yo follows from (.). To complete the
proof of the theorem, it suffices to prove the following lemma"

LEMMA 3.6. Suppose r" S G K is a cocycle, and that fl(s, g) H for
almost all (s, g), where H K is a closed subgroup. Then fl is cohomologous to
a cocycle flo such that rio(S, g) Hfor all (s, g).

Proof By changing fl on a Borel null set, we can obtain a function
fl" S x G H, and using Fubini’s theorem, we can see that

if(s, g)fl’(sg, h) if(s, gh) for almost all (s, g, h) S x G x G.

By [19, Theorem 5.1], we can change fl’ on a null set to obtain a Borel function
flo’S x G - H such that there is a conull set So = S with the following
property" if s So, sg So, sgh So, then rio(S, g)flo(sg, h) rio(S, gh). For
each (g, h) G x G, So c Sog- c So(gh)- is conull and hence flo is a cocycle
that differs from fl on a null set. We claim that for each g G, rio(S, g) fl(s, g)
for almost all s S. This suffices to prove the lemma. Let

Go {g G lflo(S, g) fl(s, g) for almost all s S}.

By Fubini’s theorem, Go is conull. For g, h Go, let

$1 {s flo(S, g) fl(s, g)}, $2 {s flo(S, h) fl(s, h)},

$3 {s flo(S, g)flo(sg, h) rio(S, gh)}
and

S, {sift(s, g)fl(sg, h) [l(s, gh)}.
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Then if s $1 c $20-1 c S3 (3 $4, we have

rio(S, gh) rio(S, g)flo(sg, h) fl(s, g)fl(sg, h) fl(s, gh).

Thus, #h Go; therefore Go is closed under multiplication and conull, and hence
must equal G.

DEFINITION 3.7. If : S x G - K is a cocycle, let K, be the closed subgroup
of K generated by {(s, #)}. We will call a minimal cocycle if there is no co-
cycle fl cohomologous to such that Ka c, K,.

As a consequence of Theorem 3.5, we have:

COROLLARY 3.8. (i) Any cocycle (into a compact group) is equivalent to a
minimal cocycle.

(ii) is minimal and K, K if and only if the action of G on S x K is
ergodic.

(iii) If and are equivalent minimal cocycles, then K andK are conjugate
subgroups of K.

Proof From the theorem we see that a subgroup H will be of the form K,
for a minimal if and only if H is a subgroup conjugate to Ho, so (i) and (iii)
are clear. Part (ii) follows since the action of G on B(S K) is irreducible
if and only if Ho K.
We will need an auxiliary result which asserts that minimality is independent

of embedding.

THEOREM 3.9. Let : S x G K be a minimal cocycle with K, K.
Suppose there is a compact group K’ with K K’. Then as a cocycle into K’,
is still minimal.

Proof. Let K’/K be the space of left cosets, and p: K’ K’/Kthe projection.
Let t: K’/K K’ be a section ofp and define

dp:K’ K x K’/K

by b(x) (t(p(x))-x, p(x)). Then q is a measure-preserving Borel isomor-
phism, and the near action of G on S , K’ is carried over to the near action
of G on S x K K’/K given by (s, k, [k’]).g (s#, ks(s, y), [k’]). Since
the action of G on S , K is ergodic, any G-invariant element of the Boolean
algebra B(S K K’/K) must be of the form S x K A where A K’/K.
Therefore, the a-algebra of G-invariant elements of B(S x K K’/K) is
K’-isomorphic to the Boolean K’-space B(K’/K). It follows from Theorem 3.5
that " S x G K’ is minimal with K K.

Remark. In terms of virtual subgroups, ’S G K is minimal with
K, K if and only if "the range of is dense in K".
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We now consider the cocycle representations obtained by composing the
representations of a compact group with a minimal cocycle into the group.
The result we are aiming for is Theorem 3.14 which asserts that if" S G K
is minimal, with K, K, then n n sets up a one-to-one correspondence
between/ (the dual object of K) and a collection of equivalence classes of
irreducible cocycle representations of (S, G). In light of the above remark, this
result is highly plausible from the virtual subgroup viewpoint.

PROPOSITION 3.10. Suppose o S x G K is minimal, with K, K. If
p" K H is a surjective homomorphism, then p . S G H is a minimal
cocycle with Hpo, H.

Proof The map (1, p)" S K S x H is a surjective measure-preserving
map. Since S x, K is an ergodic G-space and

(1, p)*" B(S X oo, H) B(S x, K)
is a G-map, S x o H is ergodic, which implies by Corollary 3.8 that p is
minimal, and Hoo, H.

LEMMA 3.11. Let " S G U(n) be a minimal cocycle. If is reducible,
then U(n) is a reducible group of matrices.

Proof If/ is reducible, then//is equivalent to a cocycle into a subgroup of
U(n) of the form U(p) x U(n p) for some _< p < n. Thus there exists a
minimal cocycle u equivalent to//such that U(n), is a reducible group. Since 0

and/3 are both minimal, Corollary 3.8 implies that U(n), and U(n)g are con-
jugate subgroups of U(n). Since U(n), is reducible, so is U(n).

PROPOSITION 3.12. Let z" S x G K be minimal, K K, and let n be a

finite dimensional representation (unitary) ofK. Then is irreducible ifand only
if n u is irreducible.

Proof (i) If is reducible, clearly n u is also.
(ii) Let / n . By Proposition 3.10 and Theorem 3.9, fl is minimal

with U(n) (K). (Here n dim n). If// is reducible, then Lemma 3.11
implies z(k) is reducible.

LEMMA 3.13. Let o" S G--. K minimal, K, K. Suppose n is a finite
dimensional unitary representation of K such that n contains the one-
dimensional identity cocycle representation. Then zc contains the identity
representation.

Proof Let n n, where n are irreducible. Then n 0 n ,
and each n is an irreducible cocycle by Proposition 3.12. Now consider a
G-invariant field of one-dimensional subspaces in L2(S, H(n)) under the
representation U’, say V V ds. The projection of V onto L2(S, H(n))
must be nonzero for some n, and this projection will be an intertwining field
for n 0 V and zq . Since n V is one dimensional and hence irreducible,
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and n, a is irreducible, we have n a] V is equivalent to n, a. So n, is a
character ;t of K, and Z a is equivalent to the identity. We claim that this
implies Z-- 1. Now Z a equivalent to 1 means there exists a function
u: S C such that:

(i) lu(s)i
(ii) For each g, u(s)z((s, g))u(sg)-1 for almost all s.

Equation (ii) can be rewritten

z((s, g))
u(sg) u(s)

Now let f: S x K C be defined byf(s, k) z(k)/u(s). For each g G, and
almost all (s, k), we have

f((s, k)g) f(sg, ks(s, g)) [-z(k)z((s, g))/u(sg)] z(k)/u(s) f(s, k).

Since is minimal and K K, S x K is ergodic, so this impliesfis constant
on a conull set, which shows ;g 1.

THZOREM3.14. Let : S x GK be a minimal cocycle, K K. Let
nl, n2 be irreducible unitary representations of K. Then n and n2 are
irreducible; they are equivalent if and only if n and n2 are unitarily equivalent
representations.

Proof. That rc is irreducible is just Proposition 3.12. If rc and n2 are
equivalent, it is clear that nl and n2 are also. If n and n2 are

equivalent, by Corollary 2.15, (n ) (R) (n2 a) contains the identity cocycle.
But (nl )(R) (n2 ot)-" (n ()if2)(Z" By Lemma 3.13, n (R) ’2 contains
the identity representation. Since n and n2 are irreducible, they must be
unitarily equivalent.

II. Extensions with relatively discrete spectrum

4. The Structure Theorem and a generalization. Given a cocycle represen-
tation (s, g) one can try to decompose into irreducible components. In case

is equivalent to , where are finite dimensional irreducible cocycle
representations, we say that has discrete spectrum. Equivalently, the Hilbert
bundle on which is defined is a direct sum of finite dimensional G-invariant
Hilbert subbundles. If b: X Y is a factor map of ergodic G-spaces, we have
a natural Y x G cocycle representation on the Hilbert bundle j’* L2(F)
(Example 2.3). One question that presents itself is what the "spectral" structure
of the cocycle implies about the geometric structure of the triple (X, b, Y).
In the case where Y is a point, just becomes the natural unitary representation
of G on LE(x). The main result of Mackey’s paper [15] is a description of the
geometric consequences of the representation of G having discrete spectrum.
This generalized a classic result of Halmos and von Neumann in the special
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case when G Z, the group of integers [6]. The main result of this section is
to generalize Mackey’s theorem to the case where Y is not necessarily one point.

In virtual group terms, what Mackey does is to describe those virtual sub-
groups of G for which the representation of G induced by the identity has
discrete spectrum. We describe here, for a virtual-subgroup (Y, G), those sub-
virtual subgroups for which the representation of (Y, G) induced by the identity
has discrete spectrum.

Before stating the theorem, we produce a class of examples where the natural
Y x G cocycle will have discrete spectrum.

Example 4.1. Let K be a compact group and H c K a closed subgroup.
Suppose : Y x G K is a minimal cocycle, with K, K (and Y is ergodic).
Define a near-action of G on Y K/H by

(y, [k]) "g (yg, [k]z(y, g)).

By Proposition 3.2, X Y x K/H becomes a G-space, and Y is a factor of X.
Since cz is minimal, K, K, and X is a factor of Y x, K, it follows from
Corollary 3.8 that X is ergodic. We claim that the natural (Y, G) cocycle,
has discrete spectrum. Let cr be the natural representation of K on LZ(K/H)
given by right translation. Then Ua U"" since both are just the natural
representation ofG on LZ(X). Theorem 2.6 shows that fl and cr e are equivalent.
Now cr * a where cr are finite dimensional and irreducible, so cr cz

* cr e has discrete spectrum, and hence so does

DrlNITON 4.2. Suppose X and Z are G-extensions of a Lebesgue G-space
Y, with ql: B(Y) B(X), qz: B(Y) B(Z) the designated embeddings. We
say that X and Z are essentially isomorphic extensions of Y if there exists a
Boolean G-isomorphism p: B(X) B(Z) such that p. q q.

Equivalently, there exist essential sets X’ = X, Z’ Z, a G-isomorphism
f: X’ --* Z’, and factor G-maps ea: X’ Y, ez: Z’ --, Y such that:

(i) 2 of ,
(ii) ’ q,, i= 1,2.

Remark. To see the equivalence, choose Xo c X and Zo c Z essential,
and factor G-maps 2" Xo --* Y, 2" Zo --* Y with 2 qi. This can be done
by Proposition 2.1. Now p: B(Xo) B(Zo) is an isomorphism, so by [14,
Theorem 2], there exist essential X Xo, Z1 Zo and a Borel isomorphism
f’Z ---} X such thatf p. Now 2 * *f121, so 22 2fl almost every-
where on Zx. Since 22 and 2xfx are both G-maps, they agree on an essential set
Z’ c Za. Then X’ fl(Z’) is essential, since fa is an isomorphism, and we
can takef (fa [Z’) -a, 1 21 X’, 2
The theorem alluded to above is the following:

THEOREM 4.3 (Structure Theorem). If X ---} Y is a factor map of ergodic
G-spaces and the natural (Y, G) cocycle representation on {L2(Fy)} has discrete
spectrum, then there is a compact group K, a closed subgroup H c K, and a
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minimal cocycle t: Y x G K with K, K such that X is essentially iso-
morphic as an extension of Y to the G-space Y x K/H ofExample 4.1.

In the case when Y {e}, this is exactly Mackey’s theorem [15, Theorem 1].

Proof (of Theorem 4.3). We begin the proof by summarizing some facts we
will need about the Effros Borel structure. Given a separable Hilbert space Ho,
let E be the set of von Neumann algebras on Ho. Effros has shown the following
[4, p. 1161-]" There exists a standard Borel structure on E such that if S is any
standard Borel space, a map z" S E is Borel if and only if there exist
countably many Borel functions Ai: S L(H) such that for each s, {Ai(s)}
generate z’(s) as avon Neumann algebra. The unitary group U(Ho) is a stan-
dard Borel group with the weak Borel structure [-2, Lemma 4-] and acts on E
by z. U U-IU. In [5, Lemma 2.1-], Effros shows that this is a Borel
action, i.e., (z’, U) - z. U is Borel.

LEMMA 4.4.
Borel set in E.

Let A { e EI is abelian}. Then A is a U(Ho)-invariant

Proof. By [4, Theorem 3-], z’ z" is Borel and from i-4, Corollary 2],
(,B)zCcBisBorel. SinceA {eE1c’ },A is Borel.
U(Ho)-invariance is trivial.

If z is an abelian von Neumann algebra, let B() be the set of projection
operators in z’. Then it is well known that z’ B(z) sets up a bijection
between abelian yon Neumann algebras and Boolean a-algebras of projections
on Ho. Thus we will identify A above with the set ’ of such Boolean algebras.
Further, for the Borel structure on ’ defined by the Effros Borel structure on
A, //is standard, and Borel maps into /can be identified by the following.

LEMMA 4.5. /f P: Y //, with Y standard, then P is Borel if and only if
there exist countably many Borelfields, Pi(y), ofprojections on Ho, such thatfor
each y Y, {Pi(y)} yenerates P(y) as a Boolean a-alyebra.

Proof. Since any abelian von Neumann algebra is generated by its pro-
jections, the "only if" statement is clear. Conversely, let us suppose we are
given bounded Borel fields {At(y)} of operators on Ho, such that for each y,
{At(y)} generates a von Neumann algebra D(y), where D: Y E is Borel.
We can assume Ai(y) is self-adjoint for each and y.

If A is a self-adjoint operator on Ho, the operators ;ta, b(A) are projection
operators, where Zta, bl is the characteristic function of the interval i-a, b] of real
numbers. It follows from the spectral theorem (see I-7, C 40, C 41] for example)
that the von Neumann algebra generated by A is equal to the yon Neumann
algebra generated by {Zt a, b(A) a, b rational}. Thus, given a sequence of oper-
ators As, the von Neumann algebra W*(A 1, A2,...) generated by {A 1, A2,... }
is equal to the von Neumann algebra generated by

Q {Zt,b(Ai) a, b rational, all i}.
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Hence, the Boolean a-algebra generated by Q is equal to the Boolean a-algebra
associated to W*(A 1, A 2,. .).

In light of these remarks, to complete the proof it suffices to show that if A(y)
is a bounded Borel field of self-adjoint operators on Ho, so is gt,,,b](A(Y)).
Choose M so that ]IA(y)[I < M for all y. Then there are polynomials p,,(x)
such that lim,_, p,,(x) 7.[,,, b](X) in bounded pointwise convergence on
[-2M, 2M], and hence

lim p,,(A(y))= Z[,,,b(A(Y))

weakly for each and y. Since p,(A(y)) is Borel in y, so is Z[,,,b](A(Y)).
Now suppose Y is an ergodic G-space and 0 a cocycle representation on a

Hilbert bundle {Hy} with discrete spectrum. Thus, there exist G-invariant
fields Vi of finite dimensional subspaces such that j’*Hy H Y’.* Vi.
Using the comments preceding example 2.3, it is not hard to see the following:
There exists a conull set Yo c Y, Yo Borel, Hilbert spaces H with dim Hi <
and a Borel field of maps U(y): Hy --. Ho Hi such that:

(i)
(ii)

U(y) is unitary for every y Yo-
U(y)(Vi(y)) Hi for every y e Yo.

Let us consider further what happens when is in addition the natural co-
cycle corresponding to a factor map b:X Y. For each y Y, we have a
Boolean a-algebra of projections By on LZ(Fy), namely the set of multiplication
operators corresponding to the elements of B(Fy). Let {E} be a countable
generating sequence of sets for the Borel structure on X and let P(y) be
multiplication by XE, Fy in LZ(Fy). Then for each i, {Pi(Y)}y is a Borel field of
operators on j’* L2(Fy), and for each y, {Pi(Y)}i generates By as a Boolean a-

algebra. Now let Yo and { U(y)} be as above. For y Yo, let Ay U(y)Br
U(y)-1. Then Ar is a Boolean a-algebra on Ho, so we have a map

A: Yo , y--}Ar

If y Yo, {U(y)Pi(y)U(y)-I} generates A as a Boolean a-algebra, and hence
A is a Borel function. We can extend A to a Borel function Y --* ///, which we
continue to denote with the same letter.

If 0 is the natural cocycle, for each (y, g) such that y Yo n Yog-1, let

(y, g) U(y)(y, g)U(yg)-.

Then is Borel and for each g and almost all y, (y, g)H H (see Proposition
2.8). By changing on a set of measure 0, and extending it to all of Y x G,
we can obtain a Borel cocycle fl: Y x G U(Ho) such that:

(i)
(ii)

fl(y, g)(Hi) Hi for every y, g.
For each g, fl(y, g) U(y)o(y, g)U(yg)-1 for almost all y.
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Now for each g and almost all y, we have t(y, g)-lBye(y, 9) Byo. Thus, for
all g, the following hold for almost all y"

fl(y, g)- 1Ayfl(y, g) U(yg)z(y, g)- U(y)- 1AyU(y)a(y, g)U(yg)-
V(yg)z(y, g)-Bra(y, g)V(yg)-U(yg)ByaU(yg)- 1.

In other words,

(*) (y, g)-A(y, g)

Now let K {U e U(Ho) U(H) H}. Then K is a compact subgroup of
U(Ho) (weak topology). Condition (i) on fl above just says that fl(y, g)e K,
and (*) says that Ay.fl(y, g) Ayo, (where the expression on the left is the
action of U(Ho) on //), the equation holding for almost all y, given any g.
By restricting the action of U(Ho), we obtain an action of K on g, and we let
/ be the space of orbits in /under K. Since K is compact, / is standard
under the quotient Borel structure. Let p" # 2 be the natural projection
and 2" Y /, 2 p A. Now equation (*) implies that for each g, p(Ar)
p(Aro) for almost all y, i.e., 2(y) 2(yg) for almost all y. Since /g is Borel
isomorphic to a subset of [-0, 1-], and Y is an ergodic G-space, we conclude that
2 is constant almost everywhere; i.e., there exists Ao e / such that p(Ao)
p(Ar) for almost all y e Y. Equivalently, if we let (o be the orbit of Ao in ’under K, then Ay e //o for y in a conull Borel set. By changing A on a null set,
we obtain a function (Borel) A: Y /o such that y Ar almost everywhere.

Let Ko {U e K IAo" U Ao}. Then go is Borel isomorphic to K/Ko,
and we can choose a Borel section 0" /go K. So for each M o, we have
a unitary operator O(M) K such that M Ao’O(M), i.e., M O(M)-1"
AoO(M). We now use the function 0 A" Y K to define a new cocycle,
namely

rio(Y, g) O(.,r)fl(y, g)O(,o)-1.
We now claim that for each g, rio(Y, g) e Ko for almost all y. To see flo(Y, g) e
Ko, it suffices to see rio(Y, g)-1Aoflo(Y, g) Ao. But the left side is just, for
almost all y,

O(A,o)fl(y, g)- O(Ay)- 1AoO(Ay)fl(y, g)O(Ay,)-

O(Aro)[3(y g)- 1Ayfl(y, g)O(Ayo) -1

O(Aro)A,oO(Ayo)-
Ao

Thus by changing flo on a set of measure 0, we can assume it is a cocycle with
values in Ko. As Ko is compact, flo has an equivalent minimal cocycle ),
(Corollary 3.8). So there exists a Borel map S" Y Ko such that for each g,

7(Y, g) S(y)flo(y, g)S(yg)-1 for almost all y.
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We now summarize what we have done so far by collecting some relevant
facts about

(1) ]" Y G --, Ko is a minimal cocycle; Ko is a compact group in U(Ho),
and leaves invariant a Boolean a-algebra of projections Ao on Ho.

(2) ] is cohomologous to the natural cocycle representation ; more exactly,
if T(y) S(y)O(y)U(y), then T(y)" H(y) Ho is a Borel field of operators
such that

(i) T(y) is unitary for almost all y.
(ii) For each , T(y)offy, 9)T(yg) -x (y, ) for almost all y.
(3) For almost all y, T(y)BT(y)-x Ao.
We now show the way in which these properties imply the structure theorem.

By (1), Ao is a K-space and thus [! 4, Theorem 1], there exists a Kr-Lebesgue
space Z and an isomorphism of Boolean K-spaces p" B(Z) Ao. Form the
product space Y x Z; this has a G-action defined by y, namely (y, z)#
(Yg, z. 7(y, )). We claim that this action is essentially isomorphic to the action
of G on X. Now B(X) - .[ B dy and the G-action is given as follows" If
S B(X) and S - Sy dy, S B, then

(S" g)r. z(y, g)-XSyx(y, g).

Similarly, if E e B(Y x Z), and E .fe Ey dy, then (E. g)ro Ey g
Ey V(y, g). Since P" B(Z) Ao is a Kr-isomorphism, we have

P((E" 9),o) P(E,) 7(y, g) (y, g)-IP(E,)y(y, g).

Define a Boolean isomorphism P’B(Y x Z) Ao by P(J’* Ey)=

* P(Ev). Then the G-action on B(Y x Z) is carried over to the G-action on

* Ao dy given by F j’* Fv, then (F. 9)yo (Y, 9)-IFy?(Y, 9). We thus
have Boolean isomorphisms

B(X) By Ao B(Y x Z)

where Q is defined by Q(J’* Sy) j’* T(y)SyT(y)-1, and is an isomorphism
by property (3).
The outside 2 maps defined G-space structures on the inside 2 algebras as

shown above. To show that B(X) and B(Y x Z) are isomorphic, it suffices to
show that Q is a G-map. Now

Q Sy g
yo

T(yg)(S. g)yoT(yg)-I

T(yg)cz(y, g)

?(y, g)-XT(y)SyT(y)-X(y, g) (by (2)(ii) above)

all these holding for almost all y.



EXTENSIONS OF ERGODIC GROUP ACTIONS 399

It is clear that under the isomorphism B(X) B(Y x Z), B(Y) is mapped
to itself by the identity. Thus, X and Y Z are essentially isomorphic ex-
tensions of Y. To prove the structure theorem, it remains only to clarify the
structure of the K-space Z. Since B(X) is an irreducible Boolean G-space, so
is B(Y x Z). If F B(Z) is K-invariant then clearly Y F is G-invariant
in B(Y Z), and hence F must be 0 or Z; i.e., B(Z) is an irreducible K-space.
Since Kv is compact, we can choose Z to be K/H for some closed subgroup H
of K [15, Lemma 2], and this completes the proof.

If K is a compact abelian group, and : S G K is minimal, K, K,
then the natural (Y, G) cocycle of the extension Y , K of Y has discrete
spectrum, and each summand of the direct sum of irreducible cocycles is one-
dimensional. As a corollary of the structure theorem, we have the following.

COROLLARY 4.6. Suppose dp: X Y is a factor G-map and the natural
(Y, G) cocycle has discrete spectrum with each summand one-dimensional. Then
there exists a compact abelian group K and a minimal cocycle : Y G - K,
K, K such that X and Y K are essentially isomorphic extensions of Y.

Proof In the proof of the structure theorem, the compact group

{U U(Ho) U(H,) H,}

was constructed. Under the hypothesis of the corollary, each H is one-dimen-
sional, and hence this group is abelian. Thus in the proof above, K is abelian.
If we let p: K K/H the natural homomorphism, then Y .K/H
Y v K/H, and since p is minimal by Proposition 3.10, the corollary is
proven.
The techniques of the proof of Theorem 4.3 actually enable us to prove a

stronger result. In [15, Theorem 2], Mackey shows that if S is an ergodic G-
space and the representation of G induced by any cocycle representation of
S x G has discrete spectrum, then the representation induced by the identity
cocycle also has discrete spectrum (i.e., S can be characterized by the conclusion
of his structure theorem). Furthermore, one can give an explicit description
of the given S x G cocycle. We will prove a generalization of this result to the
case of extensions. We preface a statement of the theorem with a class of
examples.

Example 4.7. Let Y, K, H, cz, and X be as in Example 4.1. We construct
X x G cocycles such that the induced Y x G cocycles have discrete spectrum.
Let zc be a representation of H on a Hilbert space Ho, and

: K/H K - U(Ho)

"a cocycle corresponding to this representation [20, Theorem 8.27]. Define a
cocycle

fl,: X x G- U(Ho)



400 ROBERT J. ZIMMER

by fl,((y, [k]), 9) 7([k], (y, 9)). One sees that the (Y, G) cocycle p induced
by fl,

p: Y x G U(L2(K/H; Ho)),

is given by p(y, )= U=((y, 9)), where U is the representation of K on
L2(K/H; Ho) induced by . (In case is the one-dimensional identity represen-
tation, U a natural representation of K on L2(K/H). Then p
which is the cocycle considered in Example 4.1.) As before, U * a, so
p * ai , with dim r < . Thus p has discrete spectrum.

Loosely, our generalization of the structure theorem says that whenever
b" X - Y is a factor map of ergodic G-spaces, and there is a cocycle fl on
X G such that the induced (Y, G) cocycle of fl has discrete spectrum, then
there exist K, H, , and x as above so that fl is essentially the cocycle
constructed above.

THEOREM 4.8. Let 4): X Y be a G-factor map. Suppose fl is a cocycle
representation of (X, G) such that the induced cocycle representation of (Y, G)
has discrete spectrum. Then there exists a compact group K, a closed subgroup
H c K, a unitary representation x of H, a minimal cocycle 7: Y G K,
Kr K, such that the pair (U, B(X)) is unitarily equivalent to the pair
(U, B(Y K/H)). Thus, under the identification of the G-spaces X and
Y x K/H, fl is cohomoloyous to the cocycle fl.

Before considering the proof, we examine what this says in the case Y {e}.
Then 7 will be a homomorphism G K with dense range, and

(Ua=, B(Y K/H)) (U’o 7, B(K/H)).

Thus, Theorem 4.8 asserts a unitary equivalence of (Ua, B(X)) with (Uo 7,

B(K]H)), which is exactly the content of Mackey’s Theorem 2 of [15].

Proof(of Theorem 4.8). We construct 7, T(y), and Ao exactly as in the
proof of the structure theorem. Since Ao is a K-invariant Boolean algebra on
Ho, we can write Ho - LZ(Z; Hx) where Hi is a Hilbert space, Z is a K-space,
and Ao - B(Z) as Boolean K-spaces. Since K U(Ho), we have (tautolog-
ously) a unitary representation a of K that leaves B(Z) invariant. As in the
proof of the structure theorem, one can now check that T j’* T(y) will
yield a unitary equivalence of the pairs of (U, B(X)) and (U*, B(Y Z)).
Reasoning as before, Z must be of the form KffH for a closed subgroup
H K. It then follows from Mackey’s imprimitivity theorem that a U
for some representation z of H. But Uo 7 ind (fl), and we have an
equivalence of

(Vv’, B(Y K/H))
with (Ua",B(Y K/H)). Hence, the equivalence of (U’,B(X)) with
(Ua=, B(Y x KffH)) is established. The last statement of the theorem follows
from Theorem 2.6.



EXTENSIONS OF ERGODIC GROUP ACTIONS 401

5. Normal actions and extensions. In their study of ergodic transformations
with discrete spectrum [6], [17-1, von Neumann and Halmos were able not only
to describe the structure of such transformations, but to prove an existence-
uniqueness theorem. This theorem says that if two ergodic transformations
with discrete spectrum have the same spectrum, they are essentially isomorphic.
Furthermore, this (discrete) spectrum is always a countable subgroup of the
circle, and conversely, for any countable subgroup S of the circle, there exists
an ergodic transformation with S as its spectrum. As Mackey points out in
[15-1, there is an equally complete theorem for actions of a locally compact
abelian group (see [21] for a detailed proof). However, as also indicated in
[15], the result fails when the hypothesis that the group is abelian is dropped.
Our aim in this and the following section is two-fold. First, a natural class of
ergodic actions of a group, called normal actions, is defined. We show that this
includes all ergodic actions of a locally compact abelian group with discrete
spectrum, and that for the class of normal actions, an analogue of the existence-
uniqueness theorem is valid. Secondly, and more interestingly, we extend the
notion of normality to the relative situation of extensions of arbitrary G-spaces,
and prove an existence-uniqueness theorem for normal extensions. Even in the
case where G--Z, this provides a new direction of generalization of the
von Neumann-Halmos theorem.

It will be convenient to establish some notation.

DEFINITION 5.1. If Y is a factor of an ergodic G-space X, and the natural
(Y, G) cocycle representation has discrete spectrum, we shall say that X has
relatively discrete spectrum over Y. If the cocycle can be written as a direct
sum of one-dimensional cocycle representations, we will say that Xhas relatively
elementary spectrum over Y.

Thus Theorem 4.13 and Corollary 4.6 describe the structure of extensions
with relatively discrete and relatively elementary spectrum, respectively.

DEFINITION 5.2. Let S be an ergodic Lebesgue G-space and let

fl: G - U(L2(S))
be the natural representation. Define the cocycle a: S x G U(L2(S)) by
a(s, g) fl(g). S is called a normal G-space if a is cohomologous to the identity
cocycle.

Remark. In terms of virtual groups, a is the "restriction" of fl to the virtual
subgroup (S, G) (Example 2.7).

PROPOSITION 5.3. If S is a transitive G-space, i.e., S G/Hfor some closed
subgroup H G, then S is normal ifand only ifH is a normal subgroup.

Proof : G/H x G U(L2(G/H)) is a cocycle and hence corresponds to
a representation of H on L2(G/H) [20, Theorem 8.27-1, which in this case is
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clearly just the restriction of fl to H. Furthermore, a is cohomologous to the
identity if and only if the representation of H is the identity. It is clear that
fl H is the identity on L2(G/H) if H is a normal subgroup. Conversely, suppose
H acts by the identity on L2(G/H). Then the Boolean action of H on B(G/H)
is the identity and by [14, Theorem 2-1, almost all points of G/H are left fixed.
But the set of points fixed by H is N/H c G/H where N c G is the normalizer
of H. If N/H is conull in G/H, N must be conull in G, and being a subgroup,
must equal G. Hence H is normal.
More generally, now suppose that p: X Y is a factor G-map of ergodic

G-spaces. As usual, let Fy p-l(y). Then the assignment

x H
defines a Hilbert bundle in a natural way. Let fl(y, 9): LZ(Fo) LZ(F) be the
natural (Y, G) cocycle representation and define a cocycle representation

(x, ): n, -, H.
by a(x, 9) fl(p(x), g).

DEFINITION 5.4. X is called a normal extension of Y (or Y a normal factor
of X) if the cocycle a is equivalent to the identity.

Remarks. (i) When Y {e}, this construction reduces to that of Definition
5.2.

(ii) In terms of virtual groups, a is the "restriction" of fl to the sub-virtual
subgroup (X, G). (See Example 2.7.)

PROPOSITION 5.5. If H K G are subgroups of G, and p: G/H G/K
the natural map, then a/H is a normal extension of G/K if and only if H is a
normal subgroup of K.

Proof The G/H x G cocycle representation a is defined by a representation
of H on the Hilbert space Ht L2(Ft). But Fr can be naturally identified
with K/H, and the representation of H on L2(K/H) is the restriction of the
natural representation of K. a will be equivalent to the identity if and only if
this representation ofH is the identity, which is true if and only ifH is a normal
subgroup of K.
We now consider the question of when an action with discrete spectrum or an

extension with relatively discrete spectrum, is normal.

PROPOSITION 5.6. Let fl Y x G K a minimal cocycle, Ka K, H c K
a closed subgroup, and X Y x a K/H. Then if H is normal, X is a normal
extension of Y.

Proof. Let T: K K/H the natural homomorphism. Replacing K by
K/H and fl by T fl, we see that we can assume H {e}. It is easy to check
that the Hilbert bundle {Hx} is unitarily equivalent to the Hilbert bundle
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x L2(K), and the (X, G) cocycle is given by (x, #) rc fl(p(x), g), where
p" X Y is projection and rc is the right regular representation of K. For each
x (y, k), let U(x)’Hx Hx be U(x) re(k). Then

U(x)o(x, g)U(xg)- rc(k)rc(fl(p(x), g))rc(kfl(p(x), g))- I,

proving the proposition.
The main result of this section is the converse of Proposition 5.6.

THEOREM 5.7. Let fl" Y G K, minimal, with Kp K. Let H K be a
closed subgroup, and suppose that X Y K/H is a normal extension of Y.
Then H is a normal subgroup ofK.

Proof Let zc be the natural representation of K on L2(K/H). Thus

a’X x G U(L2(K/H))
is given by a(x, g) rc fl(p(x), g). Suppose now that a is cohomologous to
the identity cocycle i. We will denote by czr and ir the (Y, G) cocycles induced
by 0 and respectively. To write ar and ir in a more convenient form, we
introduce some notation. Let

I LZ(K/H) L)(K/H; L(K/H)).

We have 2 representations of K on /. For fe I, s e K/H, let (Uf)(s)
f(s.k), (Wf)(s) zc(f(sk)). Now zr, it" Y G --, V(/), and it is easy to
check from the definition of induced cocycle that we can take czr(y, g)=
Wa(y,) and it(Y, g) Ua(y. ). Since and are cohomologous, there exists a
Borel function A" X U(LZ(K/H)) such that for each g, A(x)o(x, g)A(xg)-
i(x, g), almost everywhere. Define T: Y U(/) by

r(y) A(x).
10-1 (y)

Then T is a Borel function and for each g,

(*) T(y)o(y, g)T(yg)- it(Y, g) for almost all y e Y.

Now K acts on U(/) by T. K U[TWk Under this action, U(/) is a
standard Borel K-space, and since K is compact, the space of orbits, B, is
standard. Let q" U(/) B be the natural map. Now by (*), for each g,

T(yg) it(y, g)-T(y)or(y, g)- T(y)Wl(rU fl(y, g) g)

T(y)" fl(y, g) for almost all y;

i.e., for each g, q(T(yg)) q(T(y)) for almost all y. By the ergodicity of G
on Y, and the fact that B is standard, we have that q T is constant on a conull
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set Yo. That is, there exists an orbit R c U(/) such that T(y) R for every
Y Yo. Choose an element To of the orbit R. Then there exists a Borel function
2:RK such that T.2(T) To, for all TR [!3, Lemma 1.1]. Let
0: YoKbe0- 2oT, and extend0toaBorelmap YK. Thus T(y).
O(y) To for almost all y. We now use 0 to define a new cocycle y: Y G K
equivalent to fl, namely y(y, g)= O(y)- fl(y, g)O(yg). We now claim the
following, which is basically just unravelling the definitions.

LEMMA. For each g, To Wy, o)T U(y, o) for almost all y.

Proof

To Win, o)T g (T(y)’O(y))Wo(r)-,a(r,)o(ro)(T(yg)’O(yg))-U-’ T(y)W(,,o)T(yg)o(y) Uo(yo)
V-1O(y)Ufl(y, g) Uo(yo)

U(y, o)"

Now let Ko {k K ToWgT Ug}. It is easy to see that Ko is a closed
subgroup of K, and the lemma says that for each g, ),(y, g) e Ko for almost all
y e Y. By changing y on a suitable null set, we get an equivalent cocycle y
such that ,x(y, g) e Ko for all (y, g). Now x is equivalent to fl, and since fl is
a minimal cocycle, we must have Ko K. Thus To is an intertwining operator
for U and W. We claim furthermore that To commutes with the natural pro-
jection valued measure P" B(K/H) - L(Ft). To see this, first note that since
T(y) .[r, A(x), for each E B(K/H), we have PET(Y)= T(y)PE. In
addition, for all k, U[ PEUg PEg and a similar relation holds for W. Com-
bining these identities, we see that U[T(y)Wg commutes with PE for all E,
k, y. Since To T(y).O(y) for almost all (and hence at least one) y, To
commutes with PE. It follows that the representations of H which induce U
and W must be equivalent. But U is the representation induced by the identity
representation of H on 1_?(K/H), and W is the representation induced by the
restriction to H of the natural representation of K on LZ(K/H). For these to be
equivalent, H must be normal.

COROLLARY 5.8. Let X be an ergodic extension of Y with relatively discrete
spectrum. Let be the natural (Y, G) cocycle representation, and let S be the
set of equivalence classes of irreducible (Y, G) cocycle representations that are
subcocycles of. Then X is a normal extension of Y ifand only if S satisfies the
following conditions:

(i) 1, o2 S implies every irreducible component of (R) O2 is in S.
(ii) a S implies S.
(iii) .s (dim a)a.

Proof Let X= Y tK/H where fl" Y G- K is a minimal cocycle
with Ko K. Let rc be the natural representation of K on L2(K/H). Then a
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is equivalent to n ft. Let S’ be the set of equivalence classes of irreducible
representations of K that are subrepresentations of n, and for each 2 e S’, na
the positive integer such that n s’ nz2. Then

From this equation and Theorem 3.14, it follows that S S’o and that S
satisfies (i), (ii), (iii) above if and only if S’ satisfies the analogous properties.
By !-8, 30. 60] and the Peter-Weyl theorem, this will be true if and only if H
is normal, and by Theorem 5.7, this holds if and only if X is a normal extension
of Y.

COROLLARY 5.9. If X is an ergodic extension of Y with relatively elementary
spectrum, then X is a normal extension of Y.

Proof By Corollary 4.6, X Y x a K where K is compact, abelian, and
the result is immediate from Theorem 5.7.

COROLLARY 5.10. Any action of a locally compact abelian group with discrete
spectrum is normal.

6. The existence-uniqueness theorems. We now prove analogues of yon

Neumann’s and Halmos’ existence-uniqueness theorems for the class of normal
actions and extensions. An essential step is the following general result about
cocycles into compact groups.

THEOREM 6.1. Let K L be compact groups o, fl" Y x G K minimal
cocycles with K Ka K. Suppose that and fl are equivalent as cocycles
into L. Then there is a continuous automorphism a of K such that a and fl
are equivalent as cocycles into K.

Proof Let " Y L be a Borel function such that for each g and almost
all y, (y)(y, g)dp(yg)- fl(y, g), i.e.,

(*) fl(y, g)-’(y)0(y, g) (yg).

Now K K acts on L by l- (k, k2) k-lk2 Since the action is continuous
and K K is compact, the space of orbits in L under K K is a standard
Borel space . Let p’L f be the natural (Borel) map. Since a(y,g),
fl(y, g) e K, equation (*) implies that for each g, p((y)) p((yg)) for almost
all y. By the ergodicity of G on Y, p is constant on a conull Borel set Yo.
Choose a point lo in the orbit p(c(Yo)). Then [13, Lemma 1.1], there exists a
Borel map

(k,, k). p(o) - K K

such that for any e p(lo), ka(l)-lok2(l). Now k b, kz b" Yo K are
Borel functions, and can be extended to Borel functions b, q2" Y K. Thus,
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for any y 6 Yo, b(y) dp1(y)-lloq2(y). From (*), we have for all g 6 G and
y Yo c Yog -1,

(Y)- lodP2(Y)x(Y, #)2(YY)-llff lbl(Y#) fl(Y, #).

With 2(Y, g) tk2(y)a(y, g)q52(yg)-1, this becomes

(**) lo2(y g)ll dpl(y)fl(y g)dpl(yg)- 1.

Now is a minimal cocycle with K K, and since 2 is equivalent to , we
also have K2 K. Consider Ko {k K lloklff K}. Then Ko is a closed
subgroup of K, and by (**), 2(Y, g) 6 Ko for each g and almost all y. Changing
2 on a suitable null set, we see that 2 is equivalent to a cocycle with all values
in Ko, and since is minimal, Ko K. Let tr be the automorphism ofK defined
by a(k) loklff 1. Letting o(Y) O’((])2(Y)), we have o(Y) 6 K for all y, and
from (**), for each g 6 G,

Co(Y)(’ )(Y, g)o(Yg) -1 (])l(Y)fl(Y,g)l(Yg) -1

for almost all y. This completes the proof.
We now apply this result to prove the uniqueness theorem.

THEOREM 6.2 (Uniqueness Theorem). Suppose X1 and X: are normal ergodic
extensions of Y with relatively discrete spectrum. If the corresponding natural
(Y, G) cocycle representations are equivalent, then X and X2 are essentially
isomorphic extensions of Y.

Remark. In the case G Z and Y {e}, this is just the von Neumann-
Halmos uniqueness theorem.

Proof By the Structure Theorem (4.3), and Theorem 5.7, we can write Xi
Y , Ki, where are minimal cocycles with K, K. Let ni be the right reg-
ular representation of Ki, St the dual object of K, and form the canonical
decompositions

L2(K1) E Ha, L2(K2)-" E Hr"
aS rS2

The hypothesis of the theorem is that 1 1 and 72 (Z2 are unitarily equivalent.
By Theorem 3.14, for each a e $1, a 1 will be equivalent to exactly one
z 2, z $2. Then it is easy to see that the equivalence of the cocycle represen-
tations n x and 2 2 can be implemented by a Borel field of unitary
operators U(y)" LE(K) LE(K2) such that for a, z related as above, U(y)(It)=
H for all y Y. Fix an operator U" LE(K1) - LE(K2) such that U(H) H.
Let

fl(y, g) Urcll(y g)U-1,
and let

K {T U(L2(K:))I T(H,) H, for allzS2}.
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Then Kis a compact group and fl is a cocycle with values in K. Since U(y)U -1

K for all y, it follows that fl is equivalent as a cocycle into K, to 2 2. Since

1 is minimal with K,1 K1, it follows from Proposition 3.10 and Theorem 3.9
that fl is also minimal and K Urcl(K1)U-1. As z2 2 is also minimal with

K2o r2(K2), Corollary 3.8 implies that there exists W e K such that

WUTrl(KI)U- 1W rcz(Kz).

Let dp" K1 --* Kz be defined by b(k) rc (WUrcl(k)U- W 1). It is clear
that b is an isomorphism (since 7ri are). Let o" Y G -o K2 be the cocycle
o b 1. Clearly Y o K2 and Y ,, K1 are essentially isomorphic
extensions of Y. Thus, to prove the theorem it suffices to show that Y ,oKz
and Y ,2 K2 are essentially isomorphic extensions. Now for all 9,

WUU(y)-(7r2 z)(y, g)U(yg)U -1W -1 (re2 o)(Y, g)

for almost all y. As remarked above, U. U(y)- K for all y, and hence

rz o and rz 2 are equivalent as cocycles into K. Since both of these co-
cycles take values in rz(Kz) K, by Theorem 6.1 there exists a continuous
automorphism r of rc2(Kz) such that r rc2 o and zz are cohomologous
as cocycles into rcz(Kz). Since zcz is an isomorphism, there exists a continuous
automorphism / of Kz such that /o 0 and z are cohomologous. Thus
Y x Kz and Y oo Kz are essentially isomorphic extensions of Y, and the
latter is clearly essentially isomorphic to the extension Y o Kz. By the re-
marks above, this completes the proof.

COROLLARY 6.3. For an ergodic G-space Y, let S be the set of equivalence
classes of one-dimensional cocycle representations. Then S is a 9roup under the
operation of tensor product. IfX is an extension of Y with relatively elementary
spectrum over Y, let Sx be the subset of S consisting of cocycles appearing in the
decomposition of the natural (Y, G) cocycle representation on the Hilbert bundle
U(X). Then Sx is a countable subgroup of S. IfZ is another extension of Y with
relatively elementary spectrum, then X and Z are essentially isomorphic extensions

of Y if and only if Sx Sz.

Proof By Corollary 4.6, we can take X Y , K, K compact, abelian.
The natural (Y, G) cocycle representation, fl, on LZ(X) is just rro , where rc is
the right regular representation of K. Thus,

zoo,
zK*

and by Theorem 3.14, Sx is a group isomorphic to {Z IZ K*}. The last
assertion follows from Corollary 5.9 and Theorem 6.2.

Remarks. (i) Since Sx is isomorphic to (Z [Z K*}- K*, we can
identify the group K in Corollary 4.6 as S. When G Z, and Y (e}, this
is a well-known fact in the von Neumann-Halmos theory.



408 ROBERT J. ZIMMER

(ii) By Frobenius reciprocity (Theorem 2.10), a one-dimensional cocycle
representation , of (Y, G) will be a subcocycle representation of the natural
induced cocycle representation fl defined by the extension X, if and only if the
restriction of ,] to X (Example 2.7) is equivalent to the identity. Thus, Sx can
be identified as the group

{y S Ires (y) is the class of the identity cocycle of (X, G)}.

We now proceed to the existence theorem.

THEOREM 6.4. Let Y be an ergodic Lebesgue G-space and let S
be a countable set of equivalence classes offinite dimensional irreducible cocycle
representations of(Y, G) where I is some countable index set. Suppose S satisfies:

(i) If a S then e S.
(ii) If a, fl S then every irreducible component of (R) fl is in S.

Then there exists a normal ergodic extension X of Y with relatively discrete
spectrum over Y such that the natural (Y, G) cocycle representation on LE(x) is
equivalent tos (dim ).

Proof Let J be a sequence of elements from I such that each e I appears
in J dim () times. For each j J, we have

: Y x - U(H;)

where Hi is a finite dimensional Hilbert space. Let H Hi and

J ai- Let K {T U(H)[ T(Hi) H for all j} with the weak operator
topology. Then Kis a compact group and " Y G K. Let fl" Y G K
be an equivalent minimal cocycle (Corollary 3.8), and for eachj, hi: K U(Hi)
the map obtained by restricting elements of K to Hi. It is easy to see that

ni fl is equivalent to i, and hence is irreducible. It follows that for each j,

nj is an irreducible representation of K. Let S’ {[nj]}ica =/a (the dual
object of K). It is straightforward to see that S’ satisfies properties (i) and (ii)
as well as S. Since the representation j ni is faithful, we have S’ =/ by
[8, Theorem 27.39]. It follows from Theorem 3.14, the construction of J, and
the Peter-Weyl theorem, that Y’. j ni is unitarily equivalent to the right regular
representation, n, of K. Let X Y x Kt. Then the natural (Y, G) cocycle
representation is n fl, which is equivalent to

jJ jJ

By the choice of J, this is equivalent to the theorem.

COROLLARY 6.5. Let Y be an ergodic G-space and S the group described in
Corollary 6.3. Let S’ S be a countable subgroup. Then there exists an ergodic
extension X of Y with relatively elementary spectrum over Y such that Sx S’.
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