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N-PROJECTIVE SPACES
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CHARLES W. NEVILLE AND STUART P. LLOYD

1. Introduction

By a space we shall always mean a compact Hausdorff space, a map shall
always be a continuous map between spaces, and a diagram shall always be a
commutative diagram of spaces and maps. A space X is projective if the follow-
ing lifting property holds. Given spaces Y and Z and maps q:X Z and
f: Y Z withfonto, there exists a map q: X Y satisfying q f ft. In other
words, a solution q exists in any diagram

We call q a lifting of 4) overf A well known theorem of Gleason characterizes
the projective spaces as the extremally disconnected spaces [5][2, p. 51]. A
space is extremally disconnected if open sets have open closures.
The weight wt (X) of a space X is the least cardinal of a base of open sets. Let

N be an infinite cardinal. We shall say that a space X is N-projective if a
solution q exists in diagram (1) whenever the additional condition wt (Y) < N
is satisfied. Since f is onto, wt (Z) < N is also implied; but note that wt (X) is
not mentioned. The purpose of this paper is to give the following characteriza-
tion of N-projective spaces.

THEOREM 1. For N > No, a compact Hausdorff space X is N-projective iff it
is a totally disconnected Fs-space.

The following definitions are more or less standard; we follow the conven-
tions of [2]. A cozero set in a space is the complement of the set of zeros of a
continuous real valued function, and a set is N-open if it is the union of fewer
than N cozero sets. A space is an F-space if any two disjoint N-open sets have
disjoint closures. An Fo-Space is called an F-space. An Nl-open set is a cozero
set, so an F-space is also an Fl-space. Any space X is N0-projective, and we
shall ignore this trivial case from now on.
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A space is totally disconnected if it has an open base of clopen, i.e., closed
open, sets. There are F-spaces which are not totally disconnected, which are in
fact connected [4, p. 211]! There are also totally disconnected F s-spaces which
are not N;-extremally disconnected; examples will appear later. (A space is
N-extremally disconnected if N-open sets have open closures.) Hence Theorem
1 implies that there are N-projective spaces X which are not projective. Such a
space must have wt (X) _> N. This follows from general facts about spaces [5,
Theorem 1.2], but it also follows from Theorem and the following observa-
tion: an Fs-space of wt < N is extremally disconnected, since every open set is
N-open. The same observation also shows that Gleason’s characterization of
projective spaces is a consequence of Theorem 1.

In addition, we shall investigate a stronger projectivity associated with the
cardinal N. We shall say that space X is strongly N-projective if q exists in
diagram (1) whenever the weaker condition wt (Z) < N is satisfied. Our main
results in this direction are Theorems 2 and 3.

THEOREM 2. Assume GCH, the 9eneralized continuum hypothesis at N, that
N + 2. Then every N +-projective space is strongly N +-projective.

We regard an infinite cardinal N as an initial ordinal and also as a discrete set
of cardinality N. We identify the Stone-tech compactification fiN; of the
discrete set N; as the space of ultrafilters on N;. A free ultrafilter p e fiN; N; is
uniform if it contains the generalized Fr6chet filter, i.e., if {A N: N
A < } p. The cofinality cf (N;) of N; is the least cardinal N’ such that N; is the
sum of N;’ cardinals smaller than N;.

THEOREM 3. The space A of uniform ultrafilters in fiN;- N is strongly
+-projective for 1 cf (N).

Nothing of GCH is involved in Theorem 3. It is known that A is not ex-
tremally disconnected, so A provides an example of a strongly l+-projective
space which is not projective. In particular, the totally disconnected F-space
fiN;0 N;0 (otherwise fin N) is strongly N; 1-projective, without CH, but is not
N;o-extremally (=basically) disconnected and so is not projective. Theorem 3,
together with Theorem 1, also provides an independent proof that A is a totally
disconnected Fz+-space [2, Theorem 14.9].

Finally, we shall show that the a-co-homogeneous a-co-universal spaces of
[2, pp. 132-133] provide further examples of strongly N-projective spaces
which are not projective. The main results of this paper were announced in [6].

2. Partial iiftings

Maps b andfbeing as in diagram (1), we define a partial lifting ofq overfto
be a triple (q, j, Y) satisfying the following diagram:
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(2)

j (onto)

Ya f{onto)
Note that withj onto, Y is a quotient space of Y, and that mapf is determined
when f and j are given.
We shall say that the partial lifting (q/a, J, Y) is subordinate to the partial

lifting (q, j, Y) if there exists a connecting map j j,: Ye such that
j je j and j q/e q/. That is, Y is a quotient space of Yt and q/ is a lifting
of over the quotient map j. Note that the map j is uniquely determined byj
and j, if it exists, and that f j =f. We omit the diagram.
By a minimal map f: Y Z we mean an onto map with the property that

f(K) 4: Z for any closed proper subset K of Y. It will be convenient to assume
that map f in diagram (2) is minimal. We shall assume further that space Y is
totally disconnected. These assumptions are in force until they are dropped in
Section 4. When f is minimal then j, andf in diagram (2) are each necessarily
minimal. Moreover, if (q, j,, Y,) is subordinate to (q/a, J, Y) then the connec-
ting map j: Y Y is also minimal.
The proof of Theorem 1 depends on the following basic result. The cardinal

N > No is specified.

LEMMA 1. (Construction Lemma). In diagram (2) let X be a totally discon-
nected F-space, let Y be totally disconnected, let f be minimal, and suppose
wt (Y) < bt. Let E be a clopen subset of Y. Then (, j, Y) is subordinate to a
partial liftin9 (tt, Jt, Y) where Yt is the free union of copies of j(E) and
j,(r- E), with wt (Ya)< N.

The proof of Lemma 1 involves a certain isomorphism property of minimal
maps. Recall that a closed set is regular if it is the closure of its interior, and an
open set is regular if it is the interior of its closure.

LEMMA 2. Let 9: V W be a minimal map ofspaces. Suppose Vx, V2 V are
regular closed sets whose interiors are disjoint. Then 9(V1), 9(V2)are regular
closed sets whose interiors are disjoint.

Proof of Lemma 2. This is immediate from [1, Lemma 6]. |

Proof of Lemma 1. Let V E, V2 Y E, let W j(V), 1, 2, and let
be the free union of copies of W1 and W2. To construct q l we first produce a

clopen partition X1 w X2 of X such that qt(Xi) = W, 1, 2.

Recall that map j is necessarily minimal. The clopen sets V1 and V2 are
regular, so from Lemma 2, W and W2 are regular closed subsets of Y, such that
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Int W1 and Int W2 in Y are disjoint. These interiors are N-open, because
wt (Y) < N. Thus q-l(Int W), 1, 2, are disjoint N-open sets in X. But X is
an Fs-space, so C1 q- l(Int W), 1, 2, are disjoint compact sets in X. Since X
is totally disconnected, a clopen covering argument shows that there exists a
clopen partition X1 w X2 of X such that C1 q- l(Int W) Xi, 1, 2.
Now, Int W1 and Int W2 are disjoint regular open sets whose union is dense

in Y,, and from general properties of regular sets we know that V Y-
Int W3-i, i= 1, 2. Since X q-(Int W3-i)=0, i= 1, 2, we see that
X [t l(W/), i- 1, 2. Thus [lx(Xi) W/, i-- 1, 2, as required.
Maps qa, ja andfa will be defined by an abuse of language, to avoid prolifera-

tion of notation. Recall that Y is the free union of copies of W1 and W2. Define
qa: X Y piecewise to be a copy of ,: X W on X and a copy of
q: X2 W2 on X2. The function qa is continuous, since X w X2 is a clopen
partition. Similarly, define ja to be j on V1 and to be j on V2. Let j be the
inclusion maps on the copies of W1 and W2 which comprise Ya, and let ft be f,
on W and on W2. These functions are also continuous. Clearly, j =j ja,
q =j qa, andf=fa ja. Observe that the construction remains valid, albeit
trivial, ifj,(E) is clopen in Y,. In this event, W1 w W2 is a clopen partition of Y,,
Y Y, j is the identity map, and j j, f =f, q q. |

3. A lifting lemma

Theorems 1 and 2 will follow rather quickly from the following lifting lemma.
Recall that N is a regular cardinal if cf(N) N; that is, if the sum of fewer than
N cardinals smaller than N is smaller than N. The assumption N > N0 is still in
effect.

LEMMA 3. (Lifting Lemma). In diaoram (1) let X be a totally disconnected
F-space, let Y be totally disconnected, letfbe minimal, and let wt (Z) < N. Then
a solution exists if wt (Y)< N, or if wt (r) _< N and N is a regular cardinal.

Proof There exists a base of cardinality wt (Y) for the open sets of Y
consisting of clopen sets. Let {E,: < )} be a well ordering of such a clopen
base, with )= wt (Y)< N. For each fl < ) a partial lifting (qa, ja, Ya)is
determined by the following transfinite recursion. We say that a family of
partial liftings ((q,, j, Y): t < fl) forms a chain if (qo, ja, Y) is subordinate to
(, j, Y) whenever 6 < < fl _< 2.

(i) (qo, jo, Yo)= (q, f, Z). Obviously wt (Yo) < N.
(ii) If 0 </3 < is a successor ordinal, say fl + 1, if ((q6, j6, Y6): 6 < fl)

forms a chain, and if wt (Y) < N, then (qa, j, Ya) is obtained by applying the
construction lemma, Lemma 1, to (q, j, Y) and E E,. Then ((q6, j6,
Y6): 6 < fl + 1) forms a chain, with wt (Y) < N.

(iii) If 0 </ _< a is a limit ordinal and ((q, j,, Y): t </3) forms a chain,
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then the inverse limit Y li,__m (Y, j)exists. For each </3, Y comes equipped
with a canonical projection map ja: Y Y such thatja j, ja whenever
< . From the universal mapping property of inverse limits, there exist maps

ja: Y Y and pa: X Y such that ja ja j andjao qa q for all </3.
Map ja is onto and hence minimal, because ja() is compact and dense in Ya [3,
p. 430]. It follows that (($,j, Y): </ + 1) forms a chain. The weight condi-
tion of the induction is clearly satisfied when < N:. In the case where N and
N is regular, let for < fl be a base of Y, of cardinality I wt (Y) < N.
Then {j-al(3,): all </3} is a base of Ya. Evidently wt (Ya) < N; when/3 < N,
because N is regular and wt (Ya) < , {wt (Y,): < fl} does not exceed the sum
of fewer than N cardinals smaller than N.
When fl 1, at the end of the induction, each clopen set E, of the base for Y

appears in the form E j I(j(E,)), o < fl, from which it is straightforward
that ja: Y Y is a homeomorphism. The end map q j- fits: X Y is the
lifting sought. |

4. Proof of Theorem 1

() The hard work has already been done in Lemmas 1 and 3, and we need
only to reduce the general situation to that covered in Lemma 3. So consider
diagram (1) with X a totally disconnected F-space and wt (Y) < N. Now, Y is
the continuous image of a totally disconnected space Y1 such that wt (Y1)
wt (Y) [2, Corollary 2.38]. A simple Zorn’s Lemma argument due to Gleason
[5] shows that any onto map has a minimal restriction. Also, a subspace of a
totally disconnected space is again totally disconnected. It is straightforward
from this combination of remarks that we can reduce to the case where Y is
totally disconnected and f is minimal; we omit the diagram. By Lemma 3, the
required lifting exists.
() Suppose X is an N-projective space. Let U and V be disjoint N-open sets

in X. We shall prove there exists a clopen partition X1 X2 of X with
U c X 1, V X 2. This will prove that the space X is totally disconnected, and
moreover, an F,-space.

Write U (Us: 0{ A)and V (V: A), where each Uand each
V is a cozero set and the index set has cardinality A[ < N. For each there
exists a map b: X [- 1, 1] such that U {{p < 0} and V {b > 0}. Take
the space Z to be Z 1-IA [--1, 1], and take the map {]}:X Z to be
{p(x)- ({p(x): A), x X. Let

= 1-I[-1,0] and Y2= FI[0, 1],
7A A

and let Y Y1 w Y2 as a free union. Define the map: Y Z by an abuse of
language to be the inclusion map on Y1 and the inclusion map on 2.
We wish to use the N-projectivity of X to obtain a lifting if: X Y. Clearly

wt (Y) < N, but the mapfis not onto. However, we shall show thatfis onto the
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range of 4), which is all that is essential. Now,

U {x X: b(x) < 0 for some e A}
and

V {x X: b(x)> 0 for some A}.
These sets are disjoint, so

UcX- V={xX:qb(x)<0forallA},

VeX- U={xeX:4=(x)>0foralleA},
X-(Uw V)={xeX:4(x)=0foralleA}.

It follows thatf(Y) q(X), so a lifting : X + Y of q overfdoes exist.
It is apparent that 4(U) c Z -f(Y2), and since q(U) =f(q(U)), it must be

the case that q(U) c Y1 in the same way, q(V) c Y2. Since Y1 w Y2 is a clopen
partition and q is continuous, Xi - l(y), 1, 2, is a clopen partition with
the property U c X1, V c X2. |

5. Proof of Theorem 2

We drop the restriction N > No, so from now on N denotes any infinite
cardinal. The case N No will often be trivial, however, since any space X is
strongly No-projective. The following simple lemma will facilitate the proof of
Theorem 2. Denote the Gleason minimal projective cover of Z by gZ, and
denote the associated minimal map by rt: gZ Z [5].

LEMMA 4. The space X is strongly N-projective iff a diagram

(3)

has a solution 91 whenever wt (Z) < N.

Proof (,=) In the augmentation of diagram (1)

q’
Y

(on o)

the map ql exists by hypothesis, and q exists by projectivity of gZ. The map
q =q ql is the required lifting of q over f
() This part is vacuous. |
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The next lemma is an easy consequence of Lemma 4. However, we shall not
need it, so we offer it without proof.

LEMMA 5. The space X is strongly N-projective iff it has the followin9
property. For each onto map d? X Z with wt (Z) < N, and each minimal res-
triction cD x z of, the domain X is homeomorphic to 9Z and is a retract

of X under a tiftin9 of c]) over d?. |

Proof of Theorem 2. Let X be N +-projective. By Theorem 1, X is a totally
disconnected Fs+-space. Let Z be a space with wt (Z) < N +, i.e., wt (Z) < N.
The space 9Z can be realized as the Stone space of the complete Boolean
algebra (/reg(z)of regular open subsets of Z [5]. Thus wt (gZ) [(/reg(z)] <[ 2.
By GCHs, 2 N + so wt (gZ) _< N+. As a successor cardinal, N + is regular. In
diagram (3) we apply Lemma 3, the lifting lemma, to find that the solution q
of diagram (3) exists. By Lemma 4, X is strongly N+-projective. |

GCH is essential to this method of proof because it can happen that
wt (gZ)= 2s. For example, if Z is the one point compactification of the
discrete set N then wt (Z) N and wt (9Z) 2s, because 9Z fiN: has weight
wt (fiN)= I(iN)l 2s. It is an open question as to whether GCHs is an
essential hypothesis in Theorem 2.
The problem of constructing N-projective covers for spaces is in general

open. However, if Z is a space with wt (X) < N, it is easy to see that 9Z is the
strongly-N-projective cover of Z. For, any onto map 4: X Z from a strongly
N-projective space X factors through 9Z, by Lemma 4. Similarly, if GCH is
assumed, then the proof of Theorem 2 shows that 9Z is the N +-projective cover
of any space Z for which wt (Z) < N +.

6. Proof of Theorem 3

We divide the proof into several lemmas. Let N be fixed, and let A and
cf (N) be as in the statement of Theorem 3.

LEMMA 6. Suppose A has the property that each map dp" A Z with
wt(Z)<l+ can be extended to a map (b’flNZ. Then A is strongly
il + -projective.

Proof In diagram (1) assume that X A and that wt (Z) < l+, and con-
sider the augmented diagram
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where is the inclusion map. The map q exists by hypothesis. With given, the
map r/exists because fin is projective. The solution q is then ff r/o t. |

We shall construct the extension by a transfinite recursion similar to the
one employed in the proof of Lemma 3. With 4)" A ---, Z given, a partial exten-
sion (, j, Z) is defined to be a triple satisfying the diagram

(4) (onto).

We remark that Z is a quotient space of Z, that b, j, b is determined byj,,
and that 4, is an actual extension of ,. We shall assume for the time being that
Z and Z, are totally disconnected.
We shall say that (, j, Z)is subordinate to a partial extension (,j, Z)

if there exists a (necessarily unique) connecting map ja" Za--, Z such that
j,a j j, and ja a ,. We omit the diagram.

LEMMA 7. In diagram (4) let Z and Z, be totally disconnected, with
wt (Z) < "1. Let E be a clopen subset of Z. Then (p,, j, Z) is subordinate to a
partial extension (pa, ja, Za) where Za is the free union of copies ofj(E) and
j(Z- E), with Za totally disconnected and wt (Za)< ’1.

A set is l-clopen if it can be expressed as the union of fewer than I clopen
sets. The proof of Lemma 7 will involve the following"

LEMMA 8. Suppose U is a -clopen set in fiN. Then

A Clas U Cla(A U).

Proof This is implicit in the proof of [2, Lemma 14.7]. |

Proof of Lemma 7. Let E E, E2 Z E, and let Za be the free union of
copies of j,(E1) and j(E2). The space Za is totally disconnected and
wt (Za) < , clearly. By an abuse of language, defineja" Z
to the piece j(Ei) of Za and define ja" Za Z to be the inclusion map of the
piece j(Ei), 1, 2. Evidently ja and ja are continuous, and j,a ja j. We
note that $ ja $t for
Now we define a partition H w H 2 A by Hi 4)-l(Ei), i= 1, 2. Also

Hi dp- (j#(Ei) because (ffl t#-i j- and j- l(j#(Ei) E,, 1, 2. To
determine the map a it will suffice to find a clopen partition W w W2 of fiN;
such that W D Hi and (W) c j(Ei), 1, 2. For then we may define a by
abuse of language to be from W to the piece j(Ei) of Za, 1, 2. This
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function will be continuous, and ja 4a 4 It will also restrict to Sa on A,
since W A Hi, b(ni) j(Ei), i= 1, 2, and qa is piecewise a copy of q.

Let us now construct W and W2. The sets Z j(E3_ i), 1, 2, are disjoint
open sets in Z, so Ui p t(Z -j(E3_i)), 1, 2, are disjoint open sets in

fiN. Since fin is extremally disconnected, V Clas Ui, i= 1, 2, are disjoint
clopen sets. If a exists it necessarily maps V into jaEi, so we must have
W/ V, 1, 2.
On the other hand, W A Hi is also required. Let us show next that

V A Hi, 1, 2. The set Ui is l-clopen, since wt (Z) < 1. By Lemma 8,
V/ A Cla (Ui A), 1, 2. We use the fact that restricts to q, to find

U (’h A-’- A t-I(Z-j(E3_i) -- ’(Z--j(E3_i)

A (-l(j- l(ja(E3_i)) c Hi,

we have also used p- b- j- . Since Hi is closed,

i=1,2;

V/ A=Cla(Ui A) cHi, i=1,2.

The rest of fiN; is easily disposed of. Let M w M2 be any clopen partition of
fin such that Hi M c A, l, 2. Such a partition exists because each clopen
subset of A is of the form M c A for some clopen M fin [2, Lemma 7.12]. Let

W--Vw {[fiN-(Vx w I/2)[ Mi}, i-1,2.

Clearly, W w W2 is a clopen partition of fin satisfying W A H i, 1, 2.
But then W/ A Hi, 1, 2, because H w H2 is a partition. From

[flN -(V w V2)] j(E,) j(E)

it follows that t(W) j(Ei), i= 1, 2, as required. |

Proof of Theorem 3. Let " A Z be a map such that wt (Z) < 1+. We
wish to extend q to a map " fin Z. By [2, Lemma 2.37] there exist a totally
disconnected space T with wt (T) < wt (Z), and maps a" A T and 0" T Z,
such that 4 0 a; we omit the diagram. Thus we may assume without loss of
generality that Z is totally disconnected. Now construct by the same trans-
finite recursion used to prove Lemma 3, except for the following details" partial
extensions replace partial liftings, Lemma 7 replaces Lemma 1, Z0 is a sing-
leton, an inverse limit of totally disconnected spaces is totally disconnected,
and the cardinal 1 cf(N) is necessarily regular. By Lemma 6, A is strongly
l+-projective. |

According to Lemma 5, any minimal restriction of an onto such b: A Z
necessarily has a copy of 9Z A as domain, and this domain is a retract in A
which respects 4. This is a refinement of [2, Lemma 7.14], at least when N is a
regular cardinal.
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7. Another example

The a-co-universal a-co-homogeneous spaces of [2, pp. 132-133] provide
further examples of strongly N-projective spaces which are not projective. If is
an infinite cardinal, denotes the cardinal sum {: 2 < }.

THEOREM 4. Let > No be such that , so that the -co-universal -co-
hogeneous space exists (for continuous ps ofcompact Hausdorffspaces).
Space is strongly -projective, but not projective.

Proof Let :, Z be an onto map with wt (Z) < . Let : 9Z Z be
the minimal projective covering of Z. The remaining maps in the diagram

o gZ

are determined as follows. The map 0 exists because is e-co-universal and
wt (Z) N 2 N e . Next, ’ is defined by ’ 0. Now the map h exists
satisfying ’ h, because is -co-homogeneous and wt (Z) < e. Finally,
the lifting 0 of over is determined as 0 0 h. By Lemma 4, is strongly
e-projective. It follows from [2, Lemma 6.3, 6.5] that is not N0-extremally
disconnected. I
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