1. Introduction

(1.1) Background. Let \(k \) be an algebraically closed field and let \(V \) be a finite-dimensional vector space over \(k \). Let \(G \) be a reductive algebraic subgroup of \(GL(V) \).

Let \(k[V] \) be the algebra of regular functions on \(V \). The group \(G \) acts on \(k[V] \) as follows:

\[
(g \cdot f)(v) = f(g^{-1}v)
\]

for all \(f \in k[V] \), \(g \in G \), and \(v \in V \). The ring of \(G \)-invariant functions on \(V \) is

\[
k[V]^G = \{ f \in k[V] : g \cdot f = f \text{ for all } g \in G \}.
\]

We define an algebraic subvariety \(X \) of \(V \) by

\[
X = \{ v \in V : f(v) = 0 \text{ for each non-constant homogeneous } f \in k[V]^G \}.
\]

A point in \(V \), not in \(X \), is called semi-stable.

In order to describe the points in \(X \), it is useful to introduce the concept of an orbit. Let \(v \) be in \(V \). The orbit of \(v \) with respect to the action of \(G \) is

\[
G \cdot v = \{ g \cdot v : g \in G \}
\]

The Zariski-closure of \(G \cdot v \) will be denoted by \(\text{cl}(G \cdot v) \).

Theorem. Let \(G \) be a connected reductive algebraic subgroup of \(GL(V) \). Let \(v \in V \). The following statements are equivalent:

(a) \(v \) is not semi-stable;
(b) \(0 \in \text{cl}(G \cdot v) \);
(c) there is a one-parameter subgroup \(\lambda \) of \(G \) so that \(\lambda(\alpha) \cdot v \to 0 \) as \(\alpha \to 0 \).

The notation in (c) will be explained in (2.1). The equivalence of (a), (b), and (c) is proved in [10; Sections 1 and 2] taking into account [5].

(1.2) Summary of results. The purpose of this paper is to prove some results aimed at explicitly describing the set \(X \). The basic theorem is proved in (2.2). As consequences of this theorem, the following corollaries are proved in (2.3) and (3.2).
(1) Let G be a connected reductive algebraic subgroup of $GL(V)$ and let $B = TU$ be a Borel subgroup of G. Let v_0 be a point in V which is not semi-stable. Then there is a one-parameter subgroup $\lambda_0: \mathbb{G}_m \to B$ such that $\lambda_0(\alpha)v_0 \to 0$ as $\alpha \to 0$.

(2) Let G and B be as in (1). There exist subspaces W_1, \ldots, W_r of V such that the following statements hold:

(a) each W_i is B-invariant;
(b) $X = G \cdot W_1 \cup \cdots \cup G \cdot W_r$;
(c) each $G \cdot W_i$ is closed.

(3) Let G be as in (1) and suppose that G acts irreducibly on V. Let $v_0 \in V$ be a point which is not semi-stable. Then the highest weight vector of G is in $\text{cl}(G \cdot v_0)$.

(1.3) Existence of semi-stable points. Semi-stable points exist and form an open set if $\dim V > \dim G$ and G is semisimple. This fact follows from several well-known theorems but does not seem to have been stated before. We give the proof now.

Theorem. Let G be a connected semisimple algebraic subgroup of $GL(V)$. Let

$$m = \max \{\dim (G \cdot v): v \in V\}.$$

If $\dim V > m$, then $V - X$ is not empty.

Proof. Let $k(V)$ be the field of rational functions on V. The group G acts on $k(V)$ via

$$(g \cdot f)(v) = f(g^{-1}v)$$

for all $f \in k(V)$, $g \in G$, and $v \in V$. Let

$$k(V)^G = \{f \in k(V): g \cdot f = f \text{ for all } g \in G\}.$$

We begin by showing that $k(V)^G$ is the quotient field of $k[V]^G$. Let $f = a/b$ be in $k(V)^G$ where $a, b \in k[V]$. Let $a = p_1 \cdots p_r$ and $b = q_1 \cdots q_s$ be the factorizations of a and b into prime elements where we shall assume a and b have no common factors. There is a finite-dimensional subspace E of $k[V]$ which is G-invariant and contains each p_i and q_j [6; Proposition, p. 62]. For $h \in k[V]$, let

$$\langle h \rangle = \{ch: c \in k\}.$$

Now since $g \cdot f = f$, we see that $(gb)a = (ga)b$. Since a and b have no common factors, each gp_i is a multiple of some p_j. Thus G permutes $\langle p_1 \rangle \cdots \langle p_r \rangle$. Since G is connected, $G\langle p_i \rangle = \langle p_i \rangle$ for all $i = 1, \ldots, r$. Hence, there are constants $c_g \in k$ satisfying

$$g \cdot p_i = c_gp_i$$

for all $g \in G$.

The map \(g \to c_g \) is a character of \(G \). But \(G \) is semisimple so each character is trivial. Therefore, \(g \cdot p_i = p_i \) for all \(g \in G \) and \(G \) fixes \(a \). It follows that \(G \) fixes \(b \).

Next, let \(m = \max \{ \dim G \cdot v : v \in V \} \). According to a theorem of M. Rosenlicht [8; pp. 406–407], \(\dim k(V)^G = \dim V - m \). If \(\dim V > m \), then \(\dim k(V)^G > 0 \). By what was proved above, there are non-constant functions in \(k[V]^G \) and, so, \(X \neq V \).

2. The theorem and its corollaries

(2.1) Preliminaries. We begin this section by recalling some notation and definitions along with some of the concepts in [7].

(1) A one-parameter subgroup \(\lambda \) of an algebraic group \(G \) is a homomorphism \(\lambda : G_m \to G \) (where \(G_m \) is the multiplicative group \(k^* = k - \{0\} \)).

Let \(f : G_m \to X \) be a morphism of algebraic varieties. If \(f \) extends to a morphism \(f_0 : G \to X \), then \(y = f_0(0) \) is called the specialization of \(f(\alpha) \) as \(\alpha \) specializes to 0. We shall denote this by \(f(\alpha) \to y \) as \(\alpha \to 0 \).

(2) Let \(\lambda : G_m \to GL(V) \) be a one-parameter subgroup. There is a basis \(v_1, \ldots, v_n \) of \(V \) and integers \(e_1, \ldots, e_n \) so that

\[
\lambda(\alpha)v_i = \alpha^{e_i}v_i
\]

for \(i = 1, \ldots, n \) [6; 16.1]. Let

\[
V(e_i) = \{ v \in V : \lambda(\alpha)v = \alpha^{e_i}v \}.
\]

Next, we define a subspace \(W(\lambda) \) of \(V \) by

\[
W(\lambda) = \{ v \in V : \lambda(\alpha)v \to 0 \text{ as } \alpha \to 0 \}.
\]

Then it is easily verified that \(W(\lambda) \) is the direct sum of those subspaces \(V(e_i) \) where \(e_i > 0 \).

(3) [10; Lemma 3.1]. Let \(G \) be a reductive algebraic group and let \(\lambda : G_m \to G \) be a one-parameter subgroup of \(G \). There is a unique algebraic subgroup \(P(\lambda) \) in \(G \) such that \(p \) is in \(P(\lambda) \) if and only if \(\lambda(\alpha)p\lambda(\alpha^{-1}) \) has a specialization in \(G \) when \(\alpha \) specializes to 0. Moreover, \(P(\lambda) \) is a parabolic subgroup of \(G \).

For \(g \in G \), let \(g\lambda g^{-1} \) denote the one-parameter subgroup of \(G \) defined by

\[
\alpha \to g\lambda(\alpha)g^{-1}.
\]

It is not hard to check that \(P(g\lambda g^{-1}) = gP(\lambda)g^{-1} \).

(4) Let \(G \) be a reductive algebraic group and let \(\rho : G \to GL(V) \) be a representation of \(G \). Let \(\lambda : G_m \to G \) be a one-parameter subgroup of \(G \). Let \(W(\lambda) \) and \(P(\lambda) \) be as (2) and (3). Then \(P(\lambda) \cdot W(\lambda) \subset W(\lambda) \).
Proof. Let $p \in P(\lambda)$ and $v \in W(\lambda)$. Then

$$\lambda(\alpha) pv = \lambda(\alpha) p \lambda(\alpha^{-1}) \lambda(\alpha) v \to 0 \quad \text{as} \quad \alpha \to 0.$$

(2.2) Theorem. Let G be a connected reductive algebraic subgroup of $GL(V)$. Let $B = TU$ be a Borel subgroup of G and let $W(T) = N(T)/T$ be the Weyl group of T. Let v_0 be a point in V which is not semi-stable. There is a one-parameter subgroup $\lambda : G_m \to T$ such that the following statements hold:

(a) $B \subset P(\lambda)$, i.e., if μ is a root of B relative to T, then $\langle \mu, \lambda \rangle \geq 0$;

(b) $B \cdot W(\lambda) \subseteq W(\lambda)$;

(c) there are elements $u \in U$, $sT \in W(T)$ such that $v_0 = us \cdot W(\lambda)$.

Proof. According to statement (c) of the theorem in 1.1, there is a one-parameter subgroup λ_0 of G such that $v_0 \in W(\lambda_0)$. Let B_0 be a Borel subgroup in $P(\lambda_0)$ such that each $\lambda_0(\alpha)$ is in B_0. There is an element $g \in G$ such that $B = gB_0 g^{-1}$ and an element $b \in B$ so that

$$b(g\lambda_0(\alpha)g^{-1})b^{-1} \in T$$

for all $\alpha \in G_m$. Let $\lambda = (bg)\lambda_0(bg)^{-1}$.

To prove statement (a), we use preliminary (3) above to see that

$$P(\lambda) = (bg) P(\lambda_0)(bg)^{-1} = (bg) B_0 (bg)^{-1} = B.$$

Also, we recall that there is an isomorphism e from G_a into G such that for all $t \in T, x \in G_a$, we have

$$te_{\mu}(x)t^{-1} = e_{\mu}(\mu(t)x) \quad \text{[6; Theorem, p. 161]}.$$

Hence,

$$\lambda(\alpha)e_{\mu}(x)\lambda(\alpha^{-1}) = e_{\mu}(\alpha^t x)$$

where, by definition, $e = \langle \mu, \lambda \rangle$. We now apply (3) again to see that $\langle \mu, \lambda \rangle \geq 0$.

Statement (b) follows from (a) and preliminary (4). To prove (c), we first note that $W(\lambda) = bqW(\lambda_0)$ so that $v_0 \in G \cdot W(\lambda)$. Now, according to the Bruhat decomposition of G, we have $G \supseteq \bigcup UsB$ where sT ranges over all the distinct cosets of the Weyl group $W(T) = N(T)/T$. Hence,

$$G \cdot W(\lambda) = \bigcup UsB \cdot W(\lambda) = \bigcup Us \cdot W(\lambda)$$

according to (b). This proves (c).

(2.3) Consequences. Throughout this section, we shall denote by G a connected reductive algebraic subgroup of $GL(V)$ and by $B = TU$ a given Borel subgroup of G.

Corollary 1. Let v_0 be a point in V which is not semistable. There is a one-parameter subgroup $\lambda_0 : G_m \to B$ such that $\lambda_0(\alpha)v_0 \to 0$ as $\alpha \to 0$.
Proof. According to (2.2), there is a one-parameter subgroup \(\lambda : G_m \to T \) and elements \(u \in U, sT \in W(T) \) such that \(v_0 = us \cdot W(\lambda) \). Let
\[
\lambda_0(\alpha) = (us)\lambda(\alpha)(us)^{-1}
\]
for all \(\alpha \in G_m \). Then \(\lambda_0 \) is a one-parameter subgroup of \(B \) since
\[
\lambda_0(\alpha) = (us)\lambda(\alpha)(us)^{-1} \subset uTu^{-1} \subset B.
\]
Furthermore, \(\lambda_0(\alpha)v_0 \to 0 \) as \(\alpha \to 0 \). For if \(v_0 = us \cdot w \) with \(w \in W(\lambda) \), then
\[
\lambda_0(\alpha)v_0 = us\lambda(\alpha)s^{-1}u^{-1}usw = us\lambda(\alpha)w.
\]

Lemma. Let \(X \) be a closed subset of \(V \) and let \(P \) be a parabolic subgroup of \(G \). If \(P \cdot X \) is closed, then \(G \cdot X \) is closed.

Proof. Let \(P \) act on the right on \(G \times V \) by \((g, v) \cdot p = (gp, v) \). The quotient variety \((G \times V)/P \) exists and is \((G/P) \times V \) [4; 6.6, Corollary]. Let
\[
\pi : G \times V \to (G/P) \times V
\]
be the quotient morphism. Then \(\pi \) is open. Let
\[
A = \{(g, v) \in G \times V : g^{-1}v \in P \cdot X\}
\]
Since \(A \) is the inverse image of \(P \cdot X \) under the morphism \(G \times V \to V \) defined by \((g, v) \to g^{-1}v \), we see that \(A \) is closed. It is easily verified that \(\pi^{-1}(\pi(A)) = A \) and, so, \(\pi(A) \) is closed in \((G/P) \times V \) (since \(\pi \) is open). Now \(G/P \) is complete so the image \(G \cdot X \) of \(\pi(A) \) under the projection map \((G/P) \times V \to V \) is closed in \(V \).

Note. The proof above is a slight extension of one in [3; Lemma 6.3]. A short "transcendental" proof can be given when \(K = C \). For then, \(G = KP \) where \(K \) is compact [11; Theorem 1, p. 102] and, so, \(G \cdot X = K \cdot (P \cdot X) \). But \(K \cdot (P \cdot X) \) is closed since compact transformation groups send closed sets to closed sets.

Corollary 2. Let \(X \) be the set of points in \(V \) which are not semi-stable. There are one-parameter subgroups \(\lambda_1, \ldots, \lambda_r \) of \(T \) such that the following statements hold:
(a) \(B \subset P(\lambda_i) \) and \(B \cdot W(\lambda_i) \subset W(\lambda_i) \) for all \(i = 1, \ldots, r \);
(b) each \(G \cdot W(\lambda_i) \) is closed;
(c) \(X = G \cdot W(\lambda_1) \cup \cdots \cup G \cdot W(\lambda_r) \) and this is the unique decomposition of \(X \) into irreducible components unless there exist \(i, j, i \neq j, sT \in W(T) \) such that \(W(\lambda_i) \subset s \cdot W(\lambda_j) \).

Proof. Let \(T \) have weights \(\chi_1, \ldots, \chi_n \) on \(V \) and let
\[
V(\chi) = \{v \in V : tv = \chi(t)v \quad \text{for all} \quad t \in T\}.
\]
Next let \(\lambda \) be a one-parameter subgroup of \(T \). Let \(\chi \) be one of the weights above and put \(e = \langle \chi, \lambda \rangle \). Then \(\lambda(\alpha)v = \alpha^e v \) for all \(v \in V(\chi) \). Therefore, \(V(\chi) \subset W(\lambda) \) if
and only if \(e > 0 \). It follows that there are (finitely many) one-parameter subgroups \(\lambda_1, \ldots, \lambda_r \) of \(T \) such that (i) \(B \subset P(\lambda_i) \) and (ii) if \(\lambda: G_m \to T \) is any one-parameter subgroup such that \(B \subset P(\lambda) \), then \(W(\lambda) = W(\lambda_i) \) for some \(i = 1, \ldots, r \).

Statements (a), (b), and (c) follow from the theorem and lemma above, except for the decomposition of \(X \).

Let us write \(W_i = W(\lambda_i) \) for \(i = 1, \ldots, r \). Now suppose that

\[
G \cdot W_i \subset G \cdot W_1 \cup \cdots \cup G \cdot W_{i-1} \cup G \cdot W_{i+1} \cup \cdots \cup G \cdot W_r.
\]

Since \(W_i \) is irreducible, there is a \(j \neq i \) so that \(W_i \subset G \cdot W_j \). Applying the Bruhat decomposition of \(G \), we now see that

\[
W_i \subset \cup UsB \cdot W_j = \cup UsW_j.
\]

But \(W_i \) is \(U \)-invariant so \(W_i \subset \cup sW_j \). Since \(W_i \) is irreducible, we obtain the desired result that \(W_i \subset s \cdot W_j \) for some \(sT \in W(T) \).

Corollary 3. Suppose that there is an element \(sT \) in the Weyl group of \(G \) so that \(s\chi = -\chi \) for all weights \(\chi \) of \(T \). Let \(X \) be the set of points in \(V \) which are not semi-stable. Then \(\dim X < \frac{1}{2} \dim V + \dim U \).

Proof. Let us use the notation for \(V(\chi) \) introduced in the proof of Corollary 2. Let \(\lambda_i: G_m \to T \) be as in Corollary 2. If \(\chi \) is a weight of \(T \) on \(V \) and if \(V(\chi) \subset W(\lambda_i) \), then \(V(\chi) \cap W(\lambda_i) = \{0\} \). Since \(s \cdot V(\chi) = V(-\chi) \), we have \(\dim V(\chi) = \dim V(-\chi) \). Thus \(\dim W(\lambda_i) \leq \frac{1}{2} \dim V \). The statement about \(\dim X \) now follows from the Bruhat decomposition of \(G \) and the fact that \(B \cdot W(\lambda_i) \) is contained in \(W(\lambda_i) \). For \(G \cdot W(\lambda_i) = \cup UsB \cdot W(\lambda_i) = \cup UsW(\lambda_i) \).

Notes. Let \(G \) be a simple algebraic group, not of type \(A_n, D_n \) \((n \text{ odd}) \), or \(E_6 \). Then there is an element \(sT \) in the Weyl group of \(G \) satisfying \(s\chi = -\chi \) for all weights \(\chi \) of \(T \) [11; p. 226].

(2.4) **Properly stable points.** Let \(G \) be a reductive algebraic subgroup of \(GL(V) \). A point \(v \) in \(V \) is called properly stable if the orbit \(G \cdot v \) is closed and has dimension equal to that of \(G \). A point \(v \) in \(V \) is not properly stable if and only if there is a one-parameter subgroup \(\lambda: G_m \to G \) such that \(\lambda(\alpha) \cdot v \) has a specialization in \(V \) as \(\alpha \) specializes to 0 [10; Section 2].

In case \(\text{char } k = 0 \), one may prove the following result analogous to the Theorem of (1.3): Let \(G \) be a connected semisimple algebraic group and let \(\rho: G \to GL(V) \) be a finite-dimensional representation of \(G \). There is an integer \(M \) so that if \(\dim V > M \), then the set of properly stable points in \(V \) contains a non-empty open set [12] and [1]—the first paper holds in any characteristic.

Let us assume \(\text{char } k \geq 0 \) and let \(\lambda: G_m \to G \) be a one-parameter subgroup of \(G \). Let

\[
W'(\lambda) = \{v \in V: \lambda(\alpha) \cdot v \text{ has a specialization in } V \text{ as } \alpha \to 0\}.
\]
Then we may show that $P(\lambda) \cdot W'(\lambda) \subseteq W'(\lambda)$ as in (2.1) and prove the following theorem and corollaries just as in (2.2) and (2.3).

Theorem. Let G be a connected reductive algebraic subgroup of $GL(V)$. Let $B = TU$ be a Borel subgroup of G and let $W(T) = N(T)/T$ be the Weyl group of T. Let v_0 be a point in V which is not properly stable. There is a one-parameter subgroup $\lambda : G_m \to T$ such that the following statements hold:

(a) $B \subseteq P(\lambda)$, i.e., if μ is a root of B relative to T, then $\langle \mu, \lambda \rangle \geq 0$;

(b) $B \cdot W'(\lambda) \subseteq W'(\lambda)$;

(c) there are elements $u \in U$, $sT \in W(T)$ such that $v_0 = us \cdot W'(\lambda)$.

Corollary 1. There is a one-parameter subgroup $\lambda_0 : G_m \to B$ such that $v_0 \in W'(\lambda_0)$.

Corollary 2. Let X' be the set of points in V which are not properly stable. There are one-parameter subgroups $\lambda_1, \ldots, \lambda_r$ of T such that the following statements hold:

(a) $B \subseteq P(\lambda_i)$ and $B \cdot W'(\lambda_i) \subseteq W'(\lambda_i)$ for all $i = 1, \ldots, r$;

(b) each $G \cdot W'(\lambda_i)$ is closed;

(c) $X' = G \cdot W'(\lambda_1) \cup \cdots \cup G \cdot W'(\lambda_r)$ and this is the unique decomposition of X' into irreducible components unless there exist $i, j, s \in T$ $W(T)$ such that $W'(\lambda_i) \supset s \cdot W'(\lambda_j)$.

3. Borel subgroups and semi-stable points

(3.1) **Theorem.** Let B be a connected solvable algebraic group acting on an affine variety X. Let $x \in X$ and $Z = cl(B \cdot x)$. Then either $B \cdot x$ is closed or there is an $f \in k[Z]$ such that

$$Z - B \cdot x = \{z \in Z : f(z) = 0\}.$$

In the latter case, there is an element c in k^* so that the mapping $\chi : B \to k$ given by $\chi(b) = cf(b \cdot x)$ is a character of B.

Proof. The group B operates on $k[Z]$ via $(b \cdot f)(z) = f(b^{-1} \cdot z)$ for all $f \in k[Z]$, $z \in Z$, and $b \in B$. Let I be the ideal in $k[Z]$ vanishing on $Z - B \cdot x$. Then I is B-invariant, i.e., $b \cdot I \subseteq I$ for all $b \in B$. Suppose now that $I \neq \{0\}$ and let f be any non-zero element in I. There is a finite-dimensional B-invariant subspace $E \subseteq I$ such that $f \in E$ [6; Proposition, p. 62]. By the Lie–Kolchin theorem, there is a non-zero common eigenvector h in E for B [6; 17.6, p. 113]. Let $b \cdot h = c_b h$. Then

$$h(b^{-1} \cdot x) = (b \cdot h)(x) = c_b h(x).$$

If $h(x) = 0$, then $h = 0$ on $B \cdot x$ and $h = 0$. Hence, $h(x) \neq 0$ and h is non-zero on $B \cdot x$. Since h is in I, h is 0 on $Z - B \cdot x$.

The mapping $b \mapsto h(b \cdot x)$ is non-zero on B and, so is a character of B if $h(e \cdot x) = 1$ [9; Proposition 3, p. 29]. Modifying h by a constant, we obtain the theorem.
Corollary (Kostant, Rosenlicht). Let U be a unipotent group acting on an affine variety X. For every $x \in X$, the orbit $U \cdot x$ is closed.

Proof. The corollary follows at once from the theorem since the only character of U is trivial.

Notes. The corollary above was first proved by B. Kostant. A shorter proof was found by M. Rosenlicht. Another proof was found by A. Borel [3; Theorem 12.1]. A modification of Borel's proof gives the theorem above.

(3.2) Theorem. Let G be a connected reductive algebraic subgroup of $GL(V)$ and let $B = TU$ be a Borel subgroup of G. Suppose that 0 is the only point in V fixed by G. Let v_0 be a non-zero vector in V which is not semi-stable. There is a non-zero vector $v \in cl(B \cdot v_0)$ such that $U \cdot v = v$.

Proof. According to Corollary 1 in Section 2.3, the point 0 is in $cl(B \cdot v_0)$. Let $w \in cl(B \cdot v_0)$ be chosen so that $B \cdot w$ has the smallest possible positive dimension. Then $cl(B \cdot w) - B \cdot w$ consists of points fixed by B. Since G/B is complete, each of these points is fixed by G. However, by our assumption, then, $cl(B \cdot w) - B \cdot w = \{0\}$. The theorem in (3.1) now implies that $dim(B \cdot w) = 1$.

Now U must fix w. For otherwise, $U \cdot w$ is a closed subset (by the corollary above) of $B \cdot w$ having dimension 1. This would imply that $U \cdot w = B \cdot w$ and $B \cdot w$ is closed.

Corollary. Let G be a connected reductive algebraic subgroup of $GL(V)$ which acts irreducibly on V. Let B be a Borel subgroup of G. Let v_0 be a non-zero vector in V which is not semi-stable. Then the highest weight vector of G on V (relative to B) is $cl(G \cdot v_0)$.

4. Examples

(4.1) The adjoint representation. Let G be a connected reductive algebraic group and let $L(G)$ denote the Lie algebra of G. Then G acts on $L(G)$ via the adjoint representation.

Let $B = T \cdot U$ be a Borel subgroup of G. Let $L(T)$, $L(U)$, and $L(B)$ be the Lie algebras of T, U, and B, respectively. We shall denote the roots of T acting on $L(U)$ by α, β, γ, Then there is a basis $\{e_\alpha\}$ of $L(U)$ so that $t \cdot e_\alpha = \alpha(t)e_\alpha$ for all $t \in T$.

Next, let W be a subspace of $L(G)$ which is B-invariant. If W contains e_β (where $e_\beta \in L(U)$), then $w = [e_\beta, e_\beta]$ is a non-zero element in W which is fixed by T.

Let $\lambda: G_m \rightarrow T$ be a one-parameter subgroup of T such that $W(\lambda)$ is B-invariant. Then $W(\lambda) \subset L(U)$ by the argument just given. Also, there is a one-parameter subgroup λ of T so that $\langle \lambda, \alpha \rangle > 0$ if $\alpha > 0$ [4; Theorem, p. 317]. For this one-parameter subgroup, we have $W(\lambda) = L(U)$ and $P(\lambda) = B$.
Finally, let X be the set of points in $L(G)$ which are not semi-stable. According to the remarks above and Corollary 2 in (2.3), we have

$$X = G \cdot L(U).$$

It is known that $G \cdot L(U)$ is precisely the set of nilpotent elements in $L(G)$. Hence, we obtain a result of B. Kostant: a point v in $L(G)$ is not semi-stable if and only if v is nilpotent.

(4.2) Certain actions of SL_n Let SL_n be the group of all $n \times n$ matrices with entries in k and having determinant 1. Let

$$T = \{ t = (t_{ij}) \in SL_n : t_{ij} = 0 \text{ for } i \neq j \}.$$

We shall denote a typical matrix $t = (t_{ij})$ in T by $t = [t_{11}, \ldots, t_{mn}]$. Let us define characters χ_1, \ldots, χ_n of T by

$$\chi_i(t_{11}, \ldots, t_{mn}) = t_{ii} \quad \text{for each } i = 1, \ldots, n$$

(so $\chi_1 + \cdots + \chi_n = 0$). Let

$$B = \{ (b_{ij}) \in SL_n : b_{ij} = 0 \text{ for } i > j \}.$$

Then B is a Borel subgroup with maximal torus T. A simple system of roots for T on B is $\{ \mu_1, \ldots, \mu_{n-1} \}$ where $\mu_i = \chi_i - \chi_{i+1}$. If λ is a one-parameter subgroup of T, then there are integers u_1, \ldots, u_n so that

$$\lambda(x) = [x^{u_1}, \ldots, x^{u_n}]$$

and $u_1 + \cdots + u_n = 0$. The subgroup B is contained in $P(\lambda)$ if and only if each $\langle \mu, \lambda \rangle \geq 0$, that is, if and only if

$$u_i \geq u_{i+1} \text{ for } i = 1, \ldots, n - 2 \quad \text{and} \quad 2u_{n-1} + u_1 + \cdots + u_{n-2} \geq 0.$$

The group SL_n acts on the vector space k^n of all $n \times 1$ column matrices in the natural way, namely, $g \cdot v = gv$ for all $g \in SL_n, v \in k^n$. This action gives rise to an action on $k[x_1, \ldots, x_n]$, the algebra of regular functions on k^n, via

$$(g \cdot f)(v) = f(g^{-1} \cdot v) \quad \text{for all } g \in SL_n, v \in k^n, f \in k[x_1, \ldots, x_n].$$

Let S_m be the vector space consisting of all those polynomials in $k[x_1, \ldots, x_n]$ which are homogeneous of degree m. Then S_m is a finite-dimensional subspace of $k[x_1, \ldots, x_n]$ which is stable under the action of SL_n. We shall study the variety X in S_m.

Let $v = x_1^{e_1} \cdots x_n^{e_n}, e_1 + \cdots + e_n = m$, be in S_m and let

$$\lambda(x) = [x^{u_1}, \ldots, x^{u_n}]$$

be a one-parameter subgroup of T. Then

$$\lambda(x) \cdot v = x^{e}v \quad \text{where } e = u_1(e_n - e_1) + \cdots + u_{n-1}(e_n - e_{n-1}).$$

To summarize, we have seen that:

1. a one-parameter subgroup λ of T may be identified with a point (u_1, \ldots, u_{n-1}) where each u_i is an integer;
(2) \(B \subset P(\lambda) \) if and only if
\[u_1 - u_2 \geq 0, \ldots, u_{n-2} - u_{n-1} \geq 0, \quad \text{and} \quad 2u_{n-1} + u_1 + \cdots + u_{n-2} \geq 0; \]
(3) \(x_1^{u_1} \cdots x_n^{u_n} \in W(\lambda) \) if and only if
\[u_1(e_n - e_1) + \cdots + u_{n-1}(e_n - e_{n-1}) > 0. \]

We turn now to the cases \(n = 2 \) and \(n = 3. \)

SL2. Let us put \(\lambda(x) = [x^n, x^{-n}] \) where we may assume that \(u > 0 \) (by (2)). Then, by (3), \(x_1^u x_2^{m-n} \) is in \(W(\lambda) \) if and only if \(u(m - 2e) > 0 \), i.e., \(e < m/2. \)

If \(m = 2s \), then \(W(\lambda) \) is spanned by \(x_2^m, x_1 x_2^{m-1}, \ldots, x_1^{s-1} x_2^{m-s+1} \). In each of these monomials, the multiplicity of \(x_2 \) is \(\geq s + 1 \). Hence, \(G \cdot W(\lambda) \) consists of all those polynomials in \(S_m \) having a linear factor whose multiplicity is \(\geq s + 1 \).

If \(m = 2s + 1 \), we arrive at a conclusion just like the one just given: \(G \cdot W(\lambda) \) consists of all those polynomials in \(S_m \) having a linear factor whose multiplicity is \(\geq s + 1 \).

In both cases above, \(X \) has only one component and \(P(\lambda) = B \).

SL3. Let us change notation here and write \(u, t \) instead of \(u_1, u_2 \) and \(a, b, c \) instead of \(e_1, e_2, e_3 \). According to (2) and (3) above, we should study pairs \(u, t \) so that \(u \geq t \) and \(u + 2t \geq 0 \). (If \(\lambda \) is to be non-trivial, we should take \(u > 0 \).) Then \(x_1^u x_2^b x_3^c \) is in \(W(\lambda) \) if and only if \(u(c - a) + t(c - b) > 0 \). Let us distinguish two types of one-parameter subgroups of \(T \), namely:

(I) \(u > 0, u \geq t \geq 0 \);
(II) \(u > 0, t \leq 0, u + 2t \geq 0 \).

The chart below summarizes the conditions \(u, t \) must satisfy for \(x_1^u x_2^b x_3^c \) to be in \(W(\lambda) \).

<table>
<thead>
<tr>
<th>(a = b = c)</th>
<th>(a = b \neq c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b = c)</td>
<td>(a = b \neq c)</td>
</tr>
<tr>
<td>(a > b > c)</td>
<td>(a > b > c)</td>
</tr>
<tr>
<td>(a > c > b)</td>
<td>(a > c > b)</td>
</tr>
<tr>
<td>(b > a > c)</td>
<td>(b > a > c)</td>
</tr>
<tr>
<td>(b > c > a)</td>
<td>(b > c > a)</td>
</tr>
<tr>
<td>(c > b > a)</td>
<td>(c > b > a)</td>
</tr>
</tbody>
</table>

The chart summarizes the conditions \(u, t \) must satisfy for \(x_1^u x_2^b x_3^c \) to be in \(W(\lambda) \):
To illustrate how this chart may be used, let us look at the case $m = 8$. Using Corollary 2c, (2.3), one may show that

$$X = G \cdot W(\lambda_1) \cup G \cdot W(\lambda_2) \cup G \cdot W(\lambda_3) \cup G \cdot W(\lambda_4)$$

is the unique decomposition of X into irreducible components where

- λ_1 is of type I with $0 < t/u < 1/6$;
- λ_2 is of type I with $2/3 < t/u < 1$;
- λ_3 is of type II with $1/4 < -t/u < 1/3$;
- λ_4 is of type II with $1/3 < -t/u < 1/2$.

In each case, $P(\lambda_i) = B$.

REFERENCES

11. R. Steinberg, Lectures on Chevalley groups, Yale University, Department of Mathematics, New Haven, 1967.