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Introduction

Let X’ be a complex manifold. Suppose f is an open subset of X’. An
important question in several complex variables and partial differential equa-
tions is what role the geometry of bd f plays in the regularity theory for the
Cauchy-Riemann operator. One approach to this regularity theory is the -Neumann problem. We recall for the reader those aspects of this theory which
motivate the basic geometric question discussed here. See [5] for a thorough
discussion.
Suppose that M bd is a smooth manifold. Consider the differential

equation

(1) u =f
where f is a (0, q + 1) form satisfying the necessary compatibility conditions
and is defined in the sense of distributions. The -Neumann problem con-
structs an operator N so that

(2) u =*Nf
solves (1). Suppose that N is a pseudo-local operator, i.e.

sing supp (Nf) sing supp (f).
(Nf is smooth where f is.) Then the solution (2) also satisfies

sing supp (u) sing supp (f).
Pseudolocality for N follows from the following type of subelliptic estimate.

DEFINITION. The -Neumann problem is e-subelliptic at p on (0, q) forms if
there are constants C, e > 0 and a neighborhood U of p so that

(3) Ilullff < C(ll ull / II *ull / Ilull
for all (0, q) forms u s C(U). Kohn, aided by a geometric result of Diederich-
Fornaess in [3], has proved the following great theorem. See [7] and [8].
THEOREM (Kohn, 1977). Let M be a real analytic pseudoconvex manifold.

The -Neumann problem is e-subelliptic at p on (0, q)forms whenever there is no
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oerm of a complex analytic q-dimensional subvariety ofX’ based at p and con-
tained in M. (Kohn has also proved the converse under additional hypotheses.)

Recently, Catlin has proved the converse of this theorem, and independently
Diederich and Pflug have proved the analog of the converse for hypoellipticity.
These results will appear in the Proceedings of the Conference on Several
Complex Variables held at Princeton in April, 1979.

It is therefore important to consider the following question. Let M be any
real subvariety of X’. Let p M, and suppose that r is a local defining function
for M near p. What conditions on r force all q dimensional analytic varieties to
have finite order ofcontact with M at p? An example of such a condition is that
the Levi form of r have n-q eigenvalues of one sign at p. Ofcourse this condition
depends only on the second order Taylor polynomial of r. We generalize this
idea to Taylor polynomials of arbitrary order. Stated imprecisely (See
Definition 2), we say that condition Fa holds at p if some Taylor polynomial of
a defining function prevents q dimensional complex analytic varieties from
having high order of contact with M at p.
The author has considered this question in ease q 1 and M is a manifold.

See [2]. Related questions were studied by Diederich-Fornaess in [3]. In this
paper we give a systematic method for studying condition Fa, although we
cannot answer all the difficult algebraic questions. Suppose first that M is the
zero set of a real-valued polynomial. We find necessary and sufficient condi-
tions for the non-existence of q-dimensional complex varieties in M. These
conditions involve only ideals generated by holomorphic polynomials and
parametrized by a unitary group. We then determine when such conditions on
a truncation of the Taylor series of the defining function imply condition Fq.
The main results here are Theorems 10 and 12. In Theorem 10, we find

necessary and sufficient conditions for Fa in ease M is the zero set of a (real-
analytic) function with the form

p(z, ) 2 Re (h(z)) + f(z)ll 2 I[g(z)l[ 2

Here h is a holomorphic function, and f and 0 are holomorphic maps. By
Proposition 7, any real-valued polynomial has this form. Therefore we can
apply Theorem 10 to the Taylor polynomials of any defining function. This
leads to Theorem 12.
We conclude with some examples and by showing that if the Levi form has

n-q eigenvalues of the same sign, then F must hold.
The author would like to thank Jack F. Conn for helpful remarks.

Section 1

Suppose M is a real subvariety of C and that 0 lies in M. We would like to
relate the local geometry of M near 0 to the behavior (in terms of order of
contact with M) of complex analytic varieties in the ambient space Cn. Let
M Z(r) be the zero set of a smooth real-valued function r. We write Jk r for
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the k-th order Taylor polynomial of r at 0. Our interest is what analytic and
algebraic conditions on some jkr prevent complex analytic varieties from
having infinite order of contact with Z(r). Suppose that (V, 0) is the germ of a
q-dimensional complex analytic variety. Then we can find a holomorphic map
z: (C, O) (V, O) so that rank dz(p)= q for p in a dense open subset of a
neighborhood of 0 in C. (Such a map is guaranteed by the resolution of
singularities for example.) We call such a map q-regular, z is a q-regular if and
only if some q x q minor determinant of dz is not the zero power series. Using
this definition we extend this notion to formal power series maps. Write t for
variables in C and let z*r r(z(t)) be the pullback map.

Suppose V is actually contained in Z(r). Then z*r vanishes identically. Given
the Taylor coefficients for r at O, we can consider the equations

(1) DaObz*r ]t=o 0 for all multi-indices a and b

as multi-linear equations for the unknown Taylor coefficients of the map z. We
are interested in whether the system of equations (1) has any formal power
series solutions, any convergent solutions, and (mainly) when the answer
depends on only finitely many derivatives of r. In case Z(r) is a strongly pseudo-
convex hypersurface (see Def. 2.2) the author shows in [2] that the system (1)
has no non-constant solutions. The discussion there motives the following
basic definition.

2. DEFINITION. Suppose r: C" R is a smooth function, and 0 6 Z(r). We
say that 0 is a point of q-finite type for Z(r), or that F holds at O, if there is an
integer k with the following property: Whenever r’ is any smooth function
satisfying jk r Jk r’, and z is any q-regular formal power series map, then z*r’
vanishes to finite order. In other words, the system of equations (1) has no
solution whenever r is replaced by any r’ satisfying Jk r Jk r’.

3. Example. Let

r(z) 2 Re (z,) + z, + O(Iz I).

Then Fq holds at 0. We can take k 2. See Proposition 2.3.

4. Remarks. (1) It is essential that we consider q-regular maps rather than
simply formal maps which have rank q at 0. It is possible for there to be
singular solutions to equations (1), but no non-singular solutions. See Example
14.2.

(2). For the definition of Fq we could also allow only holomorphic maps,
since everything vanishes to finite order. In this paper we will not attempt to
distinguish the various infinite order possibilities. However, the reader should
observe (see [1]) that there may be complex analytic varieties tangent to Z(r) to
arbitrarily high order, but none tangent to infinite order.
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(3) If M is a given subvariety, the existence of such a number k for some
defining function r does not depend upon r. However the integer k does depend
on r, since we do not assume that dr 4 O. Therefore we will always think of the
defining function as fixed.
An obvious necessary condition for F is the existence of an integer k such

that F holds for Z(jk r). Therefore we must study what F means for polyno-
mially defined surfaces. We first need the following propositions. Let q/(N)
denote the group of unitary matrices on Cs.

5. PROPOSITION. Let f, : B C -o Cs be holomorphic maps of some ball
about O. Suppose that [}f(z)l II#(z)ll for every z B. Then there is some
U ql(N) for which f(z)= U.#(z) for all z B. Here of course,

Proof. We expandf and in convergent power seies in B"

f(z) fz and #(z)= y’, #z,
where a is a multi-index and the coefficients are elements of Cs. Let
denote the usual Hermitian inner product on Cs. Since Ilfll’- and I1 11 are real
analytic functions, we equate their Taylor coefficients. This gives

(*) <fo, f) <g, g) for all a, b.

Consider a maximal linearly independent set G {go}. We define a map U by
U. g, f if g, G, and otherwise extend by linearity. We claim that U res-
tricted to the span of G is unitary. It is enough to show that <Ugh, Ugh)
<g, g) for all a, b. This is immediate from (*) and the dfinition of U. Finally
we extend U to be unitary on all ofCs. We claim thatf(z) U. g(z) on B. It is
enough to show that Ugo fo for all a. This is true by definition on G, and we
can express any other go as a linear combination of those on G. The coefficients
are completely determined by the inner product, which is preserved by (*).
Therefore the same coefficients work for thefo, and Ugo =fo. Therefore f(z)
U. g(z) for some U.
Remark. It has been pointed out to the author that Calabi [9] and later

Cowen and Douglas [10] have proved versions of the above proposition. The
proofs are essentially the same.

6. COROLLARY. Suppose that f, g are holomorphic or formal power series
maps and that j, ,llfll --j ,llvll The there is some U ll(N) so that
Jk f U jkg.

Proof. The hypothesis implies that Ikf 2 Jk0 2, SO we can apply Pro-
position 5.

7. PROPOSITION (Holomorphic decomposition). Suppose p" C -. R is a
real-valued polynomial with p(O) O. Then there are holomorphic polynomials h,
ft, fs, g, gs so that all of the followin0 hold:
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(1) p(z, )= 2 Re h(z)+ [If(2)[I 2 110(2)112
(2) h is unique, and/f(f’} c {f} and {a’) {a} are such that Ilf’ll IIo’ll, then

fl 0’ 0 for all k.
(3) h and the components off and all vanish at O.
(4) N depends only on n and the dearee of p.

Proof Let p(z, )= 2 c.z". Let h(z)= 2 c.oz", and let

w(z, )= p(z, )- 2 Re h(z)
CabZab

2 (z)

X r(z + .z r(zt I.z
where (z) is holomorphic, and 0 {. Equality holds since w is real valued.
We discard all thosef’s and #’s for which the conclusion of (2) is Nlse. Since h is
clearly unique we see that (2) holds. (3) is obvious. By choosing some of the
functions to be identically 0 we arrange that there are the same number off’s
and #’s. Given the second part of (2), we see that (4) holds. When all the above
properties hold we call (h, ) a holomorphic decomposition for p.
The idea of Proposition 7 is to redu everything to questions about holo-

morphic functions. In case r is a real analytic function for which there are
finitely many holomorphic functions so that

r(z, )= 2 Re h(z)+ II/(z)ll -II0(z)ll ,
we also call this a holomorphic decomposition.

8. DEFINITIONS. Let don denote the ring of germs of holomorphic functions
at 0 in Cn. Let /be the maximal ideal of non units, and M(k the ideal of germs
which vanish to order at least k. If J c t’ is an ideal, we write V(J) for the
variety of the ideal. Suppose (h, f, #) is a holomorphic decomposition of some
(real analytic) real-valued r. We let Iv (h,f- U#) be the ideal in (gn generated
by h and the components off- Ue, where U s q/(N). We denote by the
family of such ideals. Notice that we need part (2) of Proposition 7 for to
make sense.

9. PROPOSITION. Let (h, f, a) be a holomorphic decomposition for a real
analytic function r" C"- R. Suppose 2" (C, 0)- (Cn, 0)satisfies 2*r O. Then
there is some U ql(N) for which 2*h 2*(f Ug)= O.

Proof. We have

0-- z*h + z*--’- + IIz*fll- IIz*011 ,
The last three terms all contain anti-holomorphic factors. Apply any holomor-
phic derivative D and evaluate at 0. We get 0 D"(z*h)I=o for all a. Since z*h
is the germ ofa holomorphic function, it must be 0. Therefore Ilz*fll = Ilz*ll ,
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By Proposition 5, there is some U for which z*f U z*o. Since U is constant,
z*(f UO) O.

We are now in a position to determine necessary and sufficient conditions for
Fq in case r has the form in Proposition 9. By Proposition 7 any real-valued
polynomial has this form. From the proof we also derive several sufficient
conditions on jkr implying that Fq holds for Z(r).

10. THEOREM. Suppose (h, f, g) is a holomorphic decomposition for r. Then
the following are equivalent:

(a) F holds at O.
(b) z*r 0 has no q-regular formal or holomorphic solutions.
(c) dim V(Iv) < q for every Iv .
Proof By Proposition 10 we see that z*r 0 if and only if z*h 0 and

z*(f- U9)= 0 for some U q/(N). If some dim V(Iv) were greater than or
equal to q, we could select a q-regular z with z*r 0. Conversely if z*h 0 and
z*(f- UO) 0 for some q-regular z, then, dim (I v) > q. Therefore (b) and (c)
are equivalent. Also, that (a) implies (b) is obvious. The hard part is to show
that (c) implies (a). We first assume that q 1. Then c says that V(I v) {0} for
all U. Therefore (9/Iv is a finite-dimensional complex vector space, say of
dimension d(U). Since d(U) is the degree of the finite analytic mapping defined
by (h,f- UO), it is an upper semi-continuous function on q/(N). Since q/(N)is
compact, d(U) attains a maximum on q/(N). Now let k(U) denote the smallest
integer for which /gktV)= Iv. k(U) is finite if and only if d(U) is, by the
Nullstellensatz. Furthermore if k(U) were not uniformly bounded on q/(N),
then neither would be d(U); therefore we must have an integer k such that
lk= Iv for every U. (We remark at this point that k(U) is not semi-
continuous. For example, put

f(z) (z + Z2, Z32) and 9(z)= (z2, 0).
For unitary matrices of the form

we have that k(U)= 4 if e= 1, but k(U)= 6 otherwise. Even simpler
examples show that k(U) can jump the other way.)
We claim that 2k is the integer needed in the definition of finite type. Let

: (12, 0)--, (C, 0) be 1-regular, i.e. non-constant. Then there is a smallest
integer m for which j,,, is non-zero. We say that is of order m. We will show
that j,,, *r’ 0, whenever ]r’ jr. Since has order m we clearly have
that
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Suppose that J2kmz*r 0. Then J2km(Z*h)= 0 and j  .ll2*fll --j  .ll2*vll
since pure and mixed terms are independent. By Corollary 6, jkh 0, and for
some U, jk(Z*(f-- Ug)) 0. Recallhowever that ,k c Iv for every U. Since h
and f-Ug generate Iv, and z has order m, we must have that z*h or
z*(f-Ug) vanishes to order less that or equal to km. This contradiction
proves that F holds. For the case of general q we no longer have j2km(g*r1)
J2k,n(z*r), if m is the smallest integer for which jmz is q-regular. However the left
side cannot vanish when the right side does not, since we simply restrict both
sides to an appropriate 1-dimensional complex line, and apply the previous
argument. By the same reasoning as in the case q 1, we claimj2kz*r cannot
vanish. We need only apply the following lemma.

11. LEMMA. Suppose w" (Cn, 0) - (CN, 0) and dim V(w) q 1. Then there
is an integer k so that ifjkr 0, then dim V(w + rl) < q 1.

Proof. When q 1 the integer k is the smallest integer for which ,k c (W).
Namely we have ,k (W) (W + r/) + /,k. By Nakayama’s lemma,
Ak c (w + r/). By symmetry, (w)= (w + t/), and dim V(w + t/)= 0 also. For
general q we choose a projection p" Cn- Cn-+ so that dim V(p*w)= O,
when considered as a subvariety of C"-+ 1. Then dim V(p*(w + r/)) 0 by the
case q 1, and dim V(w + rl) < q 1.
By Lemma 11, we see that the conditions (a), (b), (c) in Theorem 10 depend

on only sufficiently high polynomial truncations of the functions h, f, and .
12. THEOREM. Suppose r is a Coo function and that r(0)= 0. Let fk denote

the family of ideals coming from a holomorphic decomposition ofjkr. For F to
hold at O, it is necessary that there be an integer ko so thatfor all k with k >_ ko,
dim V(Iv) < qfor every Iv oCk. Furthermore,for F to hold at O, it is sufficient
that there be an integer k with the following property: Whenever z: (C, 0)
(C, 0), and m is the smallest integer for which j,nZ is q-regular, we have
Jk Z*W 0 for some w. Here w is one of the holomorphic polynomials h or (a
component of)f U#, coming from a holomorphic decomposition ofjR r.

Proof. The necessity follows from Theorem 10 and the fact that in the
definition of F we demand control of all Coo functions r’ satisfyingjkor’ Jkor.
On the other hand, whenever the alleged sufficient condition holds, we can
apply the proof of Theorem 10 to see that F holds.

13. COROLLARY. Suppose r is as in Theorem 10. Then Fholds atOfor Z(r) if
and only if Fq holds at 0 for Z(rv) for every U, where

rv 2 Re (h)+ If- U#II 2.

Furthermore suppose that Z(r) is a pseudoconvex hypersurface. Then any of the
conditions of Theorem 10 imply that the tT-Neumann of Kohn is e-subelliptic on
(0, q)forms.
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14. Example 1.
cases:

Proof. The first statement follows from Theorem 10. The second statement
follows from Theorem 10 and the result of Kohn mentioned in the introduc-
tion. However, in [8, Section 7], Kohn indicates a considerably simpler proof
for surfaces defined by

s(z) 2 Re (zn)+ Ilf(z)ll
We remark that this simplication extends to this case. First of all, since Z(r) is a
hypersurface, we can assume that h z. Secondly, by the first part of the
corollary it is enough to show that one can obtain the estimates uniformly in
the parameter U. This can be done, again using the compactness of q/(N). We
omit the details.

Suppose now that r is a C function, and that for some k, jr satisfies the
hypotheses of Theorem 10. It need not be true that F holds for Z(r). The
following examples illustrate the theory quite nicely.

r(z) 2 Re (z3)+ [zl z [2 + [z z 12. Consider the 3

a =j6 r 2 Re (z3)+ IZl- zl2 + [zl2

b Iz l
C =J12 r r.

Then z*a 0,, z 0, and z*b 0,, z 0. However z*r--0 for z(t)= (ta, t,
0). For case (a) we see that I Iv (za, zl za2, z) for every U. An elemen-
tary computation shows that dg6 I. According to the proof of Theorem 10,

rwe see that the 12 jet of a acts as an obstruction. Thus ifj 12 a, then z*r’ has
no constant solutions. Notice however that r itself satisfies j6 r j 6 a, but that
z*r 0 has a non-trivial solution.
Let

s(z) 2 Re (z’) + [z z [2 + [z212 [z [2.
Then for any integer m > 1, Z(s) is not a manifold. For all integers m >_ 1,
z(t) (t, t2, 0) is a solution to z*s 0. This curve is singular; there are no
non-singular solutions even when Z(s) is a manifold. Also the reader can verify
that V(Io)= {0} for all U except the following 3 cases:

-1 01)
Section 2

Given a smooth function r, we now find some conditions onjkr which imply
that F holds at 0. All the ideas are present in the case q 1, so we state
explicitly the following Corollary of Theorem 12.
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1. PROPOSITION. Suppose r is C, 0 Z(r), and that for some k, /k c It: for
every It: fl;2k. Then F1 holds at O.

Proof The containment ,fk It: implies the condition of Theorem 12.

2. DEFINITION. Let Z(r) be a real hypersurface in C". The Levi form 2 is the
Hermitian form 2(L, M)= (Or, L ^ I9I) restricted to those type (1, 0) vector
fields tangent to Z(r). Z(r) is called strongly pseudoconvex if 2 is positive
definite, and pseudoconvex if 2 is positive semi-definite. (If 2 is negative definite,
the Levi form corresponding to -r will be positive definite).

3. PROPOSITION.
same sion.

F holds at any point where 2 has n q eigenvalues of the

Proof After a change of coordinates, and by considering (-r) if necessary
we can assume that

n-q

j2r=2Re(z.)+ E IZkl 2 +O(Iz,zl)+O(Iz’l).

where z’= (z,_+ ,..., z,_ ). It is sufficient to set z’= 0, and verify that F
holds for the corresponding surface in C"-. But we see immediately that
lv (z, z._, z,), (by taking k 1) for every U. Therefore the result
follows from Proposition 2.1.
We remark that the integer k in Proposition 2.1 is not always the best

possible. Suppose for example that p < p, and that
n-1

j2r 2 Re (z.)+ E z, 2’’.
i=1

Then F1 certainly holds at 0. On the other hand, if k < p + 1 n, then

/k (Z, .- for all O..- 1, z.) It:
Of course, the more scrambled the variables, the closer to k we must take in
general. Also if Z(r) is a hypersurface we can assume h is a coordinate function.
Our theory indicates algebraically why the complex tangential and the "bad"
tangential directions have different weights. In particular, since h appears to the
first power, we need look only at Jkmg*h; for the Ilfll Iloll part we must
study jzm(llz,fll -lie*011 z) to obtain information about jkmZ*(f Ug).
We have seen that if Z(r) is pseudoconvex, the condition F is a generaliza-

tion of strong pseudoconvexity. Neverthless there is no one generalization
which is appropriate in all contexts. The following example shows that pseudo-
convexity does not depend in general on some jkr.

5. Example. Let

I"r(z) 2 Re (zl)+ [Z2 "" 2/3(z2 +
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Then F1 holds at 0 with k 2. The Levi form vanishes when [Z212"+"
Re z 0. Let f be a smooth function for which fz, 2 is negative at points on
this line arbitrarily close to 0. Then r +f does not define a pseudoconvex
surface. We could even take f to have a zero of infinite order.

Pseudoconvexity actually gives very little useful information about condition

F. Therefore it is not clear whether Fg is really related to the estimates of
Kohn, which presently require pseudoconvexity.

6. Remarks. To fully understand when some jet of r actually defines an
obstruction to solving jR(z’r) 0 for all k, is a very difficult question. Consider
the following special case., Let w: (C", 0)---,(Cn, 0) have the following
properties"

(1) jRW W,

(2) //= (w).
Suppose first that s _< k. Then by the proof of Lemma 11, the part using
Nakayama’s lemma, we have that (w + /)= (w)whenever jkrl 0. On the
other hand, if s > k, it may or may not happen that (w + r/) defines the same
ideal. The variety V(w + rl) may even be positive dimensional. We ask, when is
there an r/ with jkrl =0 such that dim V(w + r/)> 07 This involves under-
standing the partial differential congruence

det d(w + rl) =_ 0 mod (w +
jkr/= 0.

The author hopes to investigate this question in later work.
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