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BY

PETER WILKER

0. Introduction

In this paper we shall derive a recursion formula connecting counting func-
tions of generalized graded monoids. (See Section 1 for details). The proof of
this formula will be obtained by elementary arguments.
By specializing the monoids the recursion formula leads to a wide variety of

formulae in algebra, number theory and eombinatories, most of them derived
independently and usually by means of generating functions.

Section states the precise meaning of "generalized graded monoid", while
Section 2 gives a proof of the recursion formula. The remaining sections
contain applications.
The author wishes to thank his friend and colleague, Professor Jany Binz,

for valuable advice and many helpful discussions.

1. Generalized graded monoids

Throughout this paper, G and M will denote monoids" G will be called the
grading, M the graded monoid.

G, written additively and with 0 as its identity, is required to be commuta-
tive and cancellative, as well as to possess the following properties: for every
fixed O 6 G, the set of solutions (u, v) of O u + v is finite; for g 0 it is
unique, viz. (0, 0).
We define an order relation on G by setting a < b if and only if the equation

a + x b is solvable. The solution of this equation, if it exists,’is unique by the
cancellation law and shall be denoted by b a.

Indeed, < is an order relation. Reflexivity and transitivity are trivial. If
a<b and b_<a, then, for some x and y, a+x=b, b+y=a and
a + (x + y) a. Hence x + y 0 and x y 0, whence a b.
We list without proof the following properties of G:
(G, <) is locally finite; i.e., for any O G the set {h: h < 0} is finite.
For a natural number n, let n. O denote the sum of n elements 9. If n. 9 0,

then 9 0.
0 < 9 for all 9 G.
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PROPOSITION 1. Let a, b be two non-zero elements of G with a < b. There is
a uniquely determined natural number q q(a, b) such that i. a <_ b if and only
ifi<_q.

Proof. The set (i:i. a < b} is finite; let q be its maximal member. Then
i. a < b implies < q. Suppose, on the other hand, that j < q; then

q. a =j. a + (q -j). a < b

and there is an x such that j. a + (q -j). a + x b. This implies j. a < b.
M will be written multiplicatively, with as its identity, and will be required

to be commutative. The notions of unit, irreducible and associated elements
shall have their usual meaning. There is an equivalence relation defined by the
notion of associated elements. Its quotient structure on M is again a
commutative monoid, but with as its only unit. In the sequel, we shall only
use this structure and shall call it again M.

Suppose a degree function deg: M-- G has been defined with

deg (mlm2) deg ml + deg m2 for all m, m2 M.

Obviously, deg 0. We postulate for (G, M, deg): for a given 9 G, there
are only finitely many elements of M with degree 9; if 9 0, there is only one,
viz. 1.

PROPOSITION 2. Every element of M is a product of irreducibles. While the
representation need not be unique, there are onlyfinitely many representations as
products of irreduciblesfor any 9iven element ofM.

Proof If m e M is not irreducible, then m mlm2 for some mx, m2 ff M,
both different from 1. As deg m deg m + deg m2, if deg m deg mx, then
by the cancellation law for G we arrive at deg m2 --0, which is impossible.
Hence deg m, deg m2 < deg m. As there are only finitely many elements of G
less then a given one, and because of our assumptions about M, we proved our
claim.

For m e M, let R(m) denote the number of representations of m as a product
of irreducibles. For n G, P(n) will always denote R(m), where the sum is to
be extended over all elements m of degree n. Of course, if the monoid M
admits unique representation by irreducibles, P(n)just counts the number of
elements of degree n. The number of irreducible elements of degree n will be
denoted by l(n).

Let d, k G. If there is a natural number such that i. d k, we shall write
d lk. Obviously, q(d, k); we shall use the notation q(d, k) k/d in this case.

Let N denote the multiplicative monoid of natural numbers, No the additive
monoid of non-negative integers.
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2. The recursion formula

The main topic of this paper will be a proof and applications of the
following:

THEOREM. The notations of Section 1 taken for granted, the following
recursionformula holds:

q(d, n)

(RF) P(n) n P(n i. d)I(d) d (d, n e G).
O<d<_n i=l

Proof. For a fixed n e G, consider the set of all products of irreducibles of
M, each of total degree n. By definition, there are P(n) products of this kind. If
we.multiply them together, we obtain an element m of degree P(n). n. We shall
describe a different way of getting m, which will lead to the expression on the
right-hand side of (RF). A similar method has been used by L. Carlitz [2, 3].

We need various subsets of M. Let d be a degree, 0 < d < n. Suppose there
are k I(d) irreducible elements sl, s2,..., Sk of degree d in M. Let us write St
for the set of all products of (not necessarily distinct) elements out of the set
{sl, s2,..., Sk}. So will be taken as a singleton.
For a given natural number < q(d, n), let T be the set of all products of

irreducibles, each of total degree n- i. d. By definition, TI (the number of
elements of T), is equal to P(n i. d); To is the set considered at the beginning
of this proof. U shall denote the subset of T consisting of all members of T
that do not contain any of the elements s, s2,..., Sk as factors.
Using the notation U Sj {uv" u e U, v Sj}, it is obvious that U Sjl

Ugll 5il. We assert that

Ti U Ui+jSj

where the union is to be taken over all j from 0 to q(d n)-i. Suppose
u s U+, v S. We have

deg uv deg u + deg v n (i +j). d +j. d,

which implies deg uv n i. d, as is easily seen. Hence uv T. On the other
hand, let w T. Assume that w contains exactly p factors out of the set {s, s2,

Sk}. Then deg w n i. d p. d + d’, where d’ is the total degree of the
remaining factors of w. Clearly,

d’ +(i+p).d=n,

hence + p < q(d, n) and d’ n (i + p). d. This implies

we Ui+,Sp withp<q(d,n)-i,

which proves our claim.
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By construction, all sets U and S are pairwise distinct. (Note that we do not
consider simply elements of M, but representations by products of
irreducibles.) Hence

q(d, n)

(*) Til P(n i. d) U,/jl ISjl.
j=0

As a special case, consider To UjSj (0 < j < q(d, n)), as well as the element
m, obtained as the product of all members of To. We shall concentrate on the
factors sl, s2,..., Sk occuring in m.

Let s denote the element sis2 Sk of degree k. d I(d). d. If we multiply
all members of S together, the result will be an element of the form st, where
t is the number of times any of the elements sl, s2 say sl, occurs as a
factor of the members of S. An element of S containing sl can be written as
SlU with u e S_ 1" There are Sg_ 11 elements of this kind. Reducing in this way
step by step, one arrives at

(**) tj ISj-ll + ISj-21 + + ISol.
Returning to the element m, by reasons of symmetry, each of the factors s, s2,

Sk will occur the same number of times, hence m will contain a certain
power of their product, say s As is easily seen, the product of all members of
Uj Sj contains exactly Ultj factors s. Using (**) one gets

q(d, n) q(d, n)

t- lUcite- Ul(IS-ll / IS-21 /’" / ISl / ISol),
j=l j=l

(Note that j 0 corresponds to Uo So, which does not contain any factor s).
Rearranging terms on the right-hand side and using (,) gives

q(d, n)

t= Z P(n-i.d).
i=1

This result is true for fixed d with 0 < d n. The element m its.df is a product
of elements of the kind s’, one for each degree d. Hence deg m P(n). n is
equal o

q(,, n)

Z Z e(n -i. d)l(d), d,
O<d<n i=1

as was to be shown.
For later use, formula (RF) will be changed somewhat. Consider a fixed

degree k, 0 k <_ n. On the right-hand side of (RF) collect all terms with factor
P(n k). The resulting term is P(n k) I(d) d, where the summation is to
be extended over all d with the properties" there is an such that i. d k and

(_ (_ q(d, n). As k _< n, the second condition is a consequence of the first. By
definition, q(d, k) kid. Hence

(RE’) P(n) n P(n- k) J(k),
O<k<n
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where

(J) d(k) I(d) d.

It is easy to see that (J) is equivalent to I(n). n 1 It(n/d). d(d), where p is
the ordinary Moebius function.

3. Two examples

Formula (RF) connects the two functions P and I; if either of them is
known, the other can be computed recursively. We want to show that two
well-known recursion formulae are cases in point.

Let M be the multiplicative monoid of polynomials in one variable over
GF(q), with leading coefficient 1; take G No and for deg the usual degree
function. P(n) counts the number of polynomials of degree n, hence P(n) q".
Formula (RF’) becomes

qnn= E J(k)q"-k,
O<k<n

which implies J(k) qk. Introducing this into (J), we obtain

This formula is due to Gauss and appears in [4] with a proof contributed by
Dedekind using generating functions.
For our second example we use M N and G No. Set deg Pn n, where

Pn is the nth prime, and extend to a degree function on M in the obvious way.
We now have I(d) 1 for each d and formulae (RF’) and (J) become

P(n)n= J(k)P(n- k); J(k)= d.
O<k<n dlk

As is easily seen, P(n) is the ordinary partition function p(n), whereas
J(k) a(k) in traditional notation. Hence

p(n)n tr(k)p(n- k),
O<k<n

a formula first derived by Th. Vahlen [7].
There is an immediate generalization of Vahlen’s result. Suppose

F= {fl, f2, "’}
is a sequence of natural numbers with fl < f2 < "". Using the same monoids
M and G, but letting deg Pn =fn for all n, we get I(d)= for d e F, l(d)= 0
otherwise. Writing at(k) d, summed over all divisors of k belonging to F,
and pF(n) for the corresponding partition function (summands of n taken from
F only), (RF’) becomes

pr(n)n trr(k)p(n- k).
O<k<n
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This is a recursion formula derived, by means of generating functions, by H. H.
Ostmann [6]. He also adds the requirement that the summands of a partition
carry a finite number of "colours" each. Of course, the resulting formula is
identical to (RF’).

4. Extensions of the examples

L. Carlitz [2] considered polynomials in several variables over GF(q). Using
total degree, i.e. sums of exponents of the variables, he obtained the recursion
formula

P,(n)n Jt(k)P,(n- k); J,(k)= I,(d) d,
O<k<n

where Pt, It denote the number of (classes of associated) polynomials and
irreducible polynomials, respectively. Of course, Carlitz’ formulae are equal to
our (RF’) and (J). Since

P,(n) (q(’+,’) q+;-’))/(q 1),
we have a recursion formula for Jt and hence for It.

In a second paper on the subject, L. Carlitz [3] used a different kind of
degree, which we shall call a multigrade: for 2 it is a pair (m, n), where m is
the degree in one, n in the other variable. To apply our recursion formula, use
the direct sum No + No as the grading monoid G. With obvious notation,
(RF’) will be

P(m, n) (m, n)= P((m, n)- (r, s))l(r, s) (r, s).
(0, O)<(r, s)(m, n)

Splitting into components and writing ir x, is y, one obtains

P(m, n)m , P(m- x, n- y)x
y= lGCD(x,y)

the formula derived by Carlitz. (The second component yiolds an equivalent
equation).
We shall now apply the method of multigrades to the partition problem.

Using M N and G No + No, let us first assign (1, i) to the ith prime p.
Then I(i, j) 1 if and only if l, I(i, j) 0 otherwise. (RF) becomes

where

q

P(m, n) (m, n) P(m- i, n- is) (1, s),
O<s<n i=1

q= min fm, Il}
Splitting into components leads to two equivalent formulae, viz.

P(m, n)m= Z Z P(m- i, n- i)"
O<s<n
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(Note that P(0, 0) 1, but P(u, 0) P(0, v) 0 for u 4:0 4: v). Formula (RF’)
gives rise to the slightly neater version

P(m, n)m P(m- x, n- y).
O<x<n xly

Keep m fixed and let n > m. Then P(m, n) counts the number of ways n can be
written as a sum of exactly m natural numbers.

There is a much simpler recursion formula for P(m, n), apparently due to
Euler: P(m, n) P(m 1, n 1) + P(m, n m). Its very elementary proof uses
the fact that the natural numbers form an arithmetic sequence. Let

F {fl,f2 } with fl <f2 <

and set deg Pi (1,f). Then the formula

Pe(m, n)m= Z Pe(m- i, n- is)
O<s<n
s6F

again produces the corresponding partition function, while it is doubtful
whether a recursion formula of the simpler kind can be derived in case F is not
an arithmetic sequence.
By choosing, instead of one subset F as described above, two subsets

F={f,f2 } and G={g,g2,...}

and assigning degree (f, g3 to the prime Pi, formula (RF) leads to

P(m, n)m P(m- it, n- is)r,

where the sum , extends over all pairs (r, s) < (m, n) and belonging to the set
of all (f, g3. P(m, n) counts the number of solutions of the simultaneous
equations

m =fx +f2x2 +
n glx + g2x2 + ...,

a well-known problem in the theory of partition. A generalization to any
number of equations is immediate.

5. Norms

In this section, we suppose a norm function has been defined on the monoid
M, i.e., a function Nm on M into the positive reals such that Nm ab
Nm a. Nm b. Suppose also that there are only finitely many elements in M
of given norm and that Nm a 1 if and only if a 1. log Nm will be a degree
function and if its range satisfies the requirements of a grading monoid G,
formula (RF) may again be set up. In this section we shall present two
examples of this possibility.
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Choose M N and define Nm p n + 1, extending the norm function to
M in the obvious way. An easy argument shows, that the number of elements
of M of norm n is equal to the number of solutions of the equation

(1) n 2 345" ....
The range of log Nm is the set {log n" n N} and satisfies the requirements of
a grading monoid G. Formula (RF) becomes

(d, n)

e(log n). log n P(log n- i. log d)I(log d). log d.
0 <log d<log i=1

The order relation on G is not the one inherited from the reals. We have
log m < log n if and only if log m + log x log n is solvable, i.e., if and only if
m n. q(d, n) is the highest value of such that i. log d < log n, i.e. such that
dln. Writing, for the moment, A’(n) for P(log n) and using the fact that
/(log d)= 1 for all d 4: 1, the formula above can be written in the following
way"

q(d, n)

A’(n) log n= A’(n/di) log d.
din i=l

We shall show that A’ may be interpreted as a partition function. For a given
n, equation (1) can be reduced to

(2) n da d2ta’-)’’’ da),

where d, dE,... dR denote all divisors of n different from 1. Let n qq’2
q’ be the prime factorization of n. Equation (2) can be written as

(3) qq2 q, I-I ’"’" /)y($1, s2 St)
l,t/1 t/2 q

where the product is to be extended over all (s, s2 s) :/:.(0, 0, 0) with
0 < s < r. Obviously, this leads to linear equations in the unknowns y and
shows, moreover, that A’ does not really depend on n, but rather on the
number of its prime factors and the exponents r, r2, ft. We shall write,
slightly abusing our notation,

A(r, r2, rt)

for this function.
We recall some notions of the theory of multisets (see [1-1, for example). A

multiset is an (ordinary) set S and a function F" S No. (Here, No is to be
taken with its ring structure). A function G" S-- NO is called a submultiset of
(S, F), denoted by G

_
F, if Gs < Fs for all s S. In the sequel, we shall always

omit the null multiset" Os 0 for all s S. A partition of a multiset (S, F) is a
function P on the set of all submultisets of F into No with the property
_

(PG)(Gs) Fs for all s S.
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Assume S finite with elements; we may require Fs 4:0 for all s. F can be
characterized by a sequence (r t, r2,..., rt) of natural numbers, a submultiset G
by (st(G), s2(G),..., s,(G)) with 0 < si(G) < ri, not all s(G) 0. A partition P of
(S, F) consists of numbers PG y6 for each G with the condition
y6si(G) ri for 1, 2 t.

It is now obvious how the problem of partitions of finite multisets is related
to equation (3). Any solution y(st, s2 st) of (3) corresponds to a partition P
with

PG y(st, s2,

and vice versa. Hence A(rt, r2, rt) counts the number of partitions of the
corresponding multiset. The recursion formula for A’ can be rewritten as

(4) A(rt, rE, r,) log qlq2 q[’

A(rt --is t,..., rt--ist)log q... q’,
(s, s2 st)

with the obvious summations over (st,..., st) and i.
We consider two limiting cases. Let S consist of only one element s. If

Fs m, a partition of (S, F) is the same as a number-theoretic partition of the
number m and equation (4) is just Vahlen’s recursion formula of Section 3.

Next, let (S, F) be an ordinary set, i.e., Fs 1 for all s e S. A submultiset is a
subset of S and a partition is an ordinary partition of S into subsets. (4)
becomes

A(1, 1, 1)log q q A(1 s l, 1 st)log q]’ q’,
(s

where (st, s2 st) runs through all 0-1-sequences of length except (0, 0,...,
0).
As is easily seen, A depends only on the number of l’s appearing as

arguments. Let us write B(k) if there are k of them. On the right-hand side of
the equation B(k) will appear whenever there are exactly k zeros in the
sequence (st, st). By an easy argument, the factor of B(k) is seen to be
log (qtq2 qt)" with u (t-,t). Taking exponentials we get

B(t)
t- 1

B(k)" B(O)= 1
k=O k

B(t) is known as a Bell number and the equation we just derived is the
standard recursion formula for Bell numbers. (See [1-1, for example.)
One gets further results by the method of multigrades. As in Section 4, we

take M N, while for G we choose the direct sum No + log N. The order
relation on G is now (a, log b) < (c, log d) if and only if a < c and bid. Assign
degree (1, log (i + 1)) to the ith prime p. P(k, log n), the number of elements
of degree (k, log n), is equal to the number of solutions of the equation

(k, log n) (1, log 2)xt + (1, log 3)X2 -I- + (1, log n)x,,_ t,
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which is equivalent to the pair of equations

A solution of these equations can be interpreted as a partition of a multiset
with the number of submultiset making up the partition fixed to k. If

is the prime factorization of n and if we write A(k, rl, rt) for P(k, log n),
then formula (RF) leads, by arguments used before, to the following equations"

A(k, r,, r,t)k E A(k -i, r, -is, r -ist),
(sl st)

A(k, r, rt) log q qt
$tA(k-i,r-isi,...,rt-ist) logq

(sl st)

We consider once more two limiting cases. If the underlying set of the multiset
considered has just one element s and if Fs m, A(k, m) will be the number of
partitions of m into k summands and our equations are identical to the
corresponding equations of Section 4. If the multiset is an ordinary set with m
elements, our equations above reduce to

A(k, 1, 1, 1)k A(k- 1, 1 -s1, 1- st),
(sl

A(k, 1, 1,..., 1) logq...qt= A(k-l,l-s,..., 1- s,) log q q?,
(si s)

(sz, s2,..., s,) running through all 0-1-sequences of length except (0, 0, 0).
Again, A depends only on the number of l’s appearing after the first
argument; let us write S(r, k) for an A with r ones. We get

(5) S(t, k)k S(r, k- 1)
r=O

(6) S(t, k)=
t- 1

S(r, k- 1).
r=O

The number of partitions, S(t, k), of a t-element set into k subsets, is a Stirling
number of the second kind. (5) and (6) are standard recursion formulae for
them. (Given (6), (5) is equivalent to

S(t, k)= S(t- 1, k)k + S(t- 1, k- 1)).

6 Algebraic number fields

Let A denote the ring of algebraic integers of an algebraic number field; for
a A, let Nm a be the norm of the principal ideal Aa. As is well known, the
number of ideals of given norm is finite. Since every element of A may be
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written as a product of irreduciblesmnot necessarily in a unique way--and as
log Nm is again a degree function, we have new cases of the situation (M, G,
deg) to which (RF) is applicable. However, it is far from trivial to evaluate the
function I and we shall only present examples of quadratic number fields, with
class numbers 1 and 2.

Suppose A is the ring of algebraic integers of Q(x/d) of class number 1. A
has unique representation by irreducibles and it suffices to represent rational
primes. One has to distinguish between ramified, inert and decomposed
primes, however.
As a first example, consider A Z[x//-]. The number 2 is the only

ramified prime with 2 (1 + i)(1 i) and Nm (1 + 0 2. We have p inert if
and only if p 3 mod 4 and Nm p p2. Also, q is decomposed if and only if
q mod 4; we have

q (a + bi)(a bi) withNm(a+bi)=a2 + b2 q.

These facts allow one to evaluate the function I" 1(2) 1; i(p2) 1 for p 3
mod 4; l(q)= 2 for q m 1 mod 4; I(k)= 0 otherwise. (RF) becomes (the
notation being obvious, empty sums counting as 0)"

(7) P(n) log n

P(n/2’)log 2 + e(n/p2’) log p2 + P(n/q’). 2 log q.
p2ln qln

To solve this recursion, suppose n= 2" I-I, p,-2v’ i-isq,s is the prime
decomposition of n, symbols p, and qs denoting inert and decomposed primes,
respectively. We may use even exponents for primes p,, for if such a prime
occurs with odd exponent, P(n)= 0. Taking exponentials on both sides of
equation (7) and comparing exponents of like prime powers leads to

uP(n) P(n/2’); v,, P(n) P(n/p2,’); ws P(n)= 2 P(n/q).

If from the first of these equations one subtracts the corresponding one for n/2,
one arrives at uP(n)= uP(hi2), which shows that P(n) is independent of the
prime factor 2. The same result follows from the second group of equations for
the prime factors Pr. Finally, subtraction of

(ws 1)P(n/qs) 2 P(n/q+ x)

from the third group of equations leads to

P(n) ws + 1
p(n/qs w + 1 w,

w, w, ws-
P(n/q2)=’""

Hence P(n)= (ws + 1)P(n/q’O. This essentially solves the recursion and we
arrive at the following result" If n decomposes into prime powers as given
above, then P(n) is equal to for n 1, to 0 if at least one of the exponents vr
is odd, to I-Is (ws + 1) if n 4= and all v, are even.
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Each element a + bi of norm n is connected to a solution of the
Diophantine equation n a2 + b2. One usually considers numbers associated
to a + bi or a bi as different solutions, hence r(n), the number of solutions of
n x2 + y2, is equal to 4P(n). The resulting formula

r(n) 4 I-I (w + 1)

is due to Jacobi and Gauss. (For example, see [5].)
The derivation of (7) does not depend on the specific value -1 for d, but

works the same way for any quadratic number field of class number 1. The
only thing to take care of are ramified primes r, which can either be reducible
in the ring of algebraic integers and lead to I(r)= 1, or else simulate inert
primes by having I(r2) 1. In any case, if Pd(n) denotes the number of alge-
braic integers of norm n in Q(/d) (of class number 1), then essentially

Pn(n) I--I (w + 1),

where w is the exponent of a decomposed prime dividing n, primes with the
Legendre symbol

To interpret Pa(n) as the number of representations of n by a corresponding
binary form one has to take the necessary precautions as to positive d (and
infinitely many units), to d mod 4 and to the special case d -3.
As a final example, we shall evaluate P(n) for the field Q(x//- 5), which is of

class number 2. We shall use variables p, q, r for rational primes congruent
mod 20 to 11, 13, 17, 19, to 1,9 and to 3,7, respectively. The function I can be
described as follows: i(p2)= 1, I(q)= 2, I(r2) 3, I(2r)= 2, l(rr2)=4
(r rE) I(4) I(5) 1, I(n) 0 otherwise. For a proof of these equations, see
[8], for example. Formula (RF) has the following form:

P(n) log n P(n/p2’) log p2 + p(n/qi). 2 log q
p2ln qln

+ , P(n/r’’). 3 log r + E P(n/(2r)’). 2 log (2r)
r21n 2tin

+ P(n/(r to)’). 4 log (rurv)+ e(n/4’)log 4
rurol

+ , P(n/5’)log 5.

One can, as before, split up this equation with respect to the prime divisors of
n and then try to find an explicit value of P(n) as a function of the exponents of
these divisors. It turns out that P(n) is independent of the exponents of p (they
must, however, be even) and of 5, depends on those of q as in the Gauss-Jacobi
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theorem, but the dependence on the exponents of 2 and r is much more
intricate and requires further study. For example,

P(ra) (a + 2)(a + 4)/8 for even a,

while

P(32ra) (3az -4a + 5)/2 for odd a.

Another inherent disadvantage is the fact that P(n) is not equal to the number
of elements of norm n, but to the number of different products of irreducibles,
each of total norm n. For instance, P(216) 10, corresponding to the products

2.3. (i + V/-5), (I + V/-5)2(I v/-5), (I + x/eTa)a,
2. (1 + ,/=S)(2 w/-Z-), 2. (I V/- 5)(2

and their conjugates, while there are only four dements of norm 216.
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