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DETERMINING SETS FOR MEASURES ON R

BY

S. C. BAGCHI AND A. SITARAM

1. Introduction

Let M be a class of measures on R". A Borel set E is said to be a determining
set for M if #, v s M, and/(x + E)= v(x + E) for all x s Rn implies/z v.

Let F {x (xl, xn) e R; x > 0 for all i}. Then it is well known to
probabilists that F is a determining set for the class P of all probability
measures on R". (For a Fourier transform theoretic proof of this, for n 2, see
[4].)The aim of this paper is to generalize the above result to an arbitrary Borel
set E of positive Lebesgue measure contained in F (see Theorem 3.3). The proof
of this theorem is based on Proposition 3.1 which is very similar to the results
in [4]. (For a discussion of determining sets in the context of locally compact
abelian groups or symmetric spaces see [2].)

2. Notation and terminology

For any unexplained notation or terminology please see [3].
Throughout this paper 2 denotes the Lebesgue measure on R". Let C denote

the class of all (finite) complex measures and P the class of all probability
measures on R’. If T is a tempered distribution (in the sense of Schwartz), then
T denotes the Fourier transform of T (which is again a distribution) and
Supp T denotes the (closed) support of T. For standard facts regarding distrib-
utions, Fourier transforms etc., see [3]. If g is a bounded Borel function on R",
then g defines a tempered distribution (see [3]) and will denote the (distribu-
tional) Fourier transform of g. If/ is a finite complex measure, t.hen/ # is the
bounded Borel function defined by

Finally, we note that for a complex measure or an Ll-function the usual notion
of Fourier transform coincides with the notion of distributional Fourier
transform.

If M is a class of measures on Rn, a Borel set E of R" is said to be a
"determining set" for M if/, v M ad (x + E)= v(x + E) for all x R"
implies/ v.
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F will always stand for the subset of R defined by

F {x (x, x) R; x > 0 for all i}.

If E
_
Rn, let 1 denote the indicator function of E; i.e., 1 e(x) 1 if x s E,

le(x) 0 if x E.
We end this section by quoting a result that will be needed in the next

section.

THEOREM 2.1. Let f be a bounded measurable function and K LI(R"). If
K f vanishes identically, then K vanishes on Supp f.

(Notre. For a proof of this theorem we refer to page 232 of [1]. Note that
SUpp f is called "spectrum of f" in [1]. The theorem is a consequence.of a
theorem of Beurling on the spectrum of a bounded distributionmsee page 230
of[i].)

3. The main results

As Sapagov has already observed in [4], if E is a Borel set of positive finite
measure and Supp 1E R", then E is a determining set for P. We prove that
this continues to be true even if we assume 2(E)= .

PROPOSITION 3.1. Let E be a Borel set of positive Lebesgue measure in R
(i.e., 0 < 2(E) < ). If SuppiE Rn, then E is a determining set for C.

Proof. If#, vC and #(x+E)=v(x+E) for allxRn,then/t, 1=
lr, where/(A) #(-A). Let f be an arbitrary Ll-function. Then we have

f, (/ 1)=f, ( 1). Now, an easy Fubini argument showsf, (/ 1)=
(f,/t), 1E and so we will have (f, (- )), 1 0. But f, (/t- )is an
L-function, and hence, by Theorem 2.1, (f, (/-))^ vanishes on
Supp ir- R". Hence, f, (/- )= 0 a.e on R". However, this is true for an
arbitrary f in L(R"). Hence,/- 0, so/t , # v, and the proof of the
proposition is complete.

The next proposition is probably well known in the folklore--the proof we
give here is due to H. Helson.

PROPOSITION 3.2. IfE is a Borel set ofR" contained in F with 0 < 2(E) < o,
then Supple R".

Proof. If 0 :/:f L(R") and Suppf_ F, then it follows from the definition
that f can be extended to a bounded function g in the region

H {z (z, z) C"; Im z < 0 for all i}.

g will be analytic in

no {z (z l, z) C"; Im z, < 0 for all i}
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and continuous in H. Thus f is the "boundary value" of a bounded analytic
function in Ho and consequentlyfcannot vanish identically on an open subset
of Rn; i.e., Supp f= Rn. To prove the proposition, we prove the slightly more
general result that if 0 6 h is a bounded Borel function with Supp h

_
F, then

Supp h R". To see this, let us assume h vanishes on a nonempty open set U of
Rn; i.e., (Supp U b. Let Xo 6 U. Choose e sufficiently small such that
the open ball of radius 2e with centre at x0 is contained in U. Let 0 4 h be a
function in LI(R") such that/1 is a C function and Supp/1 is contained in the
ball of radius e around 0. Then

Supp (hhl) Supp (/,/1)- Supp/ + Supp/1.

So, if U’= {x; I[x Xo < } then Supp (hhl) U’= qb. However, hhl is an
Ll-function with Supp hhl - F, and, by the first part of our proof, hha must be
zero almost everywhere on R". Since h is a C-function of compact support, ha
is the restriction of an entire function to R", and hence ha(x) 0 a.e.x. Thus, h
is zero almost everywhere which gives us a contradiction, and the proof of our
proposition is complete.

Propositions 3.1 and 3.2 together imply the following theorem:

THEOREM 3.3. Let E be a Borel subset of F. If 0 < 2(E) < o0, then E is a
determining set for C.

Remarks. (1) The method of proof of Proposition 3.2 can be modified to
prove the following slightly more general result: If T is a tempered distribution,
T @ 0 and Supp T

_
F, then Supp T R".

(2) Theorem 3.3 can be generalised slightly. Thus, for n 2, we can replace
F by the region between two half lines, where the angle between the half lines is
strictly less than ft. (F would correspond to the case of rt/2.)

(3) Proposition 3.1 is much in the same spirit as the following result proved
in [4]" If Supp e contains a nonempty open set then E is a determining set for
the class Pc of probability measures of compact support.

(4) For a discussion ofdetermining sets for measures of polynomial growth
and its connection with the Wiener-Tauberian theorem see [5].
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