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ORDER CONTINUOUS LINEAR FORMS

BY

BURKHARD KHN

Abstract. Characterizations of (sequentially) order continuous linear
forms on vector lattices are given in terms of their behaviour relative to
families of orthogonal elements. As a consequence, the non existence of
real measurable cardinals can be characterized by the property that the
sequentially order continuous and the order continuous linear forms on
order complete vector lattices coincide. This gives rise to a counter example
to a conjecture of[l].

We use the terminology of [3]. Two elements x, y of a vector lattice E
are said to be orthogonal if inf{Ixl, lyl} 0. The band of those elements
of E which are orthogonal to a subset A of E is denoted by A, i.e.,

A- {x E inf{Ixl, lyl} 0 for all y A}.

A vector lattice E has the principal projection property if every principal
band (B {x}) is a projection band. If every subset M of E which
possesses a supremum contains a countable subset A such that sup A
sup M, then the vector lattice E is said to be order separable. A bounded
linear formfon E is (sequentially) order continuous if every net (sequence)
(x) which decreases to zero satisfies limf(x) 0.

THEOREM. Let E be a vector lattice with the principal projection property
and f an order bounded linear form on E.

(a) A necessary and sufficient condition for f to be sequentially order
continuous is that for every orthogonal sequence (xn)nr in E/ for which
SUpnN Xn Xo exists we have f(Xo) En=lf(xn).

(b) A necessary, and sufficient condition for f to be order continuous
is that for every set A ofpairwise orthogonal elements in E/ for which sup
A Xo exists we have f(Xo) ExSA f(x).

Proof. The conditions are clearly necessary. Conversely let us suppose
that f satisfies our condition of either (a) or (b) above. Then the same will
be true of f+ and hence also of Ifl 2f+ f. This follows by an easy
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argument .from the relation f+(x) SUpo_y_ f(y) for all x E+. Hence
we may and do suppose in addition that f is positive. We now prove the
sufficiency of the conditions in (a) and (b) separately.

(a) Let (x,), be a sequence in E such that x, + o. For any given e
(o, 1) we denote by P, the band projection associated with the principal

band generated by (x, ex)+. We let y, P,(Xl). By means of the relation

(x, exl)< (x, exl) + P,(x, ex)

the following properties of y, hold:

(i) e-x, > P,(x) and hence y, $ o,
(ii) x. <y. + eXl.

By construction, the sequence (y, y,+l), is orthogonal and, by (i),
satisfies the identity

yl yl inf y,+ sup (y y,+
nN nN

sup (Yi- Yi+) sup (y, y,+).
nN i= nN

We now use the condition of (a) to deduce that f(yl) f(Y,+l)
f(Y yi+l) converges to f(y), i.e., lim,__.= f(y,) o. Thus we obtain
from (ii) the relation

o < f(x,) < f(y,) + ef(xl) < e + ef(Xl)

for n sufficiently large. Since e was arbitrary, lim,_= f(x,) o, so that f
is sequentially order continuous.

(b) By part (a) we know that f is sequentially order continuous. Hence
N(f) {x E:f(Ixl) o} is a (r-ideal.

We choose a maximal family {u a A} of pairwise orthogonal positive
elements of N(f). Clearly, N(f) +/-+/- {u’a A}"+/-. For any positive x in
the band N(f)+/- we let x sup,eN X / nu for each a A. We can
represent x as x supe x, where the x are pairwise orthogonal elements
in N(f). Our condition implies f(x) YeA f(x) o. Hence N(f) is a
band and our proof is complete by virtue of the following lemma.

LEMMA. Let E denote an archimedean vector lattice and let f denote a
positive sequentially order continuous linear form on E. If the absolute
kernel N(f) {x E:f(IxI) 0} is a band, then f is order continuous.

Proof. The archimedean vector lattice E possesses a Dedekind com-
pletion . In the sequel we regard E as a vector sublattice of/. Every
positive functional g Eb has a positive linear extension to given by
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(u) sup g(x) sup g(y).
ox<u oy<u-
xE yE

Moreover, g and are simultaneously order continuous. This is a conse-
quence of the following property of archimedean vector lattices. If {ya}s
denotes the decreasing net of all upper bounds of a given net {X}A in E
such that x ’ x, then (ya x)$ 0, a A,/3 B [2, Theorem 22.5]. At
the same time we see that the extension is unique if we restrict attention
to the order continuous functionals.
Now suppose that N(f) is a band. We shall show that

is a band in/. We consider a positive net {,} in N(f) such that ’and let e > o be given. By definition there exists a positive element
x E such that the inequalities

o<x <2 and f(2) <f(x) + e

are satisfied. As a result of the relation 2 sup[o, x] E we can express
x as x sup[o, x] f3 N(f). Since N(f) is a band, it follows that

o +
Thus f() o, so that N(f’) is likewise a band.
The linear formf is strictly positive on N(f)+/- and hence N(f)+/- is order

separable [3, Prop. II.4.9]. Using the definitions of/ and f it is easy to
see that f is sequentially order continuous and hence order continuous on
the band N(f)+/-. Finally as a consequence of/ N(f) + N(f)x, the
linear forms f and f are order continuous.

Remarks. 1. Similar characterizations of order continuous and sequen-
tially order continuous lattice semi-norms can be given in terms of their
behaviour relations to families of orthogonal elements.

2. Theorem (a) is more generally true for order bounded maps T from
E to arbitrary order complete vector lattices F. Theorem (b) can be extended
to such linear maps T under the additional assumption that the order con-
tinuous linear forms on F separate points.

3. The following example shows that the condition "E has the principal
projection property" in the theorem above cannot be omitted: Let E
C([0, 1]). Every Dirac measure Sx for x [0, 1] on E satisfies the ortho-
gonality condition of our Theorem. However, it is well known that Dirac
measures are not sequentially order continuous.
A cardinal I is said to be real measurable if and only if there exists a

measure Ix - 0 on the power set of I with/x({a}) 0 for each a I (i.e.,
/x is a diffuse measure 0 on (I)). It is known that on the basis of ZF
(axioms of Zermelo-Fraenkel) and AC (axiom of choice) and generalized
CH (continuum hypothesis) the existence of real measurable cardinals can-
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not be proved. On the contrary, much effort has been made to prove the
nonexistence. In any case real measurable cardinals are, on the basis of
ZF, AC, CH, much larger than all "good" cardinals; for instance they are
inaccessible (see [4]-[6]).

In [1] the (non)existence of real measurable cardinals is considered in
connection with "residual measures". In view of a result of [1] and the
corollary at the end of this paper we make the following observations. If
the existence of real measurable cardinals is presupposed, then there exist
compact spaces X and measures 0 4: /x M/(X) which vanish on all
compact nowhere dense Baire sets without being residual. In other words,
there are meager subsets M C_ X for which/x(M) - 0. Conversely, Arm-
strong-Prikry conjecture that the existence of such compact spaces implies
the existence of real measurable cardinals. The following example shows
that this is false even for quasi-Stonian compacta.

Example. Let X R U {oo} denote the Alexandroff compactification
of (R, d), where d denotes the discrete topology. On the one hand, if B

is a compact nowhere dense subset, then clearly B {oo}. On the other
hand, the Baire algebra on X consists of sets M with the following property"

CM is countable if oo belongs to M and M is countable, if o M.

Hence all measures/x M+(X) vanish on compact nowhere dense Baire
sets B, since B is always satisfied. However, the measure = is non-
residual, because {oo} is meager.

Finally, as a consequence of our theorem we prove in the vector lattice
setting the following result, which goes back to [1].

COROLLARY. The following statements are equivalent:

1. There does not exist a real measurable cardinal.
2 The sequentially order continuous and the order continuous linear

forms on order complete vector lattices coincide.
3. If the order continuous functionals on an order complete vector

lattice E separate points, then every sequentially order continuous func-
tional on E is already order continuous.

Proof. 1 2. Letfdenote a countably order continuous. (without loss
of generality) positive linear form on an order complete vector lattice E.
Let us assume that f is not order continuous. Then our theorem (proof and
lemma) implies the existence of an order bounded family {x c A} of
positive., and pairwise orthogonal elements of E with the following two
properties"

f(x) 0 for allcA and f(supx) 0.
otA

For every sequence (An)neN of disjoint subsets of A we then have
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f sup x’a An f(sup (sup x)) f(sup x),
nN nN aAn aAn

so that M -, f(supM X) clearly defines a finite diffuse non-zero measure
on the power set of A. This provides the desired contradiction to property
1"The implication 2 3 is clearly true.

3 1. Let / denote a finite diffuse measure on the power set of a
non-empty set A. The space (/) forms an order complete vector lattice
on which / operates in a countably order continuous manner. By our
hypothesis we therefore obtain

(A) /({ct}) 0.
aA

|

Remark. For a sequentially order continuous linear form f on an order
complete vector lattice our method shows" if the absolute kernel off pos-
sesses a maximal orthogonal system of non real measurable cardinality,
then f is order continuous.
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