THE PRODUCT OF TWO OR MORE NEIGHBORING INTEGERS IS NEVER A POWER

BY

JAN TURK

1. Introduction

In 1975 Erdös and Selfridge [1] proved the elegant result: the product of two or more consecutive positive integers is never a power. Earlier, Rigge [6] and, independently, Erdös [7] had shown that such a product is never a square.

In this paper we prove a generalisation, namely: the product of two or more neighboring integers is never a power.

Here we say that distinct integers are *neighboring* if they belong to a short interval $(N, N + c\log \log \log N)$ for some absolute constant c (and, of course, if $N \le 16$ we interpret log log log N as 1). Our principal result is false for infinitely many N if the interval is lengthened to

$\exp(12(\log N \log \log N)^{1/2}),$

and is false for all N if the interval is as long as $cN^{1/2-\varepsilon}$ for certain positive constants c, ε .

Actually, we consider a more general situation. Our products of neighboring integers allow for repetition, so our statement becomes that *the product* of two or more neighboring integers, allowing repetition, is never, other than trivially, a power. Moreover, we deal with "almost powers" rather than "perfect powers." This is to say: we consider quantities of the shape ab^m with the integer a "small" relative to b^m and we actually show that the quantities we consider are never (other than trivially) "almost powers."

Finally we remark on what constitutes "triviality." We consider finite products

$\prod n_i^{m_i}$,

with the n_i in the given "short interval," and consider such products "not trivially a possible almost *m*-th power" if $gcd(m,m_i) = 1$ for each *i*. It would seem more natural to ask of the m_i that not all the m_i be multiples of *m*. But this raises considerable difficulties: though Tijdeman [8] has shown that two sufficiently large *consecutive* integers cannot both be powers,

Received June 1, 1981.

^{© 1983} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

it has not been established that large neighboring integers cannot both be powers; this, and more, is required to effect the desired relaxation of the condition on the m_i .

2. Lemmas

Notation. For $a,m \in IN$ with $m \ge 2$ we denote the set of integers of the form ax^m , $x \in IN$, by aIN^m . As usual, $\omega(n)$ is the number of distinct primes dividing $n \in IN$, P(n) is the greatest prime dividing n > 1, while P(1) = 1. The greatest common divisor of n and m is denoted by gcd(n,m) and the least common multiple of n_1, \ldots, n_f by $lcm[n_1, \ldots, n_f]$. We write |S| for the number of elements of a set S.

LEMMA 1. Let $a,m,f \in \mathbb{IN}$ with $m \ge 2$ and $f \ge 2$. Let n_1, \dots, n_f be distinct positive integers in an interval of length K with the property that $\prod_{i=1}^{f} n_i^{m_i} \in a\mathbb{IN}^m$ for certain $m_1, \dots, m_f \in \mathbb{IN}$ with $gcd(m_i,m) = 1$ for $1 \le i \le f$. Write $n_i = a_i x_i^m$, $a = a_0 x_0^m$ with $a_i, x_i \in \mathbb{IN}$ and a_i m-free for $0 \le i \le f$. Then:

(1) a_1, \dots, a_f are composed of the primes dividing a_0 and the primes not exceeding K.

(2)
$$a_i \leq \exp\left(m\left(CK + \sum_{p \mid a_0} \log p\right)\right)$$
 for $i = 1, \dots, f$, where C is some

absolute constant.

(3)
$$a_i \leq \exp\left(m\left((f-1)\log K + \sum_{p\mid a_0}\log p\right)\right)$$
 for $i = 1, \cdots, f$.

(4) There exist two (three if $f \ge 3$) a_i 's with

$$a_i \leq \exp\left(Cf^{-1}\left(mK + K\log K + m\sum_{p\mid a_0}\log p\right)\right),$$

where C is some absolute constant.

(5) There exist two (three if $f \ge 3$) a_i 's with

$$a_i \leq \exp\left(Cm\left(K^{1/2}(\log K)^{1/2} + \sum_{p|a_0} \log p\right)\right),$$

where C is some absolute constant.

Proof. Let, for $n \in IN$, $\prod_p p^{v_p(n)} = n$ be the prime factorization of n. Then we have, for every prime p,

$$\sum_{i=1}^{J} m_i v_p(a_i) \equiv v_p(a_0) \pmod{m}.$$

Hence if $p \nmid a_0$ and $p \mid a_i$ for some $1 \leq i \leq f$ then $p \mid a_j$ for some $1 \leq j \leq f, j \neq i$. It follows from $p \mid gcd(a_i, a_j)$ that $p \mid gcd(n_i, n_j)$ which divides $n_i - n_j \neq 0$. Hence $p \leq |n_i - n_j| \leq K$. This proves (1). Since a_i is *m*-free it follows from (1) that, for $1 \leq i \leq f$,

$$a_i = \prod_p p^{\nu_p(a_i)} \leq \left(\prod_{p \leq K} p \cdot \prod_{p \mid a_0} p\right)^{m-1} \leq \left(C_0^K \prod_{p \mid a_0} p\right)^{m-1},$$

which implies (2), with $C = \log C_0$, and $C_0 = 3$ for example. To prove (3) we note that, in view of the foregoing, a_i divides

$$\prod_{p\mid a_0} p^{\nu_p(a_i)} \prod_{\substack{j=1\\j\neq i}}^f \prod_{\substack{p\mid a_j\\p \mid a_0}} p^{\nu_p(a_i)}$$

which divides

$$\left(\prod_{p\mid a_0} p\right)^{m-1} \left(\prod_{\substack{j=1\\j\neq i}}^{f} \gcd(a_i, a_j)^{m-1}\right).$$

As observed already, $gcd(a_i, a_j) \le K$ for $i \ne j$ which gives (3). To prove (4) we consider

$$\prod_{i=1}^{f} a_i = \prod_p p^{\alpha_{\overline{p}}} = \prod_{p \leq K} p^{\alpha_p} \prod_{\substack{p > K \\ p \mid a_0}} p^{\nu_p} \text{ where } \alpha_p = \sum_{i=1}^{f} \nu_p(a_i)$$

where $0 \le v_p \le m - 1$. Note that

$$\sum_{i=1}^{f} v_p(a_i) = \sum_{j=1}^{m-1} |\{1 \le i \le f \mid p^j \text{ divides } a_i\}|$$

$$\leq \sum_{j=1}^{m-1} |\{1 \le i \le f \mid p^j \text{ divides } n_i\}|$$

$$\leq \sum_{j=1}^{m-1} (1 + [Kp^{-j}])$$

$$\leq m - 1 + \sum_{j=1}^{\infty} [Kp^{-j}]$$

$$= m - 1 + v_p(K!).$$

Hence

$$\prod_{i=1}^{f} a_i \leq \prod_{p \leq K} p^{m-1}(K!) \prod_{p \mid a_0} p^{m-1} \leq \exp(C_0 K m + K \log K + m \sum_{p \mid a_0} \log p).$$

If $f \ge 3$ there exist at least three a_i 's with $a_i \le (\prod_{i=1}^f a_i)^{1/(f-2)}$, hence with

$$a_i \leq \exp(3f^{-1}(C_0Km + K\log K + m\sum_{p|a_0}\log p)).$$

If f = 2 then we have, by (3), $a_i \leq \exp(m(\log K + \sum_{p|a_0} \log p))$ for i = 1,2. This proves (4) (with $C = 3C_0$, e.g., with $C = 3 \log 3$).

To prove (5) we distinguish two cases. If

$$f \ge 2 + [K^{1/2}(\log K)^{-1/2}] =: \lambda$$

then we have $3 \leq \lambda \leq f$ and

$$\prod_{i=1}^{\lambda} a_i \leq \operatorname{lcm}[a_1, \cdots, a_{\lambda}] \prod_{1 \leq i < j \leq \lambda} \operatorname{gcd}(a_i, a_j)$$
$$\leq \prod_{\substack{p \mid a_0 \\ p > K}} p^{m-1} \cdot \prod_{p \leq K} p^{m-1} \cdot K^{\lambda(\lambda-1)/2}$$
$$\leq \exp((m-1)(C_0K + \sum_{p \mid a_0} \log p) + \lambda(\lambda - 1)/2 \cdot \log K).$$

Since there exist at least three a_i 's among a_1, \dots, a_{λ} with

$$a_i \leq \left(\prod_{i=1}^{\lambda} a_i\right)^{1/(\lambda-2)}$$

it follows that there exist at least three a_i 's with

$$a_i \leq \exp(3/2 \cdot (\lambda - 1)\log K + 3(m - 1)\lambda^{-1}(C_0 K + \sum_{p|a_0} \log p))$$

$$\leq \exp(3C_0 m K^{1/2} (\log K)^{1/2} + m \sum_{p|a_0} \log p).$$

If
$$f \le 1 + [K^{1/2}(\log K)^{-1/2}]$$
 then we have, by (3),
 $a_i \le \exp(m(K^{1/2}(\log K)^{1/2} + \sum_{p \mid a_0} \log p)) \text{ for } 1 \le i \le f$

so that (5) holds in both cases with $C = 3C_0$ (e.g., $C = 3 \log 3$).

LEMMA 2. Suppose the interval [N, N + K], where $1 \le K \le N^{2/3}$, contains two distinct integers n_i of the form $n_i = a_i x_i^m$ where $a_i, x_i \in IN$ for i = 1, 2 with $m \ge 3$. Let p_1, \dots, p_t be the distinct primes dividing a_1a_2 and put

$$a = p_1 \cdots p_t, \quad A = \max\{p_1, \cdots, p_t, 3\}.$$

Then

(1)
$$\begin{cases} m \leq a^{C_1} & \text{if } (x_1, x_2) \neq (1, 1) \\ \log N \leq a^{C_1} & \text{if } (x_1, x_2) = (1, 1), \end{cases}$$

~

JAN TURK

$$(2) A^{C_2m^3}\log 3K\log\log 3K > \log N,$$

where C_1 and C_2 are absolute constants.

Proof. See [2, Proposition 1].

LEMMA 3. Suppose the interval [N, N + K], where $N \ge 1$, $K \ge 1$, contains three distinct integers n_i of the form $n_i = a_i x_i^2$, where $a_i, x_i \in IN$. Put $A = \max \{a_1, a_2, a_3, 3\}$. Then

 $CA^{3+\varepsilon} \log 3K \log \log 3K > \log N$,

where $\varepsilon > 0$ is arbitrary and $C = C(\varepsilon) > 0$.

Proof. See [2, Proposition 2].

The proofs of Lemmas 2 and 3 are based on a lower bound for linear forms in logarithms of rational numbers.

3. Products of neighboring integers and almost powers: The general case

THEOREM 1. There exist positive numbers c_1 , c_2 and c_3 with the following property. For $N \ge 16$ write $K(N) = c_1 \log \log \log(N)$. For $f \ge 2$, let n_1 , \cdots , n_f be f distinct integers in an interval of the form $I_N = [N, N + K(N)]$. Let $m \in IN$ with $m \ge 2$ and let $m_1, \cdots, m_f \in IN$ with $gcd(m, m_i) = 1$ for $i = 1, \cdots, f$. Write $\prod_{i=1}^{f} n_i^{m_i} = ab$, where $a \in IN$, $b \in IN^m$. Then

 $a > (\log \log N)^{c_2}(>1)$ and $P(a) > c_3 \log \log \log N$

except if f = 2, m = 2, $a \notin IN^2$. In fact, if $a \notin IN^2$ then $n_1n_2 \in aIN^2$ with $n_1 \neq n_2$ in I_N occurs for infinitely many intervals I_N , $N \in IN$.

Proof of Theorem 1. For $f \ge 2$, suppose n_1, \dots, n_f are f distinct integers in an interval [N, N + K], where $N \ge 16$ and $K \ge 1$. Let $m \in IN$ with $m \ge 2$ and let $m_1, \dots, m_f \in IN$ with gcd $(m, m_i) = 1$. Suppose

$$\prod_{i=1}^{f} n_i^{m_i} \in a \mathbf{I} \mathbf{N}^m \quad \text{where } a \in \mathbf{I} \mathbf{N}.$$

Write $n_i = a_i x_i^m$, $a = a_0 x_0^m$ with $a_i, x_i \in IN$ and a_i *m*-free for $0 \le i \le f$. First we consider the cases where f = m = 2. If $a \in IN^2$ then it follows from $n_1^{m_1} n_2^{m_2} \in aIN^2$, m_1, m_2 odd, that $a_1 = a_2$; hence [N, N + K] contains two distinct integers of the form $a_1 x_1^2, a_1 x_2^2$, which implies that $K > N^{1/2}$. Hence if $K \le N^{1/2}$ and f = m = 2 then $a \notin IN^2$. It is well known that for every $a \notin IN^2$ there exist infinitely many $x_1, x_2 \in IN$ with $x_1^2 - ax_2^2 = 1$; hence $n_1 = x_1^2$, $n_2 = ax_2^2$ satisfy $n_1 n_2 \in aIN^2$ and $n_1 - n_2 = 1$. We have proved our assertions about the cases f = m = 2 in Theorem 1 and we may assume $f \ge 3$ if m = 2 now. We distinguish two cases. Case 1. m = 2 ($f \ge 3$). By Lemma 1, (5), the interval [N, N + K] contains three distinct integers $a_i x_i^2$ with

$$a_i \leq \exp\{C(K^{1/2}(\log K)^{1/2} + \sum_{p|a_0} \log p)\} =: A.$$

By Lemma 3 we have $A^4(\log 3 K)^2 \gg \log N$. It follows that

$$K^{1/2}(\log K)^{1/2} + \sum_{p|a_0} \log p > \delta_1 \log \log N$$

for some absolute positive constant δ_1 . In particular, if

$$K^{1/2}(\log K)^{1/2} \leq \frac{1}{2} \delta_1 \log \log N,$$

then $\sum_{p|a_0} \log p > \delta_1/2 \log \log N$. Since

$$\sum_{p|a_0} \log p \leq \log a_0 \quad \text{and} \quad \sum_{p|a_0} \log p \leq \sum_{p \leq P(a_0)} \log p \leq \delta_0 P(a_0)$$

for some absolute constant δ_0 we conclude that if

 $K < \delta_2 (\log \log N)^2 (\log \log \log N)^{-1}$

for some small absolute constant δ_2 then

 $a_0 > (\log N)^{\delta_1/2}$ and $P(a_0) > \delta_1/(2\delta_0) \log \log N$.

Case 2. $m \ge 3$. Now [N, N + K] contains, by Lemma 1, (5), two distinct integers $a_i x_i^m$ with

$$a_i \leq \exp\left(Cm\left(K^{1/2}(\log K)^{1/2} + \sum_{p\mid a_0} \log p\right)\right) =: A.$$

By Lemma 2, (2), assuming that $K \leq N^{2/3}$, we have

(*)
$$m^4 \left(K^{1/2} (\log K)^{1/2} + \sum_{p \mid a_0} \log p \right) >> \log \log N.$$

We have to bound the exponent *m* now. By Lemma 2, (1) and Lemma 1, (1), assuming $K \leq N^{2/3}$ again, we have

$$m \leq \left(\sum_{p \mid a_0} p \prod_{p \leq K} p\right)^{C_1} \quad \text{if the } x_i \text{ are not both } 1,$$
$$\log N \leq \left(\prod_{p \mid a_0} p \prod_{p \leq K} p\right)^{C_1} \quad \text{if the } x_i \text{ are both } 1.$$

In the latter case $(x_i = 1 \text{ for both } i)$ we get $\log \log N \ll K + \sum_{p|a_0} \log p$. In the other case we obtain $\log m \ll K + \sum_{p|a_0} \log p$. Inserting this bound for m in (*) we get

$$K + \sum_{p|a_0} \log p > \delta_3 \log \log \log N$$

for some absolute positive constant δ_3 (< 1). In particular, if

$$K \le c_1 \log \log \log N \, (< N^{2/3})$$

for some small positive constant c_1 , then $\sum_{p|a_0} \log p > \frac{1}{2} \delta_3 \log \log \log N$, which implies

$$a_0 > (\log \log N)^{\delta_3/2}$$
 and $P(a_0) > \delta_3/(2\delta_0) \cdot \log \log \log N$.

Note that it is essential that the bound for *m* in Lemma 2, (1) depends only on the prime divisors of a_1a_2 , not just on a_1 and a_2 .

COROLLARY 1. The product of two or more distinct integers from an interval of the form $I_N = [N, N + c_1 \log \log \log N], N \ge 16$, is never a power.

Remark. By Theorem 1, $\prod_{i=1}^{f} n_i^{m_i} \notin \mathbb{IN}^m$ if $n_1, \dots, n_f \in I_N$, $N \ge 16, f \ge 2$ for any $m \in \mathbb{IN}$ with $m \ge 2$ and any $m_1, \dots, m_f \in \mathbb{IN}$ with $gcd(m, m_i) = 1$ for $i = 1, \dots, f$. It would be interesting to relax the conditions on the multiplicities m_1, \dots, m_f , possibly to "not all m_1, \dots, m_f are multiples of m." This seems to be a difficult matter, however: observe that two distinct powers $n_1 = x_1^{m_1}, n_2 = x_2^{m_2}$ satisfy $n_1^{m_2} n_2^{m_1} \in \mathbb{IN}^m$ with $m = m_1 m_2$. It has not been established that two distinct powers cannot be neighboring integers; the only known general result in this respect is that two sufficiently large distinct powers cannot be consecutive integers (Tijdeman, 1976).

COROLLARY 2. Let $a \in IN$. The product of three or more distinct integers n_1, \dots, n_f from an interval $I_N, N \ge 16$, is not of the form ab for any power b, except for finitely many sets $\{n_1, \dots, n_f\}$. (If $a \in IN^2$ then one may replace "three" by "two" in the above assertion).

In [2], [3] we introduced the notion of an almost power: let ϕ : IN \rightarrow IN be a non-decreasing function. An integer *n* is called an ϕ -almost power if it can be written as n = ab, where *b* is a power and $a \in$ IN with (1 <) $a \leq \phi(n)$. A different, perhaps more natural, notion of an almost power results if one replaces the condition $(1 <) a \leq \phi(n)$ by $(1 <) P(a) \leq \phi(n)$: *n* is a power iff there exists an $m \in$ IN with $m \geq 2$ such that $v_p(n) \in m\mathbb{Z}$ for all primes *p*, while in the latter definition of almost power we require $v_p(n) \in m\mathbb{Z}$ for all $p > \phi(n)$.

COROLLARY 3. The product of three or more distinct integers from an interval I_N , $N \ge 16$, is never a ϕ -almost power (in both senses, with $\phi(n) = (\log \log n)^{c_4}$ and $\phi(n) = c_5 \log \log \log n$, respectively, where c_4 and c_5 are positive absolute constants).

398

Proof. For $f \ge 3$, suppose n_1, \dots, n_f are f distinct integers in I_N ; write $n = \prod_{i=1}^f n_i = ab$, where b is some power and $a \in IN$. Then

 $a > (\log \log N)^{c_2}$ and $P(a) > c_3 \log \log \log N$.

Note that since $N \leq n_i \leq 2N$ we have $n = \prod_{i=1}^f n_i \leq (2N)^f$; hence

 $\log \log N \leq \log \log n \leq C \log \log N,$

where C is some absolute constant. Since $a \ge 2$, $P(a) \ge 2$, it follows easily that

 $a > (\log \log n)^{c_4}$ and $P(a) > c_5 \log \log \log n$

if c_4 and c_5 are sufficiently small positive absolute constants.

4. Products of neighboring integers and almost powers: Special cases

The intervals I_N in Section 3 are rather short. This is due to the fact that the exponent *m* is unspecified. When *m* is fixed (e.g., when one asks for neighboring integers whose product is a square) then one can allow for longer intervals.

THEOREM 2. Let $m \in \mathbb{IN}$ with $m \ge 2$. For $N \ge 16$ write $K^{(m)}(N) = c_6 m^{-8} (\log \log N)^2 (\log \log \log N)^{-1}$.

For $f \ge 2$, let n_1, \dots, n_f be f distinct integers in an interval of the form

 $I_N^{(m)} = [N, N + K^{(m)}(N)], N \ge 16$

and let $m_1, \dots, m_f \in IN$ with $gcd(m, m_i) = 1$ for $i = 1, \dots, f$. Write

$$\prod_{i=1}^{J} n_i^{m_i} = ab \quad where \ a \in \mathbf{IN}, \ b \in \mathbf{IN}^m.$$

Then

 $a > (\log N)^{c_7 m^{-4}}$ and $P(a) > c_8 m^{-4} \log \log N$,

except if m = 2, f = 2 and $a \notin IN^2$. Here c_6 , c_7 and c_8 are fixed positive numbers.

COROLLARY 4. The product of two or more distinct integers from an interval $[N, N + c_9(\log \log N)^2(\log \log \log N)^{-1}], N \ge 16$, is never a square or a cube.

Proof of Theorem 2. See the proof of Theorem 1; we do not have to bound m now and in Case 2 we conclude from (*) that if

 $K^{1/2}(\log K)^{1/2} < cm^{-4} \log \log N \quad \text{for some small } c > 0$ then $\Sigma_{p|a_0} \log p >> m^{-4} \log \log N$. In Theorems 1 and 2 the sets $\{n_1, \dots, n_f\}$ are arbitrary sets contained in short intervals. One can enlarge the lengths of the intervals if the sets $\{n_1, \dots, n_f\}$ are restricted in one of the following ways: the number of elements f is "small" or the average distance

$$\frac{n_f - n_1}{f - 1} \quad (n_1 < \dots < n_f)$$

is "small."

THEOREM 3. Let $m \in IN$ with $m \ge 2$, let $F \ge 2, \Delta \ge 1$ and $0 \le \varepsilon < 1$. For $N \ge 3$, let

$$K_i(N) = \frac{1}{2} \exp(c_i (\log \log N)^{1-\epsilon}), \quad i = 1, 2,$$

where $c_1 = c_{10}m^{-4}F^{-1}$ and $c_2 = c_{10}m^{-4}\Delta^{-1}$. For $f \ge 2$, let $n_1 < \cdots < n_f$ be f distinct integers in an interval of the form $[N, N + K_i(N)]$, $N \ge 3$, with

$$f \le F(\log \log N)^{\varepsilon} \quad \text{if } i = 1,$$
$$\frac{n_f - n_1}{f - 1} \le \Delta(\log \log N)^{\varepsilon} \quad \text{if } i = 2.$$

Let $m_1, \dots, m_f \in IN$ with $gcd(m, m_i) = 1$ for $i = 1, \dots, f$, and write

$$\prod_{i=1}^{f} n^{m_i} = ab \quad where \ a \in \mathbf{IN}, \ b \in \mathbf{IN}^m.$$

Then

$$a > (\log N)^{c_{11}m^{-4}}$$
 and $P(a) > c_{12}m^{-4}\log\log N$,

except if m = 2, f = 2 and $a \notin IN^2$. Here c_{10}, c_{11}, c_{12} are positive absolute constants.

COROLLARY 5. Let $m, f \in IN$ with $m \ge 2, f \ge 2$. Let n_1, \dots, n_f be distinct integers in an interval of the form

$$\left[N, N + \frac{1}{2} (\log N)^{c_{13}}\right] \quad where \ c_{13} = c_{10} m^{-4} f^{-1}.$$

Then $\Pi_{i=1}^{f} n_i \notin \mathbb{IN}^m$. Let $m \in \mathbb{IN}$ with $m \ge 2$ and let $\Delta \ge 1$. Let n_1, \dots, n_f be distinct integers in an interval of the form

$$\left[N, N + \frac{1}{2}(\log N)^{c_{14}}\right] \quad where \ c_{14} = c_{10}m^{-4}\Delta^{-1} \ with \ \frac{n_f - n_1}{f - 1} \leq \Delta.$$

Then $\Pi_{i=1}^f n_i \notin \mathbf{IN}^m$.

Proof of Theorem 3. This is similar to the proof of Theorem 2; instead of Lemma 1, (5) use Lemma 1, (3) if i = 1 and Lemma 1, (4) if i = 2.

5. Intervals containing integers having a power as their product

It seems reasonable to guess that the assertions in Corollaries 1 and 4 are true for longer "short intervals." In this final section we prove that these assertions certainly do not hold for sufficiently long (but still "short") intervals.

THEOREM 4. For $N \ge 3$ let $K_3(N) = \exp(12(\log N \log \log N)^{1/2})$. For every $m \in IN$ with $m \ge 2$ there exists an infinite set $N_m \subset IN$ such that for every $N \in N_m$ the interval $[N, N + K_3(N)]$ contains a subset $\{n_1, \dots, n_f\}$ consisting of f integers, $f = f(N) \ge 2$, with the property that

$$\prod_{i=1}^{n} n_i^{m_i} \in \mathbf{IN}^m \quad for \ certain \ m_1, \ \cdots, \ m_f \in \{1, \ \cdots, \ m-1\}$$

COROLLARY 5. There exist infinitely many $N \in IN$ such that $[N, N + K_3(N)]$ contains two or more distinct integers having a power (in fact, a square) as their product.

Proof of Theorem 4. It is known (e.g., see [4, Theorem 5.4]) that there exist infinitely many $N \in IN$ such that the interval $[N, N + K_3(N)]$ contains a subset S^* of integers with $\omega(S^*) < \sqrt{|S^*|}$ and $|S^*| > K_3(N)^{1/3}$, where |S| denotes the number of elements of a set S and $\omega(S)$ the number of elements |P| of the set P of prime divisors of $\prod_{s \in S} s$. Let $m \in IN$ with $m \ge 2$. For sufficiently large N the interval $[N, N + K_3(N)]$ contains at most one element from IN^d , for every d > 1. Delete from S^* those s with the property that $s \in IN^d$ for some d > 1 with $d \mid m$. For N sufficiently large (in terms of m), and denoting the number of divisors of m by d(m), we have, for the resulting set S,

$$\begin{split} |S| &\ge |S^*| - d(m) \\ &\ge 2 \frac{\log m}{\log 2} \sqrt{|S^*|} \\ &\ge \frac{\log m}{\log 2} (\omega(S^*) + 1) \\ &\ge \frac{\log m}{\log 2} (\omega(S) + 1). \end{split}$$

For every subset $T \subset S$ we define $\phi(T) = (\varepsilon_p)_{p \in P}$, where

$$\varepsilon_p \in \{0,1,\cdots,m-1\}, \quad \varepsilon_p \equiv \sum_{s\in S} v_p(s) \pmod{m}.$$

We have $2^{|S|}$ distinct sets T and at most $m^{|P|} = m^{\omega(S)}$ distinct tuples $\phi(T)$. By the box principle there exists a tuple $(\varepsilon_p)_{p \in P}$ such that there exist at least $2^{|S|}/m^{\omega(S)}$ ($\geq m$) distinct T with $\phi(T) = (\varepsilon_p)_{p \in P}$, say $\phi(T_i) = (\varepsilon_p)_{p \in P}$ for $i = 1, \dots, m$. Put $a = \prod_{p \in P} p^{\varepsilon_p}$, then $\prod_{t \in T_i} t \in a \mathbb{IN}^m$ for $i = 1, \dots, m$. Hence

$$\prod_{t\in T_1\cup\cdots\cup T_m}t^{m(t)}=\prod_{i=1}^m\prod_{t\in T_i}t\in\mathbf{IN}^m,$$

where m(t) denotes the number of T_i , $1 \le i \le m$, with $t \in T_i$. Let n_1, \dots, n_f be those $t \in T_1 \cup \dots \cup T_m$ with

$$m(t) \in \{1, \cdots, m-1\}.$$

Since T_1, \dots, T_m are not all equal we have $f \ge 1$ and since $t \notin \mathbb{IN}^d$ for any d > 1 with $d \mid m$ we have $f \ge 2$. Hence

$$\prod_{i=1}^{J} n_i^{m_i} \in \mathbf{IN}^m \quad \text{where } f \ge 2 \text{ and } m_i = m(n_i) \in \{1, \cdots, m-1\}. \quad \blacksquare$$

THEOREM 5. Let $K_4(N) = c_{15}N^{1/2-\varepsilon_0}$, where c_{15} and ε_0 are certain positive constants. For every $N \ge 1$ the interval $[N, N + K_4(N)]$ contains two or more distinct integers having a power as their product.

Proof. It follows from the argument in the proof of Theorem 4 that if S is a set of positive integers with $\omega(S) + 1 \leq |S|$ which does not contain a square then there exists a subset T of S with $|T| \geq 2$ and $\prod_{t \in T} t \in \mathbf{IN}^2$. It is known (e.g., see [4, page 16], or [5]) that if $n, k \in \mathbf{IN}$ with $k \geq c_{15}n^{1/2-\varepsilon_0}$, with ε_0 a small positive constant and c_{15} a large constant, then

$$\omega((n+1)\cdots(n+k)) \leq k-2.$$

Now the set $S^* = \{n + 1, \dots, n + k\}$ contains a subset T with $|T| \ge 2$ and $\prod_{t \in T} t \in IN^2$: if S^* contains two squares then this is obvious; if S^* contains one or zero squares then we apply the above argument to $S = S^*$ minus the square in S^* , or to $S = S^*$, respectively.

References

- 1. P. ERDÖS and J. L. SELFRIDGE, *The product of consecutive integers is never a power*, Illinois J. of Math., vol. 19 (1975), pp. 292–301.
- 2. J. TURK, Almost powers in short intervals, J. Number Theory, to appear.
- 3. ——, Polynomial values and almost powers, Mich. J. of Math., vol. 29 (1982), pp. 213–220.
- 4. , Multiplicative properties of neighbouring integers, Thesis (Leiden), 1979.
- 5. P. ERDÖS and C. POMERANCE, An analogue of Grimm's problem of finding distinct prime factors of consecutive integers, preprint.

- 6. O. RIGGE, Ueber ein diophantisches Problem, 9th Congress Math. Scand., Helsingfors, 1938, Mercator, Helsingfors, 1939, pp. 155-160.
- 7. P. Erdös, Note on the products of consecutive integers, J. London Math. Soc., vol. 14 (1939), pp. 194-198.
- 8. R. TIJDEMAN, On the equation of Catalan, Acta Arith., vol. 29 (1976), pp. 197-209.

University of Michigan Ann Arbor, Michigan Econometríc Institute, Erasmus University Rotterdam, The Netherlands