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INTRINSICALLY (n 1)-DIMENSIONAL CELLULAR
DECOMPOSITIONS OF S"

BY

ROBERT J. DAVERMAN AND DENNIS J. GARITY

This paper continues investigation into the differences between generalized
manifolds and classical manifolds. The generalized n-manifolds X studied
here arise as cell-like images of an n-manifold M under a natural decomposition
map zr. In this setting, the difference between X and M is measured by a
notion of intrinsic (nonmanifold) dimension---namely, the minimal dimension
among the images of the nondegeneracy sets for those cell-like maps from
M onto X that approximate
A locally compact, separable metric space X is called a generalized n-

manifold if X is a finite dimensional ANR and if, for each x X,

H.(X, X {x}; Z) H.(E", En-{point}; Z).

It is a consequence of the classical Vietoris-Begle Mapping Theorem [2]
that any finite dimensional cell-like image of an n-manifold is a generalized
n-manifold. Of course, those acquainted with the literature will recall that
multitudes of non-manifold generalized n-manifolds originate as such cell-
like images. Within the past few years generalized n-manifolds have taken
a central position in geometric topology, because of the close tie between
manifolds and generalized manifolds provided by cell-like maps, or by cell-
like decompositions. In 1977, R. D. Edwards [12, p. 118] proved that each
generalized n-manifold X, n > 5, that is the cell-like image of an n-manifold
M, is itself a manifold (actually, homeomorphic to M) if and only if X
satisfies the minimal general position features required to the following
Disjoint Discs Property: any two maps of the 2-cell B2 into X can be
approximated by maps having disjoint images. Moreover, F. Quinn [18]
has announced that, for n > 5, a finite dimensional space is a generalized
n-manifold if and only if it is the cell-like image of some n-manifold.

Until recently the existent generalized n-manifolds were fairly simple,
for in several senses they were quite similar to manifolds. Then Cannon-
Daverman [5] constructed cell-like, totally noncellular decompositions of
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n-manifolds (n > 3), using them to produce totally wild flows, but thereby
setting forth examples of intrinsically n-dimensional generalized n-manifolds.
Daverman-Walsh [11] expanded that construction to produce ghastlier ex-
amples. Either of these works can be adapted to provide, for any k
{0, 1, n}, an intrinsically k-dimensional example resulting from a cell-
like, noncellular decomposition.

Cellular decompositions, however, cannot be quite so complex. First of
all, the associated decomposition spaces are more like manifolds than occurs
with arbitrary cell-like decompositions, in that the complement of each
point is locally simply connected. Secondly, such decomposition spaces,
if finite dimensional, are generalized n-manifolds having intrinsic dimension
no more than n 1 (see [13] or [17]).

Earlier [9] we described, for n > 3 and k {0, 1, n 2}, an intrinsically
k-dimensional cellular decomposition of E; here we shall describe an in-
trinsically (n- 1)-dimensional cellular decomposition of E"(n > 3). The con-
struction delineated in what follows is considerably more intricate than that
of [9], due to a necessary intertwining of the chambers comprising a defining
sequence. The methodology applied is much closer in spirit to that introduced
by Cannon and Daverman [5] than to that we used previously.

In addition to resolving the matter of possible intrinsic dimension in a
heretofore missing case, a justification for the efforts expended here stems
from a prominent question: is the product of E with a (finite dimensional)
cell-like image X of an n-manifold always an (n + 1)-manifold. The product
must be a manifold if X has intrinsic dimension < n 3 [7, Theorem 3.3]
10, Theorem 1]. Had it turned out that cellular decompositions of n-manifolds
were, at worst, of intrinsic dimension n 2, we might have seemed closer
to recognizing the product of the resulting decomposition space with E to
be a manifold.

Finally, it should be noted that intrinsic dimension serves as just one
among several potential measures of the differences between manifolds and
generalized manifolds. For many purposes one needs no more than the
relatively crude measure provided by the dimension of the set of points at
which the space fails to satisfy the definition of a manifold. Another device,
more discriminating than that of intrinsic dimension, has been introduced
and studied by Garity [14]; it is particularly suited to spaces arising from
cellular decompositions, and it involves a generalization of the Disjoint
Discs Property from pairs of maps defined on Bz to k-tuples of such maps.

1. Preliminaries

We will be considering cell-like (CE) upper semicontinuous (usc) decom-
positions of n-manifolds M. If G denotes a decomposition of a space M,
Ho represents the set whose elements are the nondegenerate elements of
G, and N represents the union of these elements. In general, r will be
used to denote the natural decomposition map of M onto M/G. In case p
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is a map of M onto a space X and H is the decomposition of M induced
by p, where H {p-(x) Ix X}, then Np is defined to equal N.
We use the symbol to denote the boundary of a manifold with boundary.
ACE map p: M X is said to be one-to-one over a subset A of X if

P P-(A) is 1-1.
In case f and h denote maps from a space X to a metric space Y, the

distance between f and h, written as tg(f, h), is defined as the supremum,
in the extended reals, of {p(f(x), h(x)) Ix X}, where t9 is the metric
on Y.
The following definitions and theorem, taken from [5], provide the frame-

work to be used in building CE usc decompositions. Throughout the remainder
of this section, M will represent a compact PL n-manifold.

DEFINITION 1.1. A defining sequence (in M) is a sequence 5e
{, 2, ...} satisfying the following conditions:

(1) For each positive integer i, t is a finite collection {A(1), A(k)}
of compact connected PL n-manifolds with boundary in M having pairwise
disjoint interiors.

(2) For > 1 and each A , there exists a unique element Pre A
t_ properly containing A.

(3) For each > 1, each A and each pair of points x and y in OA,
there exists an integer j > such that no element of t contains both
and y.

DEFINITION 1.2. Let ’///1, v//2, "" be a defining sequence in M and
x M. Then the star ofx in , written as st(x, g) or st(x, t), is defined
as

st(x, di) {x}U .J {A d/(i Ix A},

and, for any integer e > 1, the e-th star of x in t, written as st(x, ),
is defined recursively as

Ste(X, ./Ri) U {st(y, t) y Ste_(X, /i)}.

DEFINITION 1.3. The decomposition G ofM associated with a defining
sequence 5e {, dg2, ...} in M is given as follows" distinct points x and
y of M are in the same element of G if and only if there exists an integer
r, depending only on x and y, such that, for each positive integer j, y
Str(X, ,/[’j).

THEOREM 1.4 [5, Theorem 1]. The decomposition G of M associated
with any defining sequence ST {, "/2 is usc, and, for each x
M,

,r-r(x) fq st(x,
j=l
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Moreover, if 3 denotes U{OA A tj for some j} and if x g G and
either x 3 or g fq O, then

r-rr(x) 1 st(x,

In addition, if each A gj is null homotopic in Pre A for every j > 2,
then G is CE.

2. Measuring Intrinsic Dimension

This section presents methods for determining when certain decompositions
of an n-manifold are intrinsically (n-1)-dimensional. These methods will
be applied to those decompositions constructed in Section 5.

DEFINITION 2.1. Let e > 0. A map f from a space X to another space
Y endowed with a metric p is said to be e-approximable by maps h (usually
satisfying additional properties) if there exists such a map h: X Y with
p(h, f) < e, and it is said to be approximable by such maps if it is e-
approximable for each e > 0.

DEFINITION 2.2. Let G be a CE usc decomposition of an n-manifold M
and let d denote a nonnegative integer. Then G is said to be secretly d-
dimensional if zr: M --> M/G is approximable by CE maps q of M onto
M/G such that q(Nq) has dimension less than or equal to d, and G is said
to be intrinsically d-dimensional if it is secretly d-dimensional but not secretly
(d- 1)-dimensional.

The following elementary result sets forth a necessary property of secret
dimension.

LEMMA 2.3. Let G be a CE usc decomposition of an n-manifold M that
is secretly d-dimensional, and let Fl, F2 be maps of B2 into M having
disjoint images. Then zrF, zrF2" B2 "-> M/G are approximable by maps f,
f2: BE --> M/G such that dim(fl(B2) fq f2(B2)) < d.

Proof. If q: M -- M/G is an e-approximation to w: M ---> M/G such that

dim(q(Nq)) < d,

then qF and qF2 are e-approximation to rF and wF2, respectively, such
that qFI(B2) N qF2(a2) has dimension at most d.

PROPOSITION 2.4. Let G be a cellular usc decomposition of a connected
n-manifoldM such that M/G isfinite dimensional, let w and y denote distinct
points ofM/G, and let F and F2 be maps ofB2 to M having disjoint images.
If there exists 3/ > 0 such that all /-approximations f, f2 to rF, rF2,
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respectively, have the property that

f1(B2) CI f2(B2)

separates w from y, then G is intrinsically (n-l)-dimensional.

Proof. As mentioned in the introduction, cellular decompositions of n-
manifolds having finite dimensional decomposition spaces are secretly
(n-1)-dimensional (see [13] or [17]). Thus, it suffices to prove that G is not
secretly (n-2)-dimensional. If that were the case, Lemma 2.3 would provide
y-approximations fl and f2 to rF and F2 such that

dim[fi(B2) fq f2(B2)] < n 2.

But the complement in M/G of the closed set X f(B2) O f2(B 2) is pathwise
connected, since H(M/G, (M/G) X) 0 (see [7, Lemma 2.1]). This
contradicts the hypothesis that X must separate w from y.

Ultimately the next result will be used to detect the separating sets called
for in Proposition 2.4.

LEMMA 2.5. Let P denote a subpolyhedron of S such that CI(S" P)
consists of components C, C, where s > 2. There exists > 0 such
that if try, tr are simplexes of some subdivision of P and

k

diam o- < 8,
i=l

then the set Q CI[S (P t-Ji tri)] has distinct components ,
Cs with Cj Cj (j {1, s}).

Proof. Choose 8 < min{o(C, Cj)[i j}. Let tj denote that component
of the set Q, as above, containing C;

It remains to be shown that Cl C whenever j. Assume the
contrary. Then there exists a PL arc joining the boundary of some C to
the boundary of some other C and intersecting P only in Uo-. The arc

must contain a subarc B C U: o- joining the boundary of some C to
the boundary ofsome Cm (k m). This implies that

k

o(C, Cm) < diam 1 diam o’ < ,
which is impossible.

3. Spinning Certain Subsets of 13
In Section 4 we will arrange solid tori in 13 [-1, 1] according to a

carefully devised linking pattern. To obtain comparably linked objects in
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S that can function as appropriate guides for determining an intrinsically
(n-1)-dimensional decomposition, we will sweep out S by spinning 13 and
will work with the resulting spun tori. Before specifying the linking scheme,
we review here the spinning operation and investigate how the crucial
property performs with spun objects. Our discussion of spinning is a com-
pactifie version of the treatment given by Cannon in Appendix III of [4];
see also Section 11 of [8].
One can view S", n > 3, as the decomposition space (13 sn-3)/Kn,

where K is the decomposition of I x Sn-3 consisting of points and the
sets {b} Sn-a, b OI3. The space (i3 S,-3)/Kn obviously inherits the
structure of an abstract simplicial complex and, as Lemma 3.2 will make
evident, with this inherited structure the space forms a PL n-manifold
(which can be seen to be PL homeomorphic to Sn, since the space readily
can be expressed as the union of two PL n-cells intersecting precisely in
the boundary of each). Let p: I x Sn-3 __> S denote the quotient mapping
induced by K". There is a PL map $" S" ---> 13 induced by p and the
projection 13 x S"-3 13 that is one-to-one over OI and that makes the
diagram below commutative.

I X Sn-3

proj "1

DEFINITION 3.1. Let A be a subset of I3. Then the (n-3)-spin ofA, written
as Sp"-a(A), is the set q-(A).

LEMMA 3.2. Let D be a PL 3-cell in 13 such that D f3 013 B, a 2-cell.
Then Sp-3(D) is a PL n-cell in Sn.

Proof. Think of D as B x [0, 1] with D fq 0I B x {0}. Then

Sp 3(D) ((B x [0, 11) x an-3)/gn
(B x [0, 11 x sn-3)/{{b} x {0} x S-3[b B}
B x [([0, 11 x Sn-3)/({0} x S’-3)1
B x (cone on S"-3)
B XIn-2

The equivalences here can be realized by PL homeomorphisms.

COROLLARY 3.3. Let M be a PL 3-manifold with boundary in I such
that M f30I is a 2-manifold. Then Spn-a(M) is a PL n-manifold with
boundary in S.
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Next we state the fundamental properties to be exploited in detecting
linking and its complexity. They involve variations to the concept of I-
essential mapping first introduced in [6].

DEFINITIONS 3.4. Let M be a PL n-manifold with boundary, B a 2-cell,
and F: B --> M a map with F(OB) COM. Then F is said to be I-inessential
(an abbreviation of Interior-inessential) if there exists a map : B --> OM
with ’10B F OB; otherwise, F is said to be I-essential. Or, in different
terminology, F: B -- M is/-essential iff F OB is an essential map into
OM.
Now consider a compact connected 2-manifold H in B2 (H is often called

a disc with holes). We shall speak of a map f: H - M with f(OH) C OM
as being virtually i-essential iff extends to an/-essential map F: Bn -- Msatisfying F(Bn H) C OM, where Bn denotes the (unique) 2-cell in B2

for which H C Bn and OBn C OH. One should understand that a map f: H
--> M with f(OH) C OM is virtually/-essential iff f sends the outermost
component ofOH essentially into OM but sends all of the remaining boundary
components inessentially (null homotopically).
Generally, given an n-dimensional PL submanifold Q of Int M, we shall

say thatf: H ---> Mas above is virtually I-essential with respect to Q provided
that, for each PL map f: H --> M sufficiently close to f and in general
position with respect to Q, some component He of ]-(Q) is a disc with
holes and [He" He -- Q is virtually/-essential.

PROPOSITION 3.5. Suppose M is a PL n-manifold with boundary, Q is a
PL n-manifold in Int M such that the only loops of O(M Int Q) null
homotopic in M Int Q are those loops that are null homotopic in
O(M Int Q), and f: B2 M is an I-essential map. Then f is virtually I-
essential with respect to Q.

Proof. Consider a PL map : B2 --> M in general position with respect
to Q and so close tofthat (0B2) C M Q and [ OB2 is not homotopically
trivial in M Int Q. Some component of -l(0Q) is not mapped null
homotopically into OQ by f, for otherwise f could be redefined on each 2-
cell of BE ]r, where r is the component of B2 -I(0Q) containing
OB2, so as to send into oQ and thereby to exhibit a contraction of the
loop (0B2) in M Int Q. From those components of-l(OQ) not mapped
null homotopically to oQ, select an innermost (with respect to BE) one, say
J, and let H denote the closure of that component of B2 ?-l(0Q) having
J as its outermost boundary component. As a result, if K stands for any
component of OH_- J, clearly f mal2s K to OQ null homotopically.
We claim that f(H) C Q. If not, f(H) C M Int Q. Then exactly as

in the preceding paragraph we would find that f maps J into M Int Q
in homotopically trivial fashion, contrary to the operative hypothesis. Con-
sequently, f[ H is a virtually/-essential map of H to Q.
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COROLLARY 3.6. Suppose M and Q are PL manifolds as in Proposition
3.5, and suppose f: H --> M is a virtually I-essential map of a disc with
holes H C B2. Then f is virtually I-essential with respect to Q.

LEMMA 3.7. Let T be a PL 3-manifold with boundary in I such that
T fq 013 is a 2-manifold, and let F0: B2 T be an I-essential embedding
for which Fo(OB2) COT OI3. Then there exists an I-essential embedding
F: B2 ---> Spn-a(T) such that F Fo.

Proof. To do this, simply fix So S-3 and prescribe F(b), b B2, as
the image (under the map p) of Fo(b) x So 13 x S- in Sn.

PROPOSITION 3.8. Let T be a PL 3-manifold with boundary in 13 such
that T fq 013 is a 2-manifold and suppose f: H -- Spn-3(T), n > 5, is a
map of a disc with holes H C B2 such that

f(OH) C ogpn-3(T) and f(H)

Then f is virtually I-essential if and only if d/f’. H T 013 is virtually I-
essential.

Proof. It suffices to consider the case where H equals the 2-cell B2.
Obviously, whenever J2 B2 --> spn-a(T) fails to be virtually/-essential,

so does fi BE ---> T, because the image under of a contraction.off(0B2)
in oSpn-a(T) provides a contraction of f(0B2) in aT. On the other hand,
whenf: BE ---> Spn-3(T) is I-essential, thenfmaps 082 essentially to OSp-3(T).
Since OSp-a(T) is the image of

CI(0T 0/) x Sn-3

under the map p and n > 5, one can easily verify that p induces an
isomorphism between zr(Cl(0T OI) x S"-) and 7r(OSp"-3(T)). Moreover,
because n > 5, the projection of CI(0T 013) x S"- to the first factor
induces a rrisomorphism, so the same holds for q (restricted). Consequently,
Of maps OB2 essentially into CI(0T OI) and qf is (virtually) I-essential.

Remark. With a minor amount of extra work, one can establish 3.8 in
case n 4. Since we avoid that case later, there seems to be no reason
to bring it up now.

4. Linking Tori in 13

At the outset we want to illustrate the linking pattern capitalized upon
here. Given an integer N > 1, we must place N solid tori in the space
T S x 12 so that any two of them are linked while the individual ones
are each contained in a 3-cell in T. Our method for carrying this out is
pictured for the case N 4 in Figure 1.
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S1 x 12
FIGURE

It should be clear from Figure 1 that each of the smaller tori there lies
interior to a 3-cell in T. It should also be clear that any pair {T., Tk} of the
smaller tori is embedded in T exactly like the tori A and Ai2 are embedded
in the torus A of [2, Figure 3]. It is fairly well known (one can verify this
fact directly with the aid of a Wirtinger presentation for the related link)
that a loop in

is null homotopic in

OA U OAil U OAi2

Ai Int(Ai O Ai2)

iff the loop is null homotopic in the appropriate boundary component.
Consequently, the manifolds M T and Q Tj U Tk satisfy the relevant
hypotheses of Proposition 3.5.

LEMMA 4.1. Let e denote a positive number and K a positive integer.
There exists a cell decomposition A of T S I having mesh less than
e and there exists a 3-cell cr A such that, for every integer N > K, T
contains a collection of N mutually exclusive PL solid tori, {T Tu},
satisfying:

(1) tr fq Ti 0 and tr U T lies interior to a 3-cell in T whenever
{1, K}.
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(2) For each 3-cell z A {o’}, z O Tj lies in a 3-cell in T (j
{1, N}).

(3) For each virtually 1-essential map f: H T of a disc with holes H
C B2, f is virtually 1-essential with respect to at least N 1 of the tori
T1 Tv.

Proof. Let J represem the PL image of I2 mapped into Int T as illustrated
in Figure 2, with one point s of singularity (corresponding to exactly two
points of cI2). The first K tori, T, Tx, lie near J in Int T J; each
one is to be contained in a 3-cell in Int T while each pair is to be linked
in Int T in the way described earlier. Part of this configuration is pictured
in Figure 2.
Thicken J to a PL regular neighborhood U(J) missing each torus Ti.

Determine a cell decomposition A of T having mesh less than e so that, in
particular, A has a 3-cell r for which s Int o- and o- C U(J) separates
U(J) into two components, so that any 3-cell r’ A {r} with r’ C U(J)
satisfies r’ U(J) is an annulus and r’ J is an unknotted spanning arc
of o-’, and so that any other 3-cell - A meets at most one of the tori,
say T, in which case z T is an unknotted spanning 3-cell of z.
Now, given an integer N > K, we embed tori T/, T in Int U(J)

according to the same standard linking pattern, so that individually they
lie in 3-cells but pairwise any two of them (or of the total collection
{T, Tv}) are linked as before. They are embedded sort of locally ’parallel

FIGURE 2

six :1:2
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to J, so that if tr’ is a 3-cell of A-{tr} with tr’ C U(J), then tr f T is an
unknotted spanning cell of tr’ (i > K). See Figure 3.

Let - A {tr} be a 3-cell, and let T be one of these tori. If f T., then, by construction, - O Tj. collapses to T, so the promised 3-cell in
T containing T can be modified (fixing T) to engulf ,. If T 9i, a
similar modification of the 3-cell is possible. Similarly, when {1, K},
tr T ; then tr t3 T is contained in a 3-cell in T as well.

Since the tori are pairwise linked in T like the pairs in Figure 1, Conclusion
(3) follows from Proposition 3.5.

FIGURE 3
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DEFINITION 4.2.
013 is a 2-cell.

A PL solid torus T in 13 is said to be standard if T f3

Remark 4.3. When T is a standard torus in P, one can establish a
variation to Lemma 4.1 by carefully connecting 0T, 0TN to T 013 by
regular neighborhoods of arcs, determining a collection ofN mutually exclusive
standard tori, {T, TN} satisfying conclusion (1) there, as well as the
following:

(2’)

(3 ’)

for each 3-simplex z A {or}, z t3 T lies in a PL 3-cell C; in T
such that C2 0I is a 2-cell; and
for each virtually I-essential map f: H T OI of a disc with
holes H C B2, f is virtually I-essential with respect to at least
(V- 1) of T, Ol3, TN OI.

PROPOSITION 4.4. Let n > 5 be an integer, T a standard torus in I, and
e > O. Then there exist a positive integer K, a cell decomposition A, of
M Sp-3(T) having mesh less than e, and a collection of K distinct n-
cells trl, trx . A, such that, for every integer N > K, M contains a
collection ofN mutually exclusive n-manifolds with boundary, {Q, QN},
satisfying:.

(0) Each Q is the (n-3)-spin of a standard torus in I.
(1) tr fq Qi and tri t.J Qi lies interior to an n-cell in M whenever

E {1, K}.
(2) z tO Q lies in an n-cell in M whenever r is an n-cell of

andj {1, N}.
(3) For each virtually I-essential map f: H ---) M of a disc with holes

H C B? such that f(H) Cl Sp"-3(OI3) O, f is virtually I-essential
with respect to at least N 1 of the manifolds Q, QN.

Proof. Find r/> 0 such that, for the map p: 13 x S"-3 --->. S" of Section
3, diam p(Z) < e whenever Z C 13 x S"-3 and diam Z < 2"0. Choose a
triangulation A’ of S"-3 having mesh less than r/. Let K be the number of
(n 3)-cells in A’. Apply Lemma 4.1 (cf. Remark 4.3) with positive number
and integer K to obtain a cell decomposition A of T satisfying the conclusions

there. Then A p(A x A’) is the desired cell decomposition, and
{p(o- z) " is an (n 3)-simplex of A’} forms the desired collection of
K special n-cells.

Consider an integer N > K. There exist N standard tori T, TN in T
satisfying the conclusion of Lemma 4.1 (Remark 4.3). Set

Qj Spn-3(Tj) forj 1, N.



682 ROBERT J. DAVERMAN AND DENNIS J. GARITY

In case R is an n-cell of A, and R {rt, o’r} ifj < K, we modify what
results from conclusion (1) or (2’) of Remark 4.3 to concoct a 3-cell C in
T such that C I is a 2-cell and Int C contains (q(R) Int C) t.J T.
According tO Lemma 3.2, Sp-3(Cj) is an n-cell and it contains R t3 Q,
showing that conclusions (1) and (2) here are valid. Finally, conclusion (3)
follows immediately from Proposition 3.8 and conclusion (3’) of Remark
4.3.

Remark 4.9. Since the spun tori Q are regular neighborhoods of (n-2)-
complexes in Sn, it is possible to choose them so that z- Q is nonempty
and connected, for each n-cell z A.

5. The Construction

In this section we describe a defining sequence in Sn for a decomposition
G, based upon a construction similar in many respects to that of [5]. In
the next section we will show how to make G be cellular and intrinsically
(n- 1)-dimensional.
Throughout the rest of this section the body of the text concerns the

construction for the case n > 5; whenever a given procedure must be
modified for the case n 3, the necessary variations will be listed immediately
afterwards, set off by brackets.

Description of . Let T denote a standard torus in I. and X a 3-
dimensional PL annulus in Int I such that X T is a 2-cell in the boundary
of each. Define a set Z C S" as Sp"-3(X t.J T) [as the image of one copy
of X t3 T in Sp(I3) S] and let Q(Z) denote the closure of Sp"-3(T)
minus an interior PL collar on bSp"-a(T) [the closure of that copy of T
minus a PL collar on OT]. Then Z is a compact n-manifold with boundary
separating S" and Q(Z) c Int Z.
Let l {Z}.

Inductive Hypothesis (j 1). There exist collections d, ty_l and
there exist compact, PL n-manifolds with boundary Q(A), for each A
LI i-

__
, satisfying the following conditions:

(1) , j_ satisfy conditions (1) and (2) of Definition 1.1.
(2) Each Q(A) is contained in Int A and is the (n 3)-spin of a standard

torus in/3 [is a PL toms].
(3) For 1, ...,j 1, t.J {A A } Z.
(4) For A ti where > 2, diam (0A fq Pre A) < 1/i.
(5) For each virtually I-essential map F: H --> Q(A) of a disc with holes

H C B2 such that F(H) fq Sp’-3(OI) O [no restriction concerning F(H)],
where A i and 1 < < j, F is virtually/-essential with respect to all
except possibly one of {Q(E) IE i+l and Pre E a}.
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(6)
Pre A.

For A ; where 1 < j 1, A is contained in an n-cell D C

Description of. Assuming Inductive Hypothesis (j 1), in five steps
we shall specify and Q(A) for the sets A so that ,

_
,

and the collection of associated n-manifolds Q(A) fulfill the parallel Inductive
Hypothesis (j). Fix A

_
and Q Q(A). It suffices to describe the

dements of contained in A, in other words, those E for which A
Pre E. Towards that end, we choose a collar neighborhood OA x [0, 1] on
OA in A, disjoint from Q(A). We also choose e (0, 1/j) so small that 2e-
subsets of A are contained in n-cells in A. More will be said about this
choice of e in the next section, when we deal with technical requirements
leading to the desired intrinsic dimension.

Step 1. Decomposing A into cells. Apply Proposition 4.4 [Lemma 4.1
with K 1] to find a cell decomposition Ae of Q(A) having mesh less than
eft Regard OA x [0, 1] as a PL collar on A, missing Q(A). Find triangulations
A0 of OA and At of [0, 1] so that A0 x A gives a cell decomposition of
OA x [0, 1] having mesh less than e. Extend Ao and A0 A to a cell
decomposition AA of A also having mesh less than e2. Let N be the number
of n-cells in AA.
Step 2. Embedding spun tori in A. Using the results of Section 4 we

find distinct elements o-, trr of Ae C AA (K in case n 3) as well
as N pairwise disjoint (n 3)-spins of standard tori [PL tori], R, Rs,
with the following properties"

(7)
(8)
(9)

(10)

Each R is contained in Int Q(A).
For each n-cell tr AA, r t.J R is connected.
o- f3 R; and tr; tO R; lies interior to an n-cell in Q(A) whenever

{1, K}.
"r t.J Ri lies in an n-cell in Q(A) whenever is an n-cell of

(11)
and j {1, N}.
For each virtually I-essential map f: H Q(A) of a disc with holes
H C B such that f(H) Sp"-3(OI3) fk [no restriction concerning
f(H)], f is virtually I-essential with respect to at least (N 1) of
{R,, Ru}.

Since each R; lies in an n-cell in Int Q(A), one can use that cell to engulf
any z ma AQ and establish:

(10’) z t.J R lies in an n-cell in A whenever r is an n-cell of

and {1, N}.
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Step 3. Connecting the cells to the spun tori. Let try, trs be an
enumeration of the n-cells of AA. Each tr will be connected to R, but there
are two separate methods.
Case 1. < K. Join o’ to R by the regular neighborhood N of an arc,

staying within the n-cell in Int Q(A) promised in condition (9) above. Do
this so that both N tr and N R are PL (n 1)-cells. Then o- t.J N
t3 R is a connected n-manifold with boundary contained in an n-cell in Int
Q(A) and, hence, in Int A.

Case 2. > K. If o’i f3 R; , join tr to R by the regular neighborhood
N of an arc, as before, this time staying within the n-cell in A promised
by condition (10’). If tr tq R , make a small general position adjustment
to R so that o’i t2 R is a connected n-manifold with boundary and regard
N as the empty set. In either circumstance, tr t.J N t.J R is a connected
manifold with boundary contained in an n-cell in A.
The arcs named above can be threaded through A so that the thickenings
N are pairwise disjoint. Special care must be taken in the collar. The n-
cells of condition (10’) must be arranged to either avoid the interior of the
collar or to.run rather directly through its [0, 1] factor, so that if

O" 7" X [tk, tk+l] C OA x [0, 1] where z x [t, t+] Aa x AI
then

N (0A [0, tk+ ]) C Int z X {tk+ },

and so that if o- C A (0A x [0, 1]), then N (0A x [0, 1]) .
Step 4. Defining the elements of in A. For 1, N, let A be

the closure of {(o- t3 N t.J R) [ki (Rk [,-J Nk)}. These are the elements
of y in A. Note that A

__
Pre A.

Step 5. Defining the corresponding Q(Ai). For 1, N, let Q(A)
be the closure of {R minus a small PL interior collar on 0R}.

This completes the inductive description of the defining sequence

’ ’/1, Jj-l, Jj, """It is a relatively elementary matter to verify that j, defined in this way,
satisfies the six conditions of Inductive Hypothesis (j).

6. Verifying Properties of the Example

Here we impose two minor additional requirements upon the construction
of the defining sequence given in Section 5, to ensure that the resulting
decomposition G is cellular and intrinsically (n-1)-dimensional. The first of
these requirements pertains to the internal structure of the defining sequence;
the second simply involves a bit of epsilonics.
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Cellularity. Since each A LI ([j 2, 3, ...} is contained in an n-
cell in Pre A, A contracts in Pre A. By Theorem 1.4, each g G is cell-
like.

Definition 6.1. A compact subset C of Sn satisfies McMillan’s Cellularity
Criterion if every neighborhood U of C contains a neighborhood V of C
such that each loop in V C is null homotopic in U C.

Let g G and let t_J {gA A v). To prove that g is cellular,
we shall consider two cases. In both cases we shall assume that g consists
of more than one point.

Case 1. g . According to Theorem 1.4, g fq st(x, ) where
x represents any point of g. Given a neighborhood U of x, choose an integer
j large enough that st(x, -l) C U. Because x q 3, st(x, j) consists of
a single A d, and condition (6) of Inductive Hypothesis (j) implies the
existence of an n-cell D and A C D C Pre A. In particular, g N A 0,
so we have

g C Int D C D C Pre A st(x, j_ 1) C U,

which shows that g is cellular.

Case 2. g O. In this case we must take extra care about permissible
intersections of elements from different stages j of the defining sequence.
We employ the following concept from [5].

DEFINITION 6.2. A defining sequence 6e {dl, d2, ...} (in S") is regular
provided that the following hold:

(a) Whenever A D A’ where A and A’ are distinct elements of LI ,
then OA fq OA’ is a (possibly empty) PL (n-1)-manifold with (possibly
empty) boundary O(A, A’).

(b) If A D A2 D 3 Ak are all distinct elements of t3 d/t2, then

dim[0(A1, A2) f’) f’) 0(Ak_l, A)] < n k.

Exactly as in [5, Section 5] we modify the construction outlined in Section
5 slightly so that the defining sequence S {, 2, ...} is regular.

LEMMA 6.3. For each x there exists a positive integer J(x) such
that, for each 1, 2, the cardinality of

{A i A C st(x, i)}

is less than J(x).

Proof. If not, it would be possible to find an infinite sequence A 3 A2
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of distinct elements from I.J i such that x O(Ak, Ak+ ) for every
k > 1, in contradiction to (b) of Definition 6.2.

Returning to the matter of cellularity in the case at hand, we will show
that the cell-like set g satisfies McMillan’s Cellularity Criterion. Then Theorem
1 of [16] (or Theorem 1’ of [16], when n 3) will imply that g is cellular.
Let x denote the unique point of g . (That there is only one such

point results from Theorem 1.4 and condition (3) of Definition 1.1.) It is a
consequence of Lemma 6.3 that the cardinality of

{A l, A C st(x, /,)}

stabilizes at some j(x), in the sense that for > j(x) each A in
st(x, i) contains exactly one element A’ +. In addition, by Theorem
1.4, g st(x, l).
Consider a neighborhood U of g. The cell-likeness of g guarantees another

neighborhood V of G that is contractible in U. Let

h" OB2"-> V- g

be given. Choose k > j(x) such that

st(x, k) C V and h(OB2) C V st(x, tk).

Enumerate the elements A, A2, As of tk+ contained in st(x,
By condition (6) of Inductive Hypothesis (j), for 1, 2, s there exists
an n-cell Di such that Ai C Di C Pre Ai, and by our choice of k > j(x),
which yields distinct sets Pre A, Pre A2, Pre As, we see that
D ["1 Dj C OD CI ODj whenever 4: j.
The contractibility of V in U implies that the given map h OB2 --> V

extends to a map h BE ---> U, which then can be adjusted so that x
h(B2). The resulting image(s) can be cut off on the sets (OD x), one after
another, to excise all points of Int D from that and later images. This
eventually gives a new map BE --> U for which OB2 h OB2

and (B2) misses ({x} U U__ Int Di). As a result, (B2) f g , revealing
that g satisfies McMillan’s Cellularity Criterion.

Intrinsic dimension. We go back to the Description of t2 in the con-
struction of Section 5 to further restrict the choice of e > 0 there. Assume,
as before, that t2_ has been prescribed and that

lj_ {M Mm}.

Let

{P P is a union of some elements of /j_ and C(S P)
has at least two components}.

Since . M Z and Z separates S", 4: . Associate with each P
a number 8(P) > 0 as in Proposition 2.5. Now choose e1 > 0 as in Section
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5 but so that, in addition,

e < min{(P)/2m P }.

Let A denote the cell decomposition ofM described in Step 1 of Section
5.

LEMMA 6.4. Let C1, Ce denote the components ofC,(S P) where
P . Let P be formed from P by removing at most two distinct n-cells
ofAfrom each of those M in P. Then C(S P) has distinct components
C C with C C C (k 1, e).

Proof. This follows immediately from Proposition 2.5 because the sum
of the diameters of the removed cells is less than 2me < (P).

LEMMA 6.5. Let O" (Y’r be n-cells removed from P to form P as in
Lemma 6.4; let A, Ar be the elements of associated with the cells
r, rr, respectively; and let P t.J.= (o’i U Ai). Then Ce(S
’) has distinct components ., e with C C (k 1, e).

Proof. Let k denote the component of Ce(S fi) containing Ck. It
suffices to show that k 4: q whenever k q.
Suppose the contrary. Then there exists a path/3 in t,J.__ (tr LI A)joining

some C to some Cq where k :k q. By Lemma 6.4 there is no such path
in t_J,r.__ O’;. Hence, there must exist M

_
and two sets A(), Ai(2)

with

Ai() O Ai(2) C M

such that fl fq (tr, U A) U cr2) U A2)) joins two points of 0M not joined
by any path in gi() U g2). This implies that g) and g2)intersect OM, that
Ai() and Ai<2)then contain g()and g(2), respectively, and that g)
g(2) 0 (see Section 5, Step 3). The construction of the A’s guarantees
that A() A(2) 0, essentially because, (in the notation of Section 5)

Ai(1) i(1) U Nio) U Ri(1), Ai(2) i(2) U Ni(2 U Ri(2),

and

N/(2) Ri(1)(Ni(2) Ri(2))

was formed disjoint from Az)(A)). This impossibility completes the proof.
Thicken Z to another PL n-manifold such that Int Z D Z and

Z Z OZ x [0,1].

Since some meridional disk of T misses X, there exist disjoint embeddings

h, h2 B2 ---> Int () (Int/ X)
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such that )ke(OB2) 1 $(Z) and )ke(B2) f’) T is a meridional disk of
T (e 1, 2). As in Lemma 3.7, these embeddings give rise to disjoint embed-
dings

Al, A2 B2 ---> Int

such that $Ae he; a crucial aspect of Ae is the elementary consequence
that Ae 0B2 is not homotopically trivial in , Q(Z) (e 1, 2).

Let W and Y denote two components of S Z. Choose points w
r(W) and y w(Y) not in r(A(B2) O A2(B2)).
According to [1, Lemma 4.2] or [15, Lemma 2.3], every map f: B2 -’->

S/G has an "approximate lift" F B2 ---> Sn such that rF is close to f.
Choose 3/0 > 0 such that

p((w, y}, 7r(A(B2) LI A2(B2)) > 5/0

and that any map fe B2 "-> S/G within ’0 of zrAe has an approximate lift
F B2 --> 2 such that F(0B2) C 2 Q(Z) and Fe[ OB2 is not null homotopic
there (e 1, 2).

LEMMA 6.6. Iff and f2 are maps of B2 into Sn/G such that p(f, zrA)
< o for e 1, 2, then f(B2) fq f2(B2) separates w from y in S/G.

Proof. Suppose the contrary. Then there exists an arc a from w to y
in

a (A(B2) f"l A(B2)).
Let F, F2 B2 "---> Sn be approximate lifts of fl, f2, respectively, such

that, for e 1, 2,

(i) ’rrFl(B2) N rF2(B2) CI a 0,
(ii) 13(rFe, "rrAe) < To, and
(iii) Fe is a PL map in general position with respect to Spn-3(Ol3) and

to all of the sets Q(A), A U ds.
We will show that rFl(B2) N "/rF2(B2) separates w from y, which is impossible
in light of (i) above.

It is sufficient to show that at each stage j, the union of those elements
of intersecting both F(B2) and F2(B2) separates ,r-(w) from r-(y).
This is almost too transparent at stage 1, because F(B2) C and Fel OB2
is not homotopically trivial in Q(Z), which indicates that both F(B2)
and F2(B2) meet Z, the only element of l. To begin an inductive argument,
it is necessary to show that, for e 1, 2, B2 contains disks with holes He
such that Fe H" He Q(Z) is virtually I-essential. In order to do this,
check that any loop in 0(Z Int Q(Z)) null homotopic in Z Int Q(Z)
must be null homotopic in its boundary, and then apply the argument of
Proposition 3.5.
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Inductively assume that the union Z._ (j > 1) of all those A t._ for
which both Fl [H1 and F2 [H2 are virtually I-essential with respect to Q(A)
separates r-(w) from w-(y). General position features of the maps Fe
yield that Fe(B2) N Spn-3(Ola) if n > 5. Thus, by condition (5) of
Inductive Hypotheses (j), all but possibly two of these A’ Mj with Pre
A’ A have the property that both Fl [H1 and FE[H2 fail to be virtually
I-essential with respect to Q(A). Lemma 6.5 then shows that the corresponding
set Z. separates r-(w) from r-(y), which finishes the proof.
Now we can assemble the various pieces and set forth the main result.

THEOREM 6.7. For n 3 and n > 5 there exists a (regular) defining
sequencefor a cellular usc decomposition G ofSn having intrinsic dimension
(n 1).

Proof. The (regular) defining sequence d/tl, d/t2, described in Section
5 (as modified) leads to a cellular usc decomposition G. Properties of defining
sequences, as the term is used here, quickly reveal that dim(Sn/G) < n.
Therefore, the combination of Lemrna 6.6 and Proposition 2.4 shows that
G has intrinsic dimension (n 1).

COROLLARY 6.8. If G is the decomposition of S" (n > 5) named in
Theorem 6.7, then (Sn/G) x E is homeomorphic to Sn E1.

Proof. See Corollary 5.9 of [7].
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