EQUIVARIANT BUNDLES OVER A SINGLE ORBIT TYPE

BY

RICHARD LASHOF

In this paper we analyze equivariant bundles over a space with a single orbit type. In particular, we reduce the classification of such bundles to a non-equivariant homotopy lifting problem (Corollary 1.12). We have used these ideas to analyze equivariant bundles with abelian structure group [5] and equivariant bundles over semi-free spaces [2]. In a future paper we will analyze bundles over general spaces by reassembling the results given here and replace the equivariant obstruction theory of [3] by another type of lifting problem. In the case that the structure group of the bundle is also a compact Lie group our results are closely related to those of Conner and Floyd [1].

Let $p: E \to X$ be a principal G-A bundle, G compact Lie group, X completely regular. We also assume p is G locally trivial. (For the definition of G locally trivial and the general theory of equivariant bundles we refer the reader to [2].) Let H be a closed subgroup of G and let $x \in X^H$. If $z \in p^{-1}(x)$, then $hz = z_Q(h)$ for some homomorphism $Q: H \to A$ and all $h \in H$. For any other point z' = za over x, hz' = z'Q'(h) where $Q'(h) = a^{-1}Q(h)a$. Thus the A equivalence class of Q is well determined by X. We will say that X or more properly the fibre over X belongs to Q. Let

$$X^{(\rho)} = \{x \in X^H | x \text{ belongs to } (\rho)\}.$$

Let R_H be the set of A equivalence classes of homomorphisms of H to A.

LEMMA 1.1.
$$X^{(\rho)}$$
 is open in X^H and $X^H = \perp \!\!\! \perp X^{(\rho)}$, $(\varrho) \in R_H$.

Proof. If $x \in X$, then by G local triviality there is a G_x invariant neighborhood U of x and a homomorphism $\lambda: G_x \to A$ such that $p^{-1}(U)$ is G_x equivalent to $U \times A$, G_x acting on A via λ . If $x \in X^{(\rho)}$ then $H \subset G_x$ and $(\lambda | H) = (\varrho)$. It follows that if $x' \in X^H \cap U$, x' belongs to (ϱ) . Thus $X^{(\rho)}$ is open in X^H . The second statement follows from this and the above discussion.

Let
$$E^{\rho} = \{z \in E \mid hz = z\varrho(h), h \in H\}.$$

LEMMA 1.2. E^{ρ} is an A^{ρ} bundle over $X^{(\rho)}$, where

$$A^{\rho} = \{a \in A \mid a_{\varrho}(h) = \varrho(h)a, h \in H\}.$$

Further, $p^{-1}(X^{(\rho)}) \cong E^{(\rho)}X_{A\rho}A$, as an A-bundle.

Received July 8, 1980; received in revised form June 25, 1983

Proof. If $z \in E^{\rho}$, then $p(z) \in X^{(\rho)}$. Further, $za \in E^{\rho}$ if and only if $a \in A^{\rho}$. If $x \in X^{(\rho)}$, then by G local triviality, x has a G_x invariant neighborhood U such that $p^{-1}(U)$ is G_x -A equivalent to $U \times A$, where G_x acts on A through a homomorphism $\lambda: G_x \to A$ such that $(\lambda \mid H) = (\varrho)$. In fact λ is unique only up to its A equivalence class and we can choose λ so that $\lambda \mid H = \varrho$. Then

$$p^{-1}(U)\cap E^{\rho}=U^{H}\times A^{\rho}.$$

Thus E^{ρ} is a locally trivial A^{ρ} bundle over $X^{(\rho)}$ and

$$p^{-1}(X^{(\rho)}) = E^{\rho} \times_{A^{\rho}} A$$

as an A bundle.

Lemma 1.3. Let $\phi: E \to E'$ be a G-A bundle map of the principal G-A bundle $p: E \to X$ into the principal bundle $p': E' \to X'$ over the G map $f: X \to X'$. Then $\phi^{-1}(E') \cap p^{-1}(X^H) = E^p$.

Proof. Clearly, $\phi(E^{\rho}) \subset E'^{\rho}$. Now E may be identified with

$$f^*E' = \{(x,z') \in X \times E' | f(x) = p'(z') \}$$

and ϕ corresponds to the projection $(x,z') \rightarrow z'$. But if $x \in X^H$ and $z' \in E'^{\rho}$, then $h(x,z') = (x,z')\varrho(h)$ and $(x,z') \in E^{\rho}$. So

$$\phi^{-1}(E'^{\rho}) \cap p^{-1}(X^H) = E^{\rho}.$$

Let

$$\Lambda^{\rho} = \{(n,a) \in N(H) \times A \mid \varrho(nhn^{-1}) = a\varrho(h)a^{-1}, \text{ all } h \in H\}.$$

Then Λ^{ρ} is a closed subgroup of $N(H) \times A$.

LEMMA 1.4. Let $p: E \rightarrow X$ and E^{ρ} be as above. Then

$$\Lambda^{\rho} = \{(n,a) \in N(H) \times A \mid nE^{\rho}a^{-1} \subset E^{\rho}\}.$$

Proof. If $z \in E^{\rho}$ and $nza^{-1} \in E^{\rho}$, then $hnza^{-1} = nza^{-1}\varrho(h)$.

But
$$hnza^{-1} = n(n^{-1}hn)za^{-1} = nz\varrho(n^{-1}hn)a^{-1}$$
.

Hence $\varrho(n^{-1}hn) = a^{-1}\varrho(h)a$ and $(n,a) \in \Lambda^{\rho}$.

Conversely, if $(n,a) \in \Lambda^{\rho}$ and $z \in E^{\rho}$, then

$$hnza^{-1} = n(n^{-1}hn)za^{-1} = nz\rho(n^{-1}hn)a^{-1} = nza^{-1}\rho(h).$$

Hence $nza^{-1} \in E^{\rho}$.

Let $N_{\rho}(H) = \{n \in N(H) | (n, a) \in \Lambda^{\rho} \text{ for some } a \in A\}.$

LEMMA 1.5.
$$N_{\rho}(H) = \{n \in N(H) \mid nX^{(\rho)} \subset X^{(\rho)}\}.$$

Proof. If $nX^{(\rho)} \cap X^{(\rho)}$, then for $z \in E^{\rho}$, nz = z'a, $z' \in E^{\rho}$, $a \in A$. Thus $nza^{-1} \in E^{\rho}$

and as in the first part of the proof of (1.4), $(n,a) \in \Lambda^{\rho}$. Hence $n \in N_{\rho}(H)$. Conversely, if $n \in N_{\rho}(H)$, $nE^{\rho}a^{-1} \subset E^{\rho}$ for some $a \in A$ by (1.4); and by (1.2), $nX^{(\rho)} \subset X^{(\rho)}$.

Let H^{ρ} be the image of H under the embedding

$$(i,\varrho): H \rightarrow N(H) \times A, \qquad (i,\varrho)(h) = (h,\varrho(h)).$$

Then H^{ρ} is contained in Λ^{ρ} and is a closed normal subgroup of Λ^{ρ} . Let $\Gamma_{\varrho} = \Lambda^{\rho}/H^{\rho}$. We can identify A^{ρ} with $1 \times A^{\rho} \subset \Lambda^{\rho}$. Since $H^{\rho} \subset A^{\rho} = 1$, we can further identify A^{ρ} with the image of $1 \times A^{\rho}$ in Γ^{ρ} . (Since H^{ρ} is a compact Lie group, $\Lambda_{\varrho} \to \Gamma_{\varrho}$ is a locally trivial bundle and $1 \times A_{\varrho}$ maps homeomorphically onto its image in Γ^{ρ} .) A^{ρ} is a normal subgroup of Γ^{ρ} , since $(n,a) \subset \Lambda^{\rho}$ requires that $a \in N(\varrho(H))$ and the centralizer A^{ρ} is normal in the normalizer $N(\varrho(H))$ of $\varrho(H)$.

Now consider the $N_{\rho}(H)$ trivial $N_{\rho}(H)$ -A bundle $E = N_{\rho}(H) \times_{H} A$ over the orbit $\overline{N_{\rho}}(H) = N_{\rho}(H)/H$, where H acts on A via ϱ . Then Γ^{ρ} may be identified with E^{ρ} under the map $[n,a] \rightarrow [n,a^{-1}]$, which extends to the $N_{\rho}(H)$ equivalence

$$(N_{\rho}(H) \times A)/H^{\rho} \rightarrow N_{\rho}(H) \times {}_{H}A.$$

Further the homeomorphism $\Gamma^{\rho}/A^{\rho} \cong E^{\rho}/A^{\rho} \cong E/A \cong N_{\rho}(H)/H$ is induced by the homomorphism $[n,a] \to [n]$ of Γ^{ρ} onto $N_{\rho}(H)/H$ by passage to the quotient. Thus Γ^{ρ}/A^{ρ} is isomorphic to $N_{\rho}(H)/H$ as a topological group.

Note that E^{ρ} above can be considered a principal Γ^{ρ} bundle over a point (under the right action $z \rightarrow n^{-1}za$). This generalizes:

PROPOSITION 1.6. Let $p:E \to X$ be a principal G-A bundle. The action $z(n,a) = n^{-1}za$ of Λ^{ρ} on E^{ρ} induces a right action of Γ^{ρ} on E^{ρ} , extending the A^{ρ} action. If X has a single orbit type (H), E^{ρ} is a principal Γ^{ρ} bundle over $\overline{X}^{\rho} = X^{(\rho)}/\overline{N}_{\rho}(H)$,

Proof. By the definition of E^{ρ} , the above action of Λ^{ρ} restricted to H^{ρ} is trivial and induces a Γ^{ρ} action. Now $p^{-1}(X^{(\rho)})$ is an $N_{\rho}(H)$ locally trivial bundle. To show E is a locally trivial Γ^{ρ} bundle when X has a single orbit type (H) it is sufficient to consider for $x \in X^{(\rho)}$ a slice V in $X^{(\rho)}$ such that

$$p^{-1}(N_o(H)V) \cong N_o(H) \times_H(V \times A),$$

H acting on A via ϱ . Then by (1.3),

$$p^{-1}(N_{\rho}(H)V)^{\rho} = \pi^{-1}(N_{\rho}(H) \times_{H} A)^{\rho},$$

where $\pi: N_{\rho}(H) \times_H (V \times A) \to N_{\rho}(H) \times_H A$ is the projection. Since π induces a Γ^{ρ} map of $p^{-1}(N_{\rho}(H)V)^{\rho}$ onto $(N_{\rho}(H) \times_H A)^{\rho} \cong \Gamma^{\rho}$, $p^{-1}(N_{\rho}(H)V)^{\rho}$ is a trivial Γ^{ρ} bundle over V; and E^{ρ} is a locally trivial Γ^{ρ} bundle over $\overline{X^{\rho}}$. (Note that

$$E^{\rho}/\Gamma^{\rho} = (E^{\rho}/A^{\rho})/(\Gamma^{\rho}/A^{\rho}) = X^{\rho}/\overline{N_{\rho}}(H),$$

 $\overline{N}_{\rho}(H)$ acting on the right of X^{ρ} by $x\overline{n} = \overline{n}^{-1}x$ and hence $E^{\rho}/\Gamma^{\rho} = \overline{X}^{\rho}$.)

Let $R_{(H)}$ denote the family of G-A equivalence classes of homomorphisms $\varrho: H \rightarrow A$; i.e., $\varrho: H \rightarrow A$ is equivalent to $\varrho': H' \rightarrow A$, $H' = gHg^{-1}$, if

$$\varrho'(ghg^{-1}) = a\varrho(h)a^{-1}$$
 for some $a \in A$ and all $h \in H$.

Note that this is the same as the N(H)-A equivalence classes. From (1.5) we have:

LEMMA 1.7. Let $p: E \rightarrow X$ be a G-A bundle. Then

$$X^{\scriptscriptstyle H} = \underset{(\varrho)}{\coprod} R_{\scriptscriptstyle (H)} N(H) \times {}_{\scriptscriptstyle N_{\varrho}(H)} X^{\scriptscriptstyle (\varrho)} = \underset{(\varrho)}{\coprod} \overline{N}(H) \times {}_{\scriptscriptstyle N_{\varrho}(H)} X^{\scriptscriptstyle (\varrho)}.$$

If X has a single orbit type (H), then

(a)
$$X = \coprod G/H \times_{N_o(H)} X^{(\rho)}, (\varrho) \in R_{(H)},$$

(b)
$$\overline{X} = X/G = X^H/\overline{N}(H) = X^{(\rho)}/\overline{N}_{\rho}(H), (\rho) \in R_{(H)}.$$

From (1.2) and (1.6) we have:

LEMMA 1.8. Let $p:E \rightarrow X$ be a G-A bundle. Then

$$p^{-1}(X^H) = \coprod N(H) \times_{N_{\varrho}(H)} E^{\varrho} \times_{A_{\varrho}} A, \quad (\varrho) \in R_{(H)}$$

If X has a single orbit type (H), then

$$E = \coprod_{(\varrho) \in R_{(H)}} G \times_{N_{\varrho}(H)} E^{\varrho} \times_{A_{\varrho}} A.$$

The Γ^{ρ} structure of E^{ρ} determines the $N_{\rho}(H)$ -A structure of $E^{\rho} \times_{A_{\rho}} A$ by the formula $n[z,a] = [z[n^{-1},a_o^{-1}],a_oa], z \in E^{\rho}, a \in A, a_o \in A$ such that $[n,a_o] \in \Gamma^{\rho}$, and hence determines the G-A structure of E.

DEFINITION. Let X be a G-space with a single orbit type (H), and assume $G = N_{\rho}(H)$ for some homomorphism $\varrho : H \rightarrow A$. Let $\overline{G} = G/H$ and $\overline{X} = X/G = X/\overline{G}$. A principal Γ^{ρ} bundle $p : E \rightarrow \overline{X}$ extends X if there is a \overline{G} equivalence $\psi : E/A^{\rho} \rightarrow X$ over \overline{X} (after switching the right $\overline{G} = \Gamma^{\rho}/A^{\rho}$ action on E/A^{ρ} to a left \overline{G} action). Two Γ^{ρ} extensions of X, (E,p,ψ) and (E',p',ψ') are equivalent if there exists a Γ^{ρ} bundle equivalence $\phi : E' \rightarrow E$ such that $\psi(\phi/A^{\rho})$ is \overline{G} isotopic to ψ' over \overline{X} , where $\phi/A^{\rho} : E'/A^{\rho} \rightarrow E/A^{\rho}$ is the \overline{G} equivalence induced by ϕ .

Now let X be a paracompact G-space with the single orbit type (H) and $G = N_{\rho}(H)$:

THEOREM 1.9. With X as above, the following are in bijective correspondence:

- (a) Equivalence classes of G-A bundles over X with all fibres in (ϱ) .
- (b) Equivalence classes of Γ^{ρ} bundles over \overline{X} extending X.
- (c) Homotopy classes of lifts to $B\Gamma^{\rho}$ of a fixed classifying map

$$\overline{f}: \overline{X} \rightarrow B\overline{G}$$

for the \overline{G} bundle X. (B Γ^{ρ} is considered here as a bundle

$$\overline{\partial}: B\Gamma^{\rho} \to B\overline{G} = B(\Gamma^{\rho}/A\rho)$$

with fibre BA°.)

(d) Equivariant homotopy classes of \overline{G} maps of X into B^{ρ} , where

$$B^{\rho} = E \Gamma^{\rho} / A^{\rho}$$

as a $\overline{G} = \Gamma^{\rho}/A^{\rho}$ space.

Proof. We construct surjective maps $(a) \rightarrow (b) \rightarrow (c) \rightarrow (d) \rightarrow (a)$ and show the composition is the identity.

(a) \rightarrow (b). If $p: E \rightarrow X$ is a G-A bundle with all $p^{-1}(x)$ in (ϱ) , then $X = X^{(\rho)}$ and E^{ρ} is a Γ^{ρ} bundle over \overline{X} by (1.6). Let $\psi: E_{\rho}/A_{\rho} \rightarrow E/A = X$ be the map induced by inclusion; then ψ is a \overline{G} equivalence by (1.2) and (1.6). Thus

$$(E_{\mathcal{Q}}, q(p|E_{\mathcal{Q}}), \psi), \quad q: X \rightarrow \overline{X}$$
 the quotient map,

is a Γ^{ρ} extension of X defined by p.

If $p': E' \to X$ is G-A equivalent to p, say $\phi: E' \to E$, then $\phi | E'^{\rho}: E'^{\rho} \to E^{\rho}$ is a Γ^{ρ} bundle equivalence over \overline{X} and $(\phi | E'^{\rho})/A^{\rho}: E'^{\rho}/A^{\rho} \to E^{\rho}/A^{\rho}$ is a \overline{G} equivalence such that $\psi(\phi | E'^{\rho})/A^{\rho} = \psi'$. Thus $p \to (E^{\rho}, q(p | E^{\rho}), \psi)$ is well defined on equivalence classes.

Now if (E_o, p_o, ψ_o) is a Γ^o extension of X, $E = E_o \times_{A^o} A$ is a G-A bundle over X, defining the G action by the formula in (1.8) and identifying $E/A = E_o/A^o$ with X via ψ_o . But then $E_o = E^o$ and $p_o = q(p|E_o)$ and by definition $E_o/A^o \rightarrow E/A = X$ is ψ_o . Thus the map is surjective.

(b) \rightarrow (c). Pick a fixed \overline{G} map $\theta: X \rightarrow E\overline{G}$ covering \overline{f} . If $f: \overline{X} \rightarrow B\Gamma^{\rho}$ covers \overline{f} , there is a uniquely defined \overline{G} map $\theta_f: X \rightarrow E\Gamma^{\rho}/A^{\rho}$ over f such that $\partial \theta_f = \theta$, where $\partial: E\Gamma^{\rho}/A^{\rho} \rightarrow E\overline{G}$ is a fixed \overline{G} map over $\overline{\partial}$. Note that if $\theta': X \rightarrow E\overline{G}$ is any \overline{G} map, then θ' is \overline{G} homotopic to θ by the universality of $E\overline{G}$, and this homotopy covers a homotopy $\overline{f_i}$, $\overline{f_1} = \overline{f}$. If θ_i is any \overline{G} homotopy of θ' over $\overline{f_i}$, then θ is \overline{G} homotopic over $\overline{f_1}$ to θ_1 and $\theta = \theta_1\lambda$, $\lambda: X \rightarrow X$ a \overline{G} equivalence \overline{G} isotopic to the identity over \overline{X} .

Now given a Γ^{ρ} extension (E, p, ψ) of X, let $f_o : \overline{X} \rightarrow B \Gamma^{\rho}$ be a classifying map for E. Since $\overline{\partial f_o}$ is covered by the \overline{G} map

$$\theta' = \partial(\hat{f}_o/A^\rho)\psi^{-1},$$

where $\hat{f}_o: E \to E\Gamma^o$ is a Γ^o bundle map over f_o , the \overline{G} homotopy of θ' to θ covers a homotopy f_o of $\overline{\partial f_o}$ to $\overline{f_o}$. Let $f_o: \overline{X} \to B\Gamma^o$ be a homotopy of f_o covering f_o and f_o a Γ^o homotopy of f_o over f_o . Then

$$\partial (\hat{f}_t/A^{\rho})\psi^{-1}: X \rightarrow E\overline{G}$$

covers $\overline{f_t}$ and $\theta = \partial (f_1/A\varrho)\psi^{-1}\lambda$, $\lambda : X \to X$ as above. Setting $f = f_1$, we have (*) $\widehat{f}/A^{\varrho}\psi^{-1}\lambda = \theta_f.$

Thus, we can assign to (E, p, ψ) a classifying map $f : \overline{X} \to B\Gamma^{\rho}$ covering \overline{f} and satisfying (*) for some Γ^{ρ} bundle map $\hat{f} : E \to \to E\Gamma^{\rho}$ covering f.

Let (E',p',ψ') be equivalent to (E,p,ψ) and suppose we have chosen f' covering \overline{f} and \widehat{f}' covering f' such that $\widehat{f}'/A^{\rho}\psi'^{-1}\lambda'=\theta_{f'}$. Let $\phi:E'\to E$ be the Γ^{ρ} equivalence such that $\psi(\phi/A^{\rho})\psi'^{-1}$ is \overline{G} isotopic to the identity over X. Now f' is Γ^{ρ} homotopic to $\widehat{f}\phi$ by say \widehat{f}'_{i} , and $\theta_{f'}$ is \overline{G} isotopic to

$$(\hat{f}/A^{\rho})(\phi/A^{\rho})\psi^{\circ -1}\lambda' = \hat{f}/A^{\rho}\psi^{-1}\psi(\phi/A^{\rho})\psi'^{-1}\lambda'$$

which is \overline{G} isotopic to $\widehat{f}/A^{\rho}\psi^{-1}\lambda'$ and hence to $\widehat{f}/A^{\rho}\psi^{-1}\lambda = \theta_f$. The isotopy of $\theta_{f'}$ to θ_f covers a \overline{G} isotopy θ_t of $\theta' = \partial \theta_{f'}$ to $\theta = \partial \theta_f$ and an isotopy f_t of f' to f' which in turn covers an isotopy f_t of f' to itself. Since $E\overline{G}$ is universal, θ_t is \overline{G} homotopic to the constant map rel endpoints, and f_t must be homotopic to the constant map rel endpoints. But then f_t is homotopic rel endpoints to a homotopy of f' to f over $\overline{f_t}$.

Thus the assignment of a classifying map f covering \overline{f} and satisfying (*) to (E, p, ψ) gives a well defined homotopy class of lifts of \overline{f} to each equivalence class of Γ^{ρ} extensions of X.

Now if $f: \overline{X} \to B\Gamma^{\rho}$ is any lift of \overline{f} , $f^*(E\Gamma^{\rho})$ is a Γ^{ρ} bundle over \overline{X} , and since

$$(f^*E\Gamma^{\rho})/A^{\rho f/A^{\rho}}E\Gamma^{\rho}/A^{\rho} \rightarrow E\overline{G}$$

covers $\partial f = \overline{f}$ (where $\hat{f}: f^*E\Gamma^{\rho} \to E^{\rho}$ is the cononical projection) there is a well defined \overline{G} equivalence

$$\psi: f^*E\Gamma^{\rho}/A^{\rho} \to X$$

over \overline{X} such that $\partial(\widehat{f}/A^{\rho})\psi^{-1} = \theta$. But this means that we may assign the lift f to $(f^*E\Gamma^{\rho}, p, \psi)$, and this shows (b) \rightarrow (c) is surjective.

(c) \rightarrow (d). By the remarks at the beginning of the previous step of the proof, the assignment $f \rightarrow \theta_f$ sends a homotopy class of lifts of \overline{f} to an equivariant homotopy class of maps of X to $E\Gamma^{\rho}/A^{\rho}$.

Now given any equivariant map $\psi: X \to E\Gamma^{\rho}/A^{\rho}$, $\partial \psi: X \to E\overline{G}$ is \overline{G} isotopic to θ . Thus if ψ covers $\overline{\psi}: \overline{X} \to B\Gamma^{\rho}$, $\overline{\partial \psi}$ is homotopic to \overline{f} by a homotopy $\overline{f_t}$. If $\overline{\psi_t}$ covers $\overline{f_t}$ and ψ_t is a \overline{G} homotopy of ψ covering $\overline{\psi_t}$, then $\partial \psi_1$ is \overline{G} isotopic to θ over \overline{f} and $\theta = \partial \psi_1 \lambda$, $\lambda: X \to X$ a \overline{G} equivalence \overline{G} isotopic to the identity. Let $f = \overline{\psi_1}$. Then $\theta_t = \psi_1 \lambda$ which is \overline{G} isotopic to ψ . Thus (c) \to (d) is surjective.

(d) \rightarrow (a). $E\Gamma^{\rho} \times_{A^{\rho}}A$ is a G-A bundle over $(E\Gamma^{\rho})/A^{\rho}$, using the formula of (1.8). (Note that the Γ^{ρ} local triviality of $E\Gamma^{\rho}$ implies the G-A local triviality of $E\Gamma^{\rho} \times_{A^{\rho}}A$, since

$$(U \times \Gamma^{\rho}) \times_{A^{\rho}} A = U \times (G \times_{H} A) = G \times_{H} (U \times A),$$

U any trivializing open set in $B\Gamma^{\rho}$, by the argument preceding (1.6).) Hence equivariant homotopy classes of G maps of X into $(E\Gamma^{\rho})/A^{\rho}$ pull back G-A equivalence classes of G-A bundles over X. But since H acts trivially on X, G maps are the same as \overline{G} maps.

Finally to prove (d) \rightarrow (a) is surjective and that all the maps are bijective, it is sufficient to prove that (a) \rightarrow (b) \rightarrow (c) \rightarrow (d) \rightarrow (a) is the identity: Let $f: \overline{X} \rightarrow B\Gamma^{\rho}$ cover \overline{f} . There is a uniquely defined $\psi: (f^*E\Gamma^{\rho})/A^{\rho} \rightarrow X$ such that

$$\theta \psi = \partial \pi / A^{\rho} \text{ or } \pi / A^{\rho \pi^{-1}} = \theta_{\ell}$$

where $\pi: f^*E\Gamma^{\rho} \to E\Gamma^{\rho}$ is the projection. Then

$$[\pi,1]: f^*E\Gamma^{\rho} \times_{A^{\rho}}A \to E\Gamma^{\rho} \times_{A^{\rho}}A$$
 and $\psi g: f^*E\Gamma^{\rho} \times_{A^{\rho}}A \to x$

satisfy $\theta_f \psi q = \pi/A^{\rho}q = q[\pi,1]$ and hence define a G-A equivalence $f^*E\Gamma^{\rho} \times_{A^{\rho}}A \to \theta_{f_*}(E\Gamma_{\varrho} \times_{A^{\rho}}A)$ with G action given by (1.8), q the quotient under A.

Now let $p:E \to X$ be a G-A bundle of type (ϱ). Then E is G-A equivalent to $E^{\varrho} \times_{A^{\varrho}} A$ with G action defined by (1.8). As in (b) \to (c), let

$$f: \overline{X} \rightarrow B\Gamma^{\rho}$$

cover \overline{f} and be covered by a Γ^{ρ} bundle map $\widehat{f}: E^{\rho} \to E \Gamma^{\rho}$ such that $\widehat{f}/A^{\rho}\lambda = \phi_{f}$, where $E^{\rho}/A^{\rho} = E/A$ is identified with X via p. E^{ρ} is equivalent to $f^*E \Gamma^{\rho}$ by an equivalence $\phi: E^{\rho} \to f^*E \Gamma^{\rho}$ such that $\widehat{f} = \pi \psi$. Then

$$\pi/A^{\rho}\phi/A^{\rho}\lambda = \hat{f}/A^{\rho}\lambda = \theta_{f}$$

Hence with $\psi = \lambda^{-1} (\phi/A^{\rho})^{-1}$ we see from the paragraph above that

$$\theta q: f^*E\Gamma^{\rho} \times {}_{A^{\rho}}A \rightarrow X$$

is equivalent to

$$\theta_{f_a}(E\Gamma^{\rho}\times_{A^{\rho}}A)\to X.$$

But (E,p) is G-A equivalent to $(E^{\rho} \times_{A^{\rho}} A, q)$ and $[\phi, 1]$ is a G-A bundle map of this last to $(f^*E\Gamma^{\rho} \times_{A^{\rho}} A, q)$ over λ^{-1} . Since λ is \overline{G} homotopic to the identity, it follows from the equivariant covering homotopy property that E is G-A equivalent to $f^*E\Gamma^{\rho} \times_{A^{\rho}} A$ and hence to $\theta_{f_*}(E\Gamma^{\rho} \times_{A^{\rho}} A)$. So the cycle of maps is the identity, proving the theorem.

COROLLARY 1.10. For any closed subgroup $H \cap G$, the universal G-A bundle for spaces of orbit type (H) is

$$E(H) = \underset{(\varrho) \in R_{(H)}}{\coprod} G \times \underset{N_{\rho(H)}}{\coprod} E \Gamma^{\rho} \times \underset{A^{\rho}}{A},$$

$$B(H) = \underset{(\varrho) \in R_{(H)}}{\coprod} G \times \underset{N_{\rho(H)}}{\coprod} B^{\rho} = \underset{(\varrho) \in R_{(H)}}{\coprod} \overline{G} \times \underset{N_{\rho(H)}}{\boxtimes} B^{\rho},$$

with projection induced by the quotient map $E\Gamma^{\rho} \rightarrow B^{\rho} = E\Gamma^{\rho}/A^{\rho}$. If X is a

G-space of orbit type (H) only, equivalence classes of G-A bundles over X are in bijective correspondence with $[X,B(H)]_G$.

COROLLARY 1.11. Let $\theta: B(H) \to BA$ classify E(H) as an A bundle. If X is a G-space of orbit type (H) only, an A bundle over X admits a G-A structure if and only if its classifying map $f: X \to BA$ factors up to homotopy through an equivariant map $\phi: X \to B(H)$; i.e., $f \sim \theta \phi$.

The inclusion of $\overline{N}_{\rho}(H)$ in $\overline{N}(H)$ allows us to consider $B\overline{N}_{\rho}(H)$ and hence $B\Gamma^{\rho}$ as bundles over $B\overline{N}(H)$. $B\Gamma^{\rho}$ has fibre $BA^{\rho} \times_{N_{\rho}(H)} \overline{N}(H)$. (Since $\overline{N}(H)/\overline{N}_{\rho}(H)$ is finite, this is just a finite number of copies of BA^{ρ} when we forget the action.)

COROLLARY 1.12. Let X be a G space of orbit type (H) only, and let

$$\overline{f}: \overline{X} \rightarrow B\overline{N}(H)$$

be a classifying map for X as an $\overline{N}(H)$ bundle over \overline{X} . The equivalence classes of G-A bundles over X are in bijective correspondence with homotopy classes of lifts of \overline{f} to $\bigsqcup_{(\varrho) \in R_{(H)}} B\Gamma^{\varrho}$.

Examples. 1. X a free G-space, H = (1), ϱ trivial. Then $\Lambda^{\varrho} = G \times A$, H^{ϱ} trivial, $\Gamma^{\varrho} = \Lambda^{\varrho} = G \times A$, $N_{\varrho}(H) = G$, $A^{\varrho} = A$. Thus

$$B^{\rho} = E(G \times A)/A = EG \times (EA/A) = EG \times BA$$

- and G-A bundles over a free G-space X are classified by equivariant homotopy classes of maps of $X \rightarrow EG \times BA$. But $[X, EG \times BA]_G = [X, BA]$. So G-A bundles over X are in bijective correspondence with A bundles over X = X/G (as is well known).
- 2. X a trivial G-space, H = G, $\varrho : G \rightarrow A$ any homomorphism. Then Λ^{ϱ} is isomorphic to $G \times A^{\varrho}$ by $\varphi : G \times A^{\varrho} \rightarrow \Lambda^{\varrho}$, $\varphi(g,a) = (g, \varrho(g)a)$ and $\Gamma^{\varrho} = A^{\varrho}$. Of course, $N^{\varrho}(H) = G$ and $\overline{G} = \Gamma^{\varrho}/A^{\varrho}$ is trivial. Thus $B\varrho = EA^{\varrho}/A^{\varrho} = BA^{\varrho}$ with trivial action. So G-A bundles over a connected trivial G-space X are classified by homotopy classes of maps of X into BA^{ϱ} , some $\varrho : G \rightarrow A$.
- 3. G abelian, X has orbit type (H) only. Suppose $\varrho:H\to A$ extends to a homomorphism $\hat{\varrho}:G\to A$ with $A^\rho=\hat{A}^\rho$. (This is always true if A is the unitary group U(n).) Then N(H)=G, $\Lambda^\rho=G\times A^\rho$, $N_\rho(H)=G$. Further $\Gamma^\rho=G\times A^\rho/H^\rho$ is isomorphic to $G/H\times A^\rho$. In fact, let $\hat{\phi}:G\times A^\rho\to G\times A^\rho$ be the isomorphism

$$\phi(g,a) = (g,\varrho(g)^{-1}a).$$

Then $\phi(h, \varrho(h)) = (h, 1)$. So ϕ induces

$$\phi: \Gamma^{\rho} = G \times A^{\rho}/H^{\rho} \cong G/H \times A^{\rho}.$$

Thus

$$B^{\rho} = E(G/H) \times EA^{\rho}/A^{\rho} = E(G/H) \times BA^{\rho}$$

and

$$[X,E(G/H)\times BA^{\rho}]_G=[\overline{X},BA^{\rho}].$$

BIBLIOGRAPHY

- 1. P. Conner and E. Floyd, Maps of odd period, Ann. of Math., vol. 84 (1966), pp. 132-156.
- 2. R. Lashof, Lifting semi-free actions, Proc. Amer. Math. Soc., vol. 80 (1980), pp. 167-171.
- 3. ______, Obstructions to equivariance and lifting actions in bundles, preprint, Univ. of Virginia, 1977.
- 4. _____, Equivariant bundles, Illinois J. Math., vol. 26 (1982), pp. 257-271.
- 5. R. LASHOF, P. MAY and G. SEGAL, Equivariant bundles with abelian structure group, Proc. Northwestern Univ. Topology Conference, to appear.

University of Chicago Chicago, Illinois