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GENERALIZATIONS OF RIESZ POTENTIALS AND
LP ESTIMATES FOR CERTAIN k-PLANE TRANSFORMS

BY

S. W. DRURY

O. Introduction

In this article we consider certain generalizations of the complex Riesz
potentials on R". Forf C(R") these are defined by

(1) Rz f(x) (z) t" x y I-" + Zf(Y) d2(y)

for z > 0 and by

(2) (R, f)^(u) a(n z) u I-5(u)
for z < n [7, Chapter 5]. Here we have denoted 2 the Lebesgue measure on
R", f the Fourier transform off and the entire function

7gz/2

r(1/2z)
which has no zeros in z > 0. The definitions agree in 0 < z < n.
The generalizations with which we are concerned are all motivated by the

k-plane transform. For f a suitable function defined on R" we define the
k-plane transform T f by

Tk f(FI)= [" f(x)d2n(x
where 1-I is an affine k-plane in R" and 2n is the Lebesgue measure on 1-I.
Thus Tk f is a function on the manifold M.,k of affine k-planes in R". In view
of [1, Chapter 7, Section 2, Theorem 3] one may construct on M,,,k a
measure / invariant under the action of Euclidean motions. Aside from
renormalization, is unique with this property.

CONJECTURE. Let

1 <q<n+ 1, np- (n k)q- k
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(so that 1 < p < (n + 1)(k + 1)-1). Then Tk is a bounded operator:

The conjecture is trivially true for p 1, q 1 and is known in the case of
the Radon transform [2]. In fact in that article, Oberlin and Stein obtain
considerably more delicate estimates. The conjecture is also true in the case
k 1 of the x-ray transform at least for 1 < q < n + 1 [3]. In this article we
establish the conjecture for n < 2k + 1. For other values of n and k only
fragmentary results are known. (Added in proof. The conjecture has now been
settled affirmatively by M. Christ.)
Our proof makes use of an analytic family of multilinear operators

(3) A(fo, f,) %,(z) Xk a -"+z d2(xo), d2(x,).

Heref 6 CT(R"),

A det (xl Xo, x2 Xo,..., x,- xo)l

and y,(z) I-I,- (z- k) is an entire function with no zeros in #z > n- 1.
The integral in (3) converges absolutely for z > n- 1 and we make this
definition only for these values of z. In case n 1 we have

Az(fo, fx) (Rfo)f d2

so that A is just a bilinear formulation of.the Riesz potential.
It follows from some work of Getbart [4] that A, can be continued ana-

lytically to the whole complex plane. The connection of Az with the k-plane
transform is simply that

(4)

for k an integer 0 < k < n.

THEOREM 1. Let (n 1) < tz <_ n and (n + 1)p-1 1 + z (so that
1 <p<2). Then

A,(fo, L) c,., 11 fll.
j=O

The proof of the conjecture (in case n < 2k + 1) follows almost imme-
diately from these facts. We give the details in Section 1.

In Section 2 we introduce generalizations of Riesz potentials on the Grass-
mann manifold G2k,k and on M2k + 1.k" We feel that these potentials desig-
nated f, and A, respectively are of independent interest. We rely on the
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work of Gelbart both for the definition of these potentials and for the esti-
mates obtained.

Finally, in Section 3 we relate the potentials f2 and Az to k-plane trans-
forms and to A, giving a different proof of Theorem in the case n odd.

1. The multilinear forms Az

We first need to calculate a Jacobian determinant Jn,k.

LEMMA 1. We have

d,’q,n(Xo), d2n(xk) d/0(Fl) Jn,k d),(x0), d2(Xk)

where J,, c,,A--, A is the volume of the k-simplex with vertices Xo,
x and 1 is the invariant measure on M,,.

Proof. It is clear that Jn,k is a Euclidean invariant of the k-simplex with
vertices Xo, x,..., Xk. Unfortunately the action of Euclidean motions on k-
simplices has too many orbits (k > 1). Hence we make a proof by induction
on k. If k 0 or 1 the lemma is obvious. Assume it holds for k and all n
simultaneously. Let V be the volume of the (k- 1) simplex with vertices x,
X2, Xk. Let v be the invariant measure on Mn,k_ 1, and for H a k-plane let
vn denote the invariant measure on the hyperplanes of H. Further let #xo be
the invariant probability measure on the manifold of k-plane passing through
the point Xo. By the uniqueness of the invariant measure on the homoge-
neous space

we have

{(xo,H); xoR",HM,,R,XoH},

(5) #xdn) (Xo)= (Xo)dv()

for suitable normalizations of these measures. The orbits of

{(Xo, (R)); Xo R, (9 e M.,_}
are parametrized by r, the perpendicular distance from Xo to (R). The action
of dilations about the point Xo yields

(6) dvn((R)) d/xo(1-I) Cr -t"-k) dv((R)).

Finally our induction hypothesis yields both

(7) Cn,k- V-(n-k+ l) d2(x:), d2(Xk) d2o(xl), d),o(Xk) dv((R))

and, when applied to the hyperplanes of Fl,

(8) Ck,k_ V- d2n(X), dJ,n(xk) d2o(x), dJ,o(Xk) dvn((R)).
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Now, using (8), (5), (6) and (7) in turn we have

d2n(Xo), d2n(Xk) d#(Yl) cV d2rl(Xo) d2o(xt), d2o(xk) dvn((R)) d#(II)

cV d2o(xt), d2o(Xk) dvn((R)) d#xo(1-I) d2(xo)

cV r -in-k) d2o(x), d2o(X) dv(O) d2(xo)
cV-(n-k)r -(n-k) d2(xo) d2(x), d2(xk).

Since A crV we have our result.

Next we shall need to review the work of Oberlin and Stein [2]. Let Gn,k
denote the Grassmann manifold of linear k-planes (i.e., k-planes passing
through the origin). It is a compact manifold and possesses an invariant
probability measure y under the action of the orthogonal group. We may
view Mn,k as a bundle over Gn.k in which each fibre consists of a family of
mutually parallel k-planes. We follow Solmon [51 in denoting a generic
element 17 on M.,k by

1-I (n, x) z + x,

the translate of r G,,k by x n+/-. In this way the fibre over rr is realized as
the (n k)-dimensional space n+/-. We may take

d#(zr, x)= d2,+/-(x) d’p(n)

since the right hand side is invariant under Euclidean motions.
Oberlin and Stein are concerned with the case k n- 1. Let us denote by

S (= T_ ) the Radon transform, and by S: the Radon transform followed by
the Riesz potential R on the 1-dimensional fibre. Thus

and

for z > 0, and

sf(n, x)= f f(x + y)d2(y)

$,f(zt, x)= o(z) f x- y l-+Sf(n, y) dA,(y)

Szf^(rc, u)= a(1 z)] u l-’Sf^(n, u) (u n.t.)
for z < 1 where denotes the Fourier transform along the fibre. Since

Sf^(n,, u) f(u),
Oberlin and Stein find that for z -{(n- 1),

(9) IIS=fll2 C=,llfll2.

From this and the trivial estimate

IISflloo G,llftlx (z- 1)
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they deduce

(lO)

For fk 6 C(R") (0 < k < n) let us define F Cc(M(n, n)) on the space
M(n, n) of n x n real matrices by

F(yl, y.)= f fo(xo)f(xo + yl), ...,fn(xo + y.) d2(xo).

Then for z > n- we have by (3)

(11) Az(fo, f,) y,(z) ["
3
F(Y) ldet Y -n+z dY

where dY denotes Lebesgue measure on M(n, n).
According to the work of Gelbart [4, Section 4-1 the locally integrable

density

T.(z) ldet Y -’+z (z > n 1)

can be continued analytically to the whole complex plane as a distribution
E, on M(n, n). Thus we have:

LEMMA 2. For f C(R") (0 < k < n), A(fo, f,) can be continued ana-
lytically to the whole complex plane. Furthermore for fixed z, A, is a contin-
uous multilinearform on C(R").

Proof of Theorem 1. We proceed by induction on n. For n 1 the result
is well known [7, Chapter 51. Assume that the result holds for n- 1. Let
fk C(R") (0 < k < n) and assume for the moment that z > n 1. Then

Az(fo, f,) ,(z) f xk A-" +z d2(xo), d2(x.).

Let H be the hyperplane passing through xx, x2, Xn. Then, accordiig to
Lemma 1,

a.(fo, f.) r.(z) A(x,) A-"+’A d,(Xo) d,n(x) d(x.) du(n)

where A’ is the volume of the simplex with vertices xx, x,. Now A C,
d(xo, H)A’ where d(xo, H) is the perpendicular distance from Xo to 1-I so that

(12) Az(fo,..., f.) c. j" o,(rI)h,(rI) d(n)

where

h,(l’I) 4,(A In, A In L In)
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and

gz(1-l) a(z n + 1) j fo(Xo) d(xo, II) -’+ d2(xo).

An easy calculation shows that 9z Sz-,,/ fo.
In equation (12), A, 9z and hz are defined and analytic on the whole

complex plane. By Lemma 2, h is a continuous function of compact support
on M,,,_ 1. It is easy to see that 9 is locally integrable on M,,._ 2. It follows
that the identity (12) holds for all complex z. Let us take z n 1). Then
by (9),

(13) Ilozll2 < Cz.,llfoll2 (glz n- 1)).

On the other hand, hz is controlled by the induction hypothesis

(14) h,(n) _< C,., II {S A I(n)} /a
k=l

where a 2n/(n + 1). It follows from (14), (10) and Holder’s inequality that

(15) Ilhzl 2 Cz,. Ilfkl 2 (Z 2n 1)).
k=l

It now follows from (13) and (15) that

(16) A,(fo,..., f) < C,,,, fi fk 2
k=0

(z n 1)).

Combining this with the trivial estimate

A,(fo,.., f) < C,.,, fi Ilfkllx (z n)
k=O

and the fact that the constants generated by these methods have at worse
exponential growth in oCz, we have the conclusion of Theorem 1 by routine
complex interpolation arguments.
By the same methods and the use of the mixed norm estimates of Oberlin

and Stein one may prove the following generalization.

THEOREM 1. Suppose that n 1) < z _< n,

p- =1 +z,
k=0

n-lz <p < n(n + 1)- + n-(n + 1)-z
Then

A,(fo f,)l C., fk .
k=0

(0 < k n).

We leave the details to the reader.
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At this point let us digress to take the Fourier transform of Theorem in
the case p 2, n 2. Gelbart [4] has shown that the Fourier transform of
Ez is locally integrable for z < 1 and is given explicitly by

Z(Y) ?,(n z) det Y I-Z.

This leads to the identity

(17) Az(fo f.)

"n(n z) [’fo(--(u +"" + Un))fl(ul), d2(u.)

where D Idet (ul, U2, Un) Incidentally, (17) with z 0 immediately
gives (4) with k 0. Specializing now to the case n 2, from Plancherel’s
theorem we have"

THEOREM 1". Let LZ(R2), 6 R. Then

b(ux + u2) det (ul, u2)l

is an L2 bounded kernel on R2.

(u, u2 6 R2)

Our next task is to establish the relation (4) between Ak and Tk. We will do
this by induction on n with k fixed. If k n the relation follows directly from
the definition (3) of A,. Further if k n 1 then (12) yields

An- x(fo, fn) Cn gn- x(l’I)hn- (17) d/(1-I)

where g._ Sofo c.Sf by well known properties of the standard Riesz
potential, and

h._ x(rI) an_x(fx In,..., f. In)

It follows that

Cn (-[ sic(n).
j=l

An-,(fo, fn) Cn Sfj(I-I) du(n)

as required. In this way the induction starts.
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For the general induction step we assume the result for n- 1 and prove it
for n. We may assume that k < n- 1. Again by (12) we have

(18) Ak(fo, f.) c. f O(H)h(rI) du(lq)

where 9k Sk + fo and

(19) hk(H)=Ak(flln,..., f, In) f{ fi Tf(O)} dvn(O)
j=l

by the induction hypothesis. In (18) and (19), H denotes a generic hyperplane,
O a k-plane, # is the invariant measure on M,,._ and Vn is the invariant
measure on the k-planes of H.
By the uniqueness of invariant measures on homogeneous spaces we have

(20) dvn(O) d#(H) Cn,k d#o(1-I) dv(O)

where v is the invariant measure on Mn,k and #a is the invariant measure on
the manifold of hyperplanes containing the k-plane (R). The general induction
step is an immediate consequence of (18), (19), (20) and the identity

(21) f 0k(H) d#o(I-I) C.,k Tkfo(O)

which has to be interpreted in the distributional sense since we know only
that Ok is locally integrable on M.,._ 1. We now establish (21) by means of the
uniqueness of Fourier transforms.

Let us write O (0, x) with 0 G.,k, x 0+/-. Then we fix 0 and calculate
the Fourier transforms of each side of (21) along the fibre 0+/-. We have

(22) Tkfo^(O, u)= C.,kfO(U) (U 0").

The left hand side of (21) is more difficult. It can be rewritten as

f Ok(I-l) d#o+x(I-I) Ok(n + x) do(rO

where 7z G.,._ 1. If x y / y’, y r+/-, y’ n 0+/- is the orthogonal decom-
position of x, we may write r + x (n, y) (y n). Thus the Fourier trans-
form of the left hand member of (21) is

(23) f Ok(r, y)e -2niu’tr+r’) d2l(y) d2,,,.,o+/-(y’) d/o(rc),

at least in the distributional sense. But 9k Sk-n+ lfo and k- n + 1 < 1 so
that, by definition of Sz,

(, U) n,k ul -+n- %(u) (u ).
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Thus (23) becomes

Cn,kl U[ -k+- fo(U) J e- 2niu’y’ d2 o(y’) d#o(rc)

and the integral is easily seen to be equal to c,lul-+- in the distribu-
tional sense. This completes the proof of (21) and the general induction step.
We now establish the conjecture for the cases outlined in the introduction.

THEOREM 2. Let

n < 2k + 1, 1 < q < n + 1, np-1 (n- k)q-1 k

(so that 1 < p < (n + 1)(k + 1)-1). Then T is a bounded operator"

Tk" L’(Rn, 2)--/Y(Mn,k, #).

Proof. The result is easy for p 1, q 1"

tlTfllx f f f(x + y) d2o( y) d2o (x) @(O)

<_f.flf(x+y)ldAo(y)dAo.(x)d,(O)
Ilfll x.

By the principle of convexity it suffices to establish the result at the other
endpoint p (n + 1)(k + 1)-1, q n + 1. By (4) we have

I1TflI c,.ka(f, ...,f) (n + 1 arguments)

and, by Theorem 1,
n+lA(f,..., f) < c., f

where (n + 1)p-1 1 + k as required.

2. Riesz potentials on G2k,k AND M2k + 1,k

Let rtl, 2 Gn,k" Select an orthonormal basis e (1 <_ a < k) for r. Let us
put

ha,b (e), e())
so that A is a k k matrix with operator norm _< 1. Different choices of
basis would yield the matrix UAV with U, V O(k). Now define

(24) s(rct, 2) (det (I AtA)) 1/2

an invariant of the two k-planes re1 and re2. If k 1, s(rcl, re2) is just the sine
of the angle between rr and rt2.
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Next let us fix a reference k-plane rCo e Gn,k and define the open subset
of G,,k by

{0)).
We observe that the complement q/ of q/is of codimension one in G, and
hence is -null. From the measure-theoretic viewpoint we may replace G., by
q. We now parametrize q in the standard way. For x e q/ we denote by
P,o the restriction to x of the orthogonal projection onto Xo. Since
P,,o is invertible. Thus

(p.,.o)

A little linear algebra shows that u" q/ (no, n) is a bijective diffeo-
morphism.

Select an orthonormal basis el, e, of R" such that el, ek is a basis
of no. Let n q/and let fl,..., fk be an orthonormal basis of n. Let

Aa,b=(ea, fb), l <a<k, l <b<k,

Qa,b=(ea, fb), k+ 1 <a<n, 1 <b<k,

so that A is a kk matrix, Q an (n-k)k matrix such that
AtA + QtQ I. Further u(r0 is represented by the (n-k) k matrix
R QA-1. The matrix R will be considered as the "coordinate matrix" of
the k-plane n

LEMMh 3. We have d?(R)=c(det(1 + RR)) -"/2 dR where dR denotes
Lebesgue measure on the space M(n- k, k) of (n- k) x k matrices.

Let tk be a nice rapidly decreasing positive function on R /. TheProof.
measure

d0J b(tr (A’A+QtQ))dA dQ

on the space M(n, k) is invariant under left multiplication by O(n). It follows
that the image measure :(0) under x,

is a constant multiple of ?. Putting Q RA yields

dO q(tr (A’A + A’WRA)) det A [.-k dA dR.

Finally integrating out with respect to A yields the conclusion of the lemma.
Now let n 2k + 1, let trio be the invariant measure on the sphere of unit

vectors u (0, 0, uk+ 1, u,) in rr. Let . be the invariant measure on
the Grassmann of k-planes in u-.
LEMMA 4. dy(r0 cs(ro, ;r) dy,(n) dcro(U).
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Proof. Clearly rt u+/- if and only if uR 0. It follows from Lemma 3 that

(25) du(R) c(det (I +Rtg)) -tn- 1)/2 dau(R)

where a is Lebesgue measure on the space of (n- k) x k matrices R such
that uR 0. Up to choice of sign, u can be recovered from R by

u +__ [IAkR[I- 1AkR

and it follows that

da,,(R) da,o(U j(R) dR

for some jacobian j(R). By invariance,

j(URA) j(R) for all U O(k + 1), A SL(k, R).

A little linear algebra shows that outside the null set on which det (R’R) O,
the orbits are parametrized by det (R’R). Thus j is a function of det (RR)
alone. The action of dilations on R now yields j(R)= (det (R’R)) -/2. Com-
bining this with (25) and Lemma 3 we have

(26) dv,,(R) dao(U (det (I + R’R))l/2(det R’R)-1/2 d(R).

Finally A’RRA QQ I AA and A(I + RtR)A I so that

det (I + R’R)-1/2 det (R’R)1/2 det (i A’A)1/2.

Thus the lemma follows from (26) and (24).

LEMMA 5. We have d])(rcl) d(r2) cs(rc 1, rt2) d(nl) d/u(rc2) da(u) where a
is .the invariant measure on the sphere in Rn.

Proof. The manifold {(n, u); n, Gn,k, u Rn, Ilull 1, u rr+/-} is clearly a
homogeneous space of O(n). The probability measures

da(u) d(n) and d?u(n) da(u)

are both invariant on this homogeneous space. Thus by [1, Chapter 7, Th6o-
r6me 3-1 they must coincide. The result now follows fromLemma 4.

LEMMA 6. Let 7r,1, n2

_
l[. Then

s(rrl, 7r2) -Idet (R1 R2) (det (I + gR1))-l/E(det (I / g2R2)) -1/2.

Remark.
form

In case k this is just the difference formula for sine in the

sin (0 02) tan 0 tan 021(1 + tan2 0:)- 1/2(1 + tan2 02)- 1/2.
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Proof. Let Aj, Qj and Rj be the matrices relating to nj. Let f)
(1 < a < k) be an orthonormal basis of rj and let Aa,b (fl), f2). Then

A AA2 + QQ2 A(I + RR2)A2,
AtA A’2(I + R2RI)AA(I + RtR2)A2

But AjA (I + RRj)- j 1, 2 so that

det (I AtA)

det (I- (I + Rz R2)-(I + R’2 R)(I + RRI)-t(I + RR2)

=(det (I + Rz R2)) -t det (I + R2R2-(I + R’2R)(I + RR)-I(I + RR2)).
But

I + R2R2- (I + R2R)(I + RR)-(I + RR2)

I + R2 R2 -(I + RR + (R2 RI)tRt)
x (I + gtgt)-(I + Rtgt + Rt(g2 gt))

(g2 g)’(t g(l + RRt)-R)(R2 g)

(R2 R)(I + RIR)-t(R2 R).
Since det (I + RR) det (I + RRt), the result now follows.
At this point let us again recall the distribution of Gelbart, this time on

the space of k x k matrices M(k, k). It is designated , and is defined as the
locally integrable density

yk(Z) det R I- +

for z > k- 1 and can be continued analytically to the whole complex
plane. Furthermore Gelbart shows that the Fourier transform , is given by
the locally integrable function

2(S) Yk(k z) det S -for z < 1. In particular if z 0, is a constant multiple of a unitary
convolver on L2. One has the estimate

IIX:ll < cxe1t (e real)

on the L2 convolver form.
For z > k- we may define a distribution f on G2k,k X G2k,k by

df(rcl, :2) k(z) s(rc, :2) -g+z d(n) dy(n2).

LEMMA 7. (a) The distribution f, can be continued analytically for all
complex z.

(b) Let 0 < z < k, 2kp- k + lz. Then

fx(rcl)f2(rc2) dDz(nX, Ck,zllfxllllf211.7Z2)

Furthermore Ck, increases at most exponentially in z.
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Proof. It is easy to write

L

GEk,k X G2R,k .) O-l[ X fill
/=1

where q/t (1 < _< L) are the open sets determined by finitely many reference
planes nl, .. Part (a) now follows from the corresponding fact for E.z by
Lemma 6 and a standard resolution of unity argument.
For (b), the case p 1, z k is trivial since fz is a bounded function. By

routine complex interpolation arguments it suffices to prove the result for
p= 2,z=0.

For this it.suffices to work with one reference plan 0. Let f, f2 C().
Then by Lemmas 3 and 6 we have

c(z)[ f(R)f2(R2) det (R R2)

x (det (I + RR)det (I + R R2)) -1/2tk+ dR dR2

_<clecll AII AII
in case z i ( real) since

IIf 1122 c f(R)12(det (I + R’R)) -k dR (j 1, 2)

and we use the L2 estimate on X;. Part (b) now follows since C() is dense
in L2(GER.R).
For z > k we define the distribution A on M2R + 1,k X M2k + 1,k by

dA(Ht, H2)= R+,(z)A(H, H2)-k- d(h,) dr(H2)

where

a(ri, ri2) i(ri, n2)s(n, z2),

and di(li1, liE) is the orthogonal distance between the k-planes li1 and II E.

LEMMA 8.
all complex z.

Az can be continued analytically as a tempered distribution for

Proof. Let G be in the Schwartz class of M2k + 1,k X M2k + 1,k" For nl, 2
G2k + 1,/ and u s n c rc we define the Schwartz class function (7 by

nl, 2)-" 1" G(I, Xl; z2, x2)e -2tx-x’- d2(x) d2,.(x2).
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We may view 6(II 1, I-I2) as the length of the orthogonal projection of xl x2

onto n c n2. Using this fact, the relation d#(Hj)= d#,jl(xj)dy(rc) and the
standard theory of Euclidean Fourier transforms and Reisz potentials I-7] we
have

(27) f G dAz

c(z) f [u I-s(n, n2)-- +z (7(u, zrx, n2) d2,,. ,,(u) d2(n)

where c(z) ,(k + 1 Z)k(Z). Certainly (27) holds in the range
k+ 1 > 9z > k.

It is important to realise that the function (7(u, ha, n2) is left invariant
under a change of origin in Rn. That is (7 is intrinsic to the bundle M2k/ ,k.

We now wish to make a change of viewpoint. We regard u as a point of
linear Euclidean space R" and n, n2 as k-planes in the 2k-dimensional space
u+/-. By Lemma 5 we find

d2,ln,z+/-(u d(n) d(n2) c lul-2s(nx, n2) dyu(nt) dyu(n2) d2(u)

and the right hand side of (27) becomes

(28) c(z) [’lul--Zs(nx, n2)-+d(u, ha, 7r2) dyu(nx) dyu(n2) d2(u)

which makes sense for k + 1 > 9z > k- 1. Thus (28) extends the definition
of Az into 9z > k 1. To extend it further we denote by f., the distribution
fz taken relative to the k-planes of u+/-. We may then rewrite (28) as

(29) 71(k + 1 -z) [’lul--d(u, x, n2)dfu,(n, n2)d2(u)

which is valid for tz < k + 1. Thus (29) extends the definition of A to the
whole complex plane.

LEMMA 9. k + + lz. ThenLet O < Nz < k + l, 2(k + 1)p

g(I-I)g(H) dA(FI, 112)

Proof. The case p 1, 9z k + 1 is trivial since A is a bounded func-
tion. By routine complex interpolation arguments we need only prove the
result in case p 2, z 0. Let us put

G(Tgl, x1; 7"/: 2, x2) gl(7l, x1)g2(ff2, x2).

Then

d(u, , :z) 0(, u)O(, u)
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so that, by (29),

f g (R) O2 dA=7o(k + l -z) f
This yields

gi (R) 12 dAz -- Czl gxll/I gzll2

using Lemma 7(b) and the fact that

IIgjIl c ;I
This completes the proof.

u I-k-z01(nx, u)Oz(nz, u) du,z(lrl, x2) d2(u).

(tz 0),

u l-l 0s(n, u)I 2 dy.(n) d2(u).

3. Applications of Az

In this chapter we relate Az to the k-plane transform in 2k + 1 dimensions
and give different proofs of special cases of Theorems and 2.
We start out by giving a new proof of Theorem 2 in case n 2k + 1. As

already pointed out we need only establish the result at the difficult endpoint
p 2, q 2k + 2. Towards this we calculate T’ the formal adjoint of T. We
do this by means of the Fourier transform. For n G2k+ X,k, U 7r, +/-, let

0 (n, u) e-2niu.xo(x, X) d,n+/-(x).

That is, for 9 defined on Mzk + 1,k we find 0 by taking the Fourier transform
along each fibre. Then

(Tyf)’(n, u)= e-2""’Xf(x + y) d2,(y)d2,,(x),

and since u x u (x + y) for u n+/-, we have

(Tf)(n, u)=f(u).
Now, by Plancherel’s Theorem,

f Tf(n, x)g(n, x) d2,,(x) d,(n) f T f’^(n, u)O(rc, u) d2,+/-(u) d,(n)

.I- f(u)O(, u) .(u) ()

c [" f(u)0(n, u) lul- d7u(n) d2(u).
d
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It follows that

(T g)^(u) C u ]-k f (n, u) dy,,(n).

Again by Plancherel’s Theorem we have

T g(x)T g2(x)d;(x)= .f(T g)^(u)(T g2)(u) d2(u)

c j’lu I-2 0, (n, u)2(n2, u) dy(nt) dyu(n2) d(u).

If G(n, x; n2, X2) gl(nl, x1)g2(n2, X2) then

d(u, n, n) O(n, u)O’(, u)

so by (28) we have

f T g(x)T g2(x) d(x) c f g 2 dA

as required.
An application of Lemma 9 now yields

l.T a(x) cilgll+/+ .g(x)[ 2

Hence T is bounded as a map from L(2k+2)/(2k+l)(M2k+l,k) L2(R2k+I). It
follows by duality that is bounded,

(30) : L:(2+) L+2(M+ ,),
as required.

Finally we use (30) together with Lemma 9 to give a new proof of
Theorem in the case n odd. For this let n be odd and define k by
n 2k + 1. Again we need only establish the difficult estimate (of. (16))

(31) IA(fo, ...,)1 c, 1lll2 ( k).
j=0

Towards this we need to establish a lemma which gives insight into the geo-
metrical meaning of the invariant A(H, H2) of a pair of k-planes H, H2. Let
Xo,..., X2k+ be 2k + 2 generic points of R2k + 1. Let A denote the volume of
the simplex having these points as vertices. Let H be the k-plane passing
through Xo, x, Xk and H2 the k-plane passing through Xk+ X2k+l.
Let A. and A2 be the volumes of the corresponding simplexes in H and H2

respectively.

LEMMA 10. A(xo, X2k+ 1) CkAIA2 A(1-I, I’I2).
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Proof Let IIj (nj, ) with Cj e n) (j 1, 2). Let eo be a unit vector in
n n. We define

Then

ylX)= x- Xo, 1,..., k,

Yl2) Xl+k- X’2k + 1, 1,..., k,

Y X2k + XO"

A det (yl), ytkl) yl) + y, ytk2) + y, y)

det (yl), ytkl) y2), ytk2) y)

+Y’eo det (yl), ytkl), y2) ytk2)

where in this last determinant the ylj) are considered to be vectors in the
2k-dimensional space e. Clearly Y eol-- 6(II1, rI2). Now let e})
(l 1 k) be an orthonormal basis of zr (j 1, 2). It is easy to see that

det (yl), ytkl) y2), ytk2) __+ A1A2 det (e1), etk1), e2), etk2)).
Finally taking zl as reference plane and using the notations of Section 2 we
have

det (e, e, e, e) det det Q.

But det Q (det QQ)I/ det (I AA)1/ s(rl, r). Combining these
facts we have

A (II, II,)AA s(r, r)--cAA A(II, II)

as required.
We return now to the problem at hand--that of establishing (31). By

Lemma 1, we have

d2(xo), d;t(Xk) CkAtk+ 1) d2ril(Xo), d2n(Xk) d#(H1)

d2(Xk+ 1), d2(x,) CkAt2k+ 1) d2n2(Xk+ 1), d2n2(Xn) d#(H2).

Thus, from the definition of Az in (3) and by Lemma 10, we have

A(fo, f.) c r.(z) f h’(rI)h(rI.:)A(ri,, rI:)-+ d,(ri,) d,(n)

for #z > n- 1, where

h(n) i-/ 1-I fx) d,n,(xot,
j-O

h(II)
j-+l
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By the definition of Az_ k and the principle of analytic continuation we now
have

A(fo, ...,f,)= Ck/k(Z) f htz)(I’Ii)htz2)(l’I2)dA-k(l’Ix, 1"I2)

which is valid for z > k- 1.
Now let z k. Then, by Lemma 9,

(32) az(fo f.)l <- cl hzX)ll2llhz2)ll2
Again, for 9z k we have

j=O

But by (30),

which leads to

k

hzX)ll z c II fl z,
j=0

This together with a similar estimate for h) and (32) now gives

Az(fo, f,)l < Ck fi fll 2
j=0

as required.
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