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LINEAR GROUPS OVER MAXIMAL ORDERS

BY

ALEXANDER J. HAHN

Counterexamples of O’Meara [6] show that the classical isomorphism
theory of the linear groups breaks down when the coefficients are taken to be
maximal orders in division algebras. The reason for this is simple in
retrospect: Equivalences between categories of modules induce isomorphisms
(of "equivalence type") between linear groups, and these can fall outside the
scope of classical descriptions. Refer to [5]. The theory of [5] provides a new
classification which takes this phenomenon into account. A special case of a
theorem there asserts the following: If two free modules of ranks > 3 over
such maximal orders are given, then any isomorphism between their projec-
tive linear groups is either of equivalence type or the composite of an equiva-
lence type with the transpose inverse isomorphism. The present article will
extend this result in two directions: First to maximal orders in central simple
algebras and from linear groups of free modules to those offinitely 9enerated
projectives.
More precisely, let R be a Dedekind domain with quotient field K, and let

A be a maximal R-order in a central simple K-algebra A. Let 931A be the
category of right A-modules and let M 9JA be finitely generated projective.
The length of M is by definition that of the right A-module M ()A A, GL(M)
is the group of invertible A-homomorphisms on M, and PGL(M) is the quo-
tient of GL(M) by its center. Denote by M* the dual of M and by A the
R-order "opposite" A. Clearly M* 9JAo. Let A1 over R be another such
maximal order.

THEOREM. Let M and M’ be finitely 9enerated projective A and
A1-modules, respectively, with lengths >_ 3. If

O: PGL(M)-- PGL(M’)

is an isomorphism of 9roups, then there is either

(i) an equivalence F: 9XA-* 9XA1 with F(M)= M’, such that F actin9 on
homomorphisms induces , i.e., c F,
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(ii) an equivalence E: ]fAo’-- JIA1 with E(M*)= M’, such that ECu,
where CM: PGL(M)-- PGL(M*) is induced by transpose-inverse.

This is a special case of Theorem (3.1) below. The paper concludes with
Proposition (3.3) which has as consequence the fact that the conclusion of
the theorem does not hold if A and A are taken to be hereditary orders.
Terminology and basic facts will come from [7] for orders and modules,

and [5] for the linear groups; [1], [2] and [4] are valuable general refer-
ences.

1. Tensor products and R-equivalences

Let R be an integral domain with quotient field K and let A be a finite
dimensional K-algebra. Let A be an R-algebra in A, i.e., A is an R-algebra
contained in A, has its operations from A and spans A over K.

It is easy to see that

A (AA -A

as (A-A)-bimodules, with a (R) al aal. Note next that if A P is a left A-
module, then there is a natural left A-module structure on K @RP. For
a A, ra A for a non-zero r R; set a r-12 with 2 A and put

a(k (R) p) r- k (R) 2p.

One then has an isomorphism

A (AP- K (RP

of left A-modules with

a(R)p--r-l (R)2p.

Completely analogous things can be done for a right A-module PA"

Suppose now that B is another finite dimensional K-algebra and that A is
an R-algebra in B. Let P be a (A-A)-bimodule over R. Then there is an
isomorphism of (A-A)-bimodules

A ()A P - P (A B

given by a (R) p--, 2p (R) r-1, where a 2r-1. The inverse is given, analogously.
Recall the concept of R-functor from page 57 of [2]. An R-functor

F: fJA
is an R-equivalence if there is an R-functor E: 9XA--, 9XA such that EF and
FE are naturally isomorphic to the identity functors on 9XA and 9Xa respec-
tively. In this case A and A are R-equivalent. It is not difficult to check that if
A and B are central simple K-algebras then they are K-equivalent if and only
if they are in the same Brauer class.
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Consider the functors T" 9XA 9XA and Tt" 9Jln 9JlB given respectively
by tensoring with AA and aB.

(1.1) Let F" 9JIA 9Xa be an R-equivalence. Then there is a K-equivalence
F" 9Jla llB such that

commutes, i.e., such that FT - TtF.

Proof. By Theorem 3.1 page 60 of [2], for example, there is a set of
equivalence data

(A, A, APa, AQA, #, Z)

with P and Q bimodules over R, such that F is isomorphic to the R-functor
determined by tensoring with APA.
Now consider the bimodules

AP--B (A (A P) (a B and BA (B ( Q) (A A.

Making extensive use of the isomorphisms developed above and the proper-
ties of sets of equivalence data, shows that there is a set of equivalence data
(A,B,P, Q, ft, ).
The isomorphism/" P ()a-. A is given by

[((a (R) p) (R) b) (R) ((b () ql) () al)] at- lr? l#(pdil () ql)al,

where b r-t6 and b r-11 with r, r in R, 6, 61 in A. Similarly,
’Q (a P-- B is given by

[((bl (R) ql) (R) al) (R) ((a2 (R) P2) (R) b2)] blS? isf 1z(q12122 (R) p2)b2,

where al s-121 and a2 s-t22 with Sl, s2 in R and 2t, 22 in A.
To prove the associativity properties use the isomorphisms

P 2, A (A(A QAP) A (AP

and

These isomorphisms also show that P and Q are bimodules over K.
Let F" 9XA--, 9J/n be. the K-equivalence defined by tensoring with

Using the above isomorphisms once more shows that T T1F. Q.E.D.

(1.2) COROLLARY. If A and A are R-equivalent, A and B are K-equivalent.
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Under more controlled conditions there is a converse for (1.2).

(1.3) Suppose R is a Dedekind domain, that A and B are central simple
K-algebras, and that A and A are maximal R-orders in A and B respectively.

Then A and A are R-equivalent if and only if A and B are in the same
Brauer class.

Proof If A and A are R-equivalent then A and B are in the same Brauer
class by (1.2).

Conversely, assume that A and B are in the same Brauer class. So there is
a central division algebra D over K, and finite dimensional right D-spaces V
and W such that

AEnd(Vo) and BEnd(W/)

as K-algebras. By (21.6) of [7] there is a maximal R-order Ao in D and full
right Ao-lattices N in Vo and N’ in Wo such that

AEnd(N and AEnd(N’Ao A0

as R-algebras. Since ANAo and ANo are both progenerators in 9XAo and
bimodules over R, tensoring with N and N’ induces R-equivalences

9XA--, 9XAo and 9XA--, 9XAo. Q.E.D.

Let PA 6 JA. There is a homomorphism

A ()A P* -* (P ()A A)*

of left A-modules, satisfying

a (R)f--. [a (R)f]

with [a (R)f](p (R) a’) af(p)a’, for a, a’ in A, f in P* and p P. If, in addition,
both PA and AA are finitely generated over A this is an isomorphism. Define
the inverse as follows: Let 9 (P ()AA)*, denote by P (R) A the obvious
image of P in P ()A A, and observe that 9(P (R) A) is a finitely generated
submodule of AA. It follows that there is a non-zero r R such that
ro(P (R) A)

_
A, so that the composite

ro
P ,P(R)A ,A

is in P*. Denote this composite by r9 and define

(P (R) A)* --, ,4 (R) P*

by 9---’ r-1(R) rg. This definition does not depend on the choice of r. Use of
the natural left K-vector space structure on A ()A P* shows that this map is
a homomorphism of left A-modules. It is easy to see that it is the inverse of
the earlier map.
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Suppose that A is central simple over K, and that M 9JA is finitely gen-
erated. Recall that the length/(MA) of MA is defined to be equal to the length
of the finitely generated right A-module M @A A. Do a similar thing for left
A-modules. If AA is finitely generated, the isomorphism

A () A M* - (M () A A)*

shows that /(AM*) /(MA), and hence that l(M,o)=/(MA), where A is the
opposite R-algebra of A in the central simple K-algebra A. Finally, if B is
also central simple over K, and if F: 9XA 9J/ is an R-equivalence, then
/(MA) I(F(M)a). This follows from (1.1) above and (21.8) (right handed
version) of [1].

2. Elementary properties of linear groups

Let R be a Dedekind domain with quotient field K, letD be a finite
dimensional central division algebra over K, and let A be a maximal R-order
in D.

Let W be a finite dimensional right vector space over D and let M W be
a right A-module. Let X {xl, x.} be a basis for W over O and let {fl,

f.} be the dual basis. For n > 2, 4: J and D, let zxi,,- in GL(W) be
defined by

zx,,,y(x) x + x, afs(x),

and observe that

z,,y(M)
_
M if and only if z.,y(M) M.

Let Ex(M) be the subgroup of GL(W) generated by all the z,,. which stabil-
ize M, and denote its derived group by DEx(M).

(2.1) Suppose n >_ 2 and that M xta +... + x.a.
A-ideal in D. Then Zx,.,,(M M if and only if aj

_
at.

Proof Trivial.

with at a right

(2.2) Suppose n >_ 3 and that M xb + + x._b + x.a, with a and b
right A-ideals in D. Then DEx(M)= Ex(M).

Proof Observe that for i, j and k distinct,

Now let %..,y be arbitrary with Zx,.,y(M) M.
Ifj n, a

__
b. Pick k < n, k 4; i. Then

zx,s. [zx,S, zx,S.],
and %,,.,s. DEx(M) by (2.1).
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If n, proceed similarly. Assume therefore, that i, j < n. So 0b
_

b. Hence
0 bb-t (ha-t)(ab-t). So g Efin , with V e ha-t and 6 ab-t. Since
%v,s and %,,s are both.in Ex(M),

zx,r,& DEx(M).

Therefore zx,.sj Hfin T’xiy6,fj is in DEx(M). Q.E.D.

Assume now that M is a full right A-lattice in W, ie., M is a right A-lattice
which spans V over K (or equivalently over D). By the right handed version
of (27.8) of l-7], there is a basis

x
for W over D such that

M xIA + + x,_IA +
where a is a right A-ideal in D. This M is therefore a special case of that
considered above. By (10.7) of [7], M is a finitely generated projective A-
module. Identify

Note that Ex(M)_ GL(M)_ GL(V). Let RL(M) be the subgroup of GL(M)
consisting of the invertible R-scalar transformations on M.

(2.3) Suppose n >_ 3. Then the centralizer of Ex(M) in GL(M) is RL(M).

Proof Proceed as in the proof of (2.14) of [5]. Use (2.1) repeatedly.

(2.4) Let A and At be maximal R-orders in D and let M and M be full
right A and At-lattices, respectively, in W. Put

M xtA +"" + x,_tA + x,a,

where X {xx, x,} is a basis for W over D and a is a rioht A.ideal in D.
Suppose n > 2 and Ex(M)

_
GL(Mt). Then there is a normal ideal AbAx in D

and a rioht At-ideal b, in D with ab
_

b,, such that

Mt xtb +"" + x,_tb + x,b,.

Proof Let b={DIxMt}. It is clear thatb, l<i_<n, isaright
At-module in D. We show bt b,-t. We may assume n > 3. By (2.1)
and the hypothesis, %,a,sj(M1) M1 for all 2 A, and i, j < n. In particular,

x 2bj x 2f{xj b)
_
x 2f(Mt) - M1,
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so 2bj
_
b for all 2 A. Taking 2 1 and appealing to symmetry gives the

result. Let b bl bn-1. Now let j n, and e ct. By (2.1) and the
hypothesis,

x,, ob x,, of(x:i b
_

x,, of(M1) M1.
So ab

_
b., and similarly a-b.

___
b.

We show that b is a (A-A:)-bimodule and that

M1 xlb + + x,_lb + x.b,.

Let x M1 be arbitrary, and let

X XI - + XnOn, O D.

For a, Zxn,.l(M1)
_
M1, so Zxn,r(x) x + x.gotl is in M1 and hence

ctl 6 b.. So agl - b. and

A0l a-la0l
_

a-lb,
_

b.

In particular 1 b. On the other hand letting 1 b be arbitrary and taking
x x101 gives Ab_ b and hence that b is a (A-A1)-bimodule. Proceeding
similarly shows that z, ,-1 are in b hence that

XlO -+- -].. Xn_ lOn_ M1.

Therefore, x, . M1, 0, b. and M1 xlb + + xn_ lb + x b,.
Finally, since R is Noetherian and M1 finitely generated as R-module, xlb

and x.b. are finitely generated as R-modules. The same is of course true for
b and bn. Since M1 is a full right Al-lattice in V, Kb D Kb, so A bA is a
normal ideal in D and b, is a right A1-ideal in D. Q.E.D.

(2.5) Let A and A1 be two maximal R-orders in D and let M and M1 be
full right A and Al-lattices, respectively, in W. Let

M xlA + + x._lA + x.a,

where X {xl xn} is a basis for W over D and a is a ri#ht A-ideal of D.
Suppose that n > 2, Ex(M GL(M1) and Ex(M1) - GL(M). Then there is a

normal ideal AbA in D such that M1 Mb.

Proof. Use (2.4), then (2.1) to show that b.
_

ab. Q.E.D.

Let RL(W) be the set of invertible K-scalar transformations on W. In ref-
erence to the situation of (2.5), consider the quotient maps

PI" GL(W)--- GL(W)/RL(W) and P" GL(M)--- GL(M)/RL(M).

Observe that the kernel of the restriction of P: is RL(M) and that P1 induces
an injection PGL(M) P1GL(W). So consider PGL(M) as subgroup of
P1GL(W) and do the same for PGL(M1). Denote by SL(M) and SL(M1) the
commutator subgroups of GL(M) and GL(M1) respectively.
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(2.6) Suppose n >_ 3. Let A and A1 be maximal R-orders in D, and let M
and M be full right A and A-lattices, respectively, in W.. Suppose PSL(M)_
PGL(M) and PSL(M)_ PGL(M). Then there is a normal ideal AbA1 in D
such that M1 Mb.

Proof. Put M x1A +"" + xn-A + xn a with X {x l, xn} a basis
for W and a a right A-ideal of D. Now verify the hypothesis of (2.5).

Let zx,.sj be an arbitrary generator of Ex(M) and show that it is in
GL(M).
Assume first that j n. Pick k < n, k :/= i. By (2.1) and (2.2), s a- and

zx.s, [z.s, z’,s,] with zx,,s and z.s, in SL(M). So etZx.S and t2 "CXk.fn
are in GL(Mi) for some non-zero el, t2 in K. Since

Zxiat,f [OlZxi,fk, (X2 ZXkOt,fn],

Zx,.fn GL(M). Proceed similarly if/= n. Now assume that i, j < n. So
e e A by (2.1). Since A a-a, put e fin 76, with 7 e a-1 and 6 e a. It
suffices to show that zx,,fj is in GL(M1), refer to the proof of (2.2). Since

"t2xi),6,f [T, xi,fn
this follows from (2.1) and the above. Therefore Ex(M) c_ GL(M1).
An application of (2.4) now gives M xlb + + xn- b + xn tan, for

some right A1-ideals b and bn. Now refer to the proof of (2.2) and argue as
above to show that Ex(M)

_
GL(M). Q.E.D.

3. The main theorems

Let R and R be Dedekind domains with quotient fields K and K respec-
tively. Let A be a central simple K-algebra and let A be an R-order in A.
Analogously, let A1 be a central simple K1-algebra and let A be an
R1-order in A 1.

(3.1) THEOREM. Assume that A and A are both maximal. Suppose that M
and M’ are finitely #enerated projective A and A1-modules, respectively, with
lentths >_ 3.

Let G be a subgroup of PGL(M) containin# PSL(M) and let

G PGL(M’)

be a monomorphism such that G
_

PSL(M’). Then there exists either

(i) a category equivalence F: JA--A1 with F(M)= M’ such that
F I, or

(ii) a category equivalence E: 9JIAo-- 9JIAI with E(M*) M’ such that
ECMIG.

In particular, A or A is Morita equivalent to At and l(M) l(M’).
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Proof. (1) Suppose first that A and A are division algebras. Denote them
by D and D respectively. Set A A and note that A and A are integral
domains with division rings of quotients D and D in the sense of Section 6
of [6].

To prove the theorem in case (1) it suffices to show that the conclusions of
Theorem (3.3) of I-5] hold in present context (replace "rank" by "length") and
then to set F FF, or E FnFo.. To verify the conclusions of this theorem
proceed as in the finite rank case of its proof, making use of the following
observations.

Put V M (AD and identify M with its canonical image in V under
m--, rn (R) 1. Let dim Vo n and note that n _> 3. Since M is a fintely gener-
ated projective A-module, M is a full A-lattice in V. By (27.8) of [7],

M xiA + + x,-1A + x,a,

where {xl, x,} is a D-basis for V and a is a right A-ideal in D. Since
ra

___
A for a non-zero r R,

M
_
xxA +"" + x,_xA + (x,r-X)A.

In particular, M is a bounded A-module on Vo in the sense of Section 6 of
[6]. A completely analogous thing is true for M. Since G is full of projective
transvections in PGL(V), and similarly for OG, one can apply the theorems
of O’Meara-Sosnovskii. Then make use of (2.6).

(2) In the general case, choose division algebras D and D1 over K and Kx
respectively, and finite dimensional vector spaces V over D and W over D
such that A End (VD) and A End (WD1) as K and Kt-algebras respec-
tively.

Now let A be any maximal R-order in D. By (1.3) there is an R-equivalence
F1 9J/A 9J/zx, with associated group isomorphism

Fx PGL(M) PGL(Ft(M)).

Refer to Section 2 of [5]. Similarly, letting Ax be a maximal Rx-order in D1,
there is an R-equivalence F2:9J/A1 93/al with associated isomorphism

F2 PGL(M’)-- PGL(F2(M’)).

Applying (1.2) of [5] to an inverse of F2, gives an equivalence

E2: 9Jax -- 9"JA1 with E2(F2(M’)) M’.
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Let E2: PGL(F2(M’))---} PGL(M’) be the associated isomorphism. Define the
isomorphism 1 by requiring the diagram

F1

G

to commute. Use of the properties of length shows that case (1) applies to 1.
So either there is

(i) an equivalence
Fa: 9J/a----} 9Xal

with Fa(F(M))= F2(M’ and F3 It;,, or

(ii) an equivalence
E3: 9JAo -- 9JAt

with E3(Fx(M)* F2(M’ and Ea CFxtu),l.
In case (i) let F E2 F3 F1 to finish the proof. In case (ii) apply (2.12) and

(1.2) both of [5] to show that there is an equivalence El: 9JAo-- 9JAo with
E(M*) FI(M)*, such that the diagram

CM
GL(M) GL(M*)

GL(F(M)) GL(F(M)*)
CFIM*

commutes. Using the projective version of this diagram and letting E
E2 E3 E1 completes the proof in this case.

Since the lengths of Fx(M) and F2(M’) are the same, so are those of M and
M’ by Section 1. Q.E.D.

(3.2) COROLLARY. Let M and M’ be finitely generated projective modules
over A and A, respectively, with lengths >_ 3. Then the following are equiva-
lent:

(i) There is a category equivalence F: 9XA 9XA
9J/Ao-- 9J/A with E(M*)= M’.

(ii) GL(M) - GL(M’).
(iii) PGL(M) - PGL(M’).
(iv) SL(M) - SL(M’).
(v) PSL(M) PSL(M’).

with F(M)= M’, or E:

Proof Proceed as in the proof of (3.1a) of [5]. Use (2.2) and (2.3) above.
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(3.3) Suppose R=R, also K=K, and that A and A are in the same
Brauer class. Suppose that A and A are both hereditary, and let n be a posi-
tive integer.

Then there are finitely generated projective modules M 9XA and M’ 9XAt
both of length n, such that GL(M) GL(M’) and PGL(M) PGL(M’).

Proof Begin by letting A and A be maximal R-orders in A and A1 con-
taining A and At respectively. By (1.3) there is an R-equivalence F:

Now let MA be any finitely generated projective A-module. Put F(M)=
Mx. By (21.6) and (21.8) of [1] (right handed versions) M’ 9X1 is finitely
generated projective. By Section 2 of [5], GL(M)-GL(M’A1) and
PGL(MA) PGL(M’AI). By Section 1, l(M) I(M’Ax).

Since M is a right A-lattice, it is a right A-lattice. So M is a finitely gener-
ated projective A-module by (10.7) of [7]. By Example 1, page 378 of [7],
GL(MA) GL(MA), and since Cen A Cen A R, PGL(MA) PGL(MA).
Since

M (^A - M (RK M ()AA,

as right A-modules (refer to Section 1), /(MA)= I(MA). The facts developed
above for M are analogously true for M’. Therefore

GL(MA) GL(M’A) and PGL(MA) - PGL(MAt),
and/(MA) I(M’At).

It remains to show that for a positive integer n, there is a finitely generated
projective MA with l(m) n.
Choose a division algebra D over K and a finite dimensional right vector

space V over O such that A End (Vo) as K-algebras. By (21.6) of [7-], there
is a maximal R-order Ao in D and a full right A0-1attice N in V, such that
A End (Nao) by restriction. By (27.8) of [7-1 there is a basis {x, x} for
V over D, and a right A-ideal a in D, such that

N xlAo +"" + x,_lAo + x,a.

Clearly, N ()ao D V. It now follows from Section 1 that A ()N V as
left A-algebras. Therefore l(aN)= 1. Hence I(N*A)= from Section 1. Now
take an appropriate direct sum. Q.E.D.

Remarks. It is now easy to construct specific examples of hereditary
orders for which the conclusions of Theorem (3.1) fail. Refer to Section 3D of
[5] for example. The underlying reason for the failure seems, to be that
finitely generated projectives are progenerators over maximal orders and that
this is no longer the case for hereditary ones. It is probable that (3.1) remains
true for progenerators over hereditary orders. Indeed Bolla [3] proves the
endomorphism ring analogue of (3.1) for progenerators over arbitrary rings.



436 ALEXANDER J. HAHN

REFERENCES

1. F. ANDERSON and K. FULLER, Rings and categories of modules, Springer-Verlag, New York,
1974.

2. H. BASS, Algebraic K-theory, Benjamin, New York, 1968.
3. M. BOLLA, lsomorphisms between endomorphism rings of pro,Tenerators, J. Algebra, vol. 87

(1984), pp. 261-281.
4. F. DE MEYER and E. INRAHAM, Separable algebras over commutative rings, Lecture Notes in

Mathematics, No. 181, Springer-Verlag, Heidelberg, 1971.
5. A. HAHN, Category equivalences and linear groups over rings, J. Algebra, vol. 77 (1982), pp.

505-543.
6. O. T. O’MEARA, A general isomorphism theory for the linear groups, J. Algebra, vol. 44 (1977),

pp. 93-142.
7. I. REINER, Maximal orders, Academic Press, New York, 1975.

UNIVERSITY OF NOTRE DAME
NOTRE DAME, INDIANA


