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M-IDEALS OFL/H AND SUPPORT SETS

BY

RAHMAN M. YOUNIS

1. Introduction

Let L be the usual space of bounded measurable functions on the unit
circle T. Let H denote the subalgebra of L consisting of functions on T
that are radial limits of bounded analytic functions of the open unit disk, and
H + C denotes the closed linear span of H and C, where C is the space of
continuous functions on T. The norm of an L-function f is denoted by Ilfll.
If H _c A _c L, we let M(A) denote the maximal ideal space of A. Elements
of A may be identified with functions on M(A). Such an algebra is commonly
called a Douglas algebra.

If E is a generalized peak set for H, we define

H (fL" fie H}"

The algebra (H + C)E is defined analogously. If E is a generalized peak set
for H + C, then (H + C)E is closed. These algebras appeared in [16] and
[11]. The reader is referred to [5], [3] and [9] for the theory of uniform algebras
and to [6] and [13] for the general basic facts about H.

If A is a closed subalgebra of C(X), X is a compact space, then the
essential set of A is the zero set of the largest dosed ideal of C(X) which lies
in A. Equivalently, it is equal to LI supp/, where/x A +/-.
The concept of M-ideals has been used by the authors of [10], [11], [16] and

[17] in order to prove that L/A is an M-ideal in L/H for a certain
Douglas algebra A. A subspace K of a Banach space Y is called an M-ideal of
there exists an L-projection P from Y* onto K z, that is, P is a projection
such that Ilyll IIPyll + Ily PYll for all y Y*. If K is an M-ideal of Y
and if x Y then there exists m K such that dist(x, K) IIx roll [1]. If
x Y\ K then

span{ m" m K, dist(x, K) IIx mll) g [7].
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2. The unit ball of L/A and related results

In this section we prove the following theorem.

THEOREM 1. If A H where E is a peak set for H, or if A/H is an
M-ideal ofL/H andA H, where F is a generalizedpeak set for H, then
the unit ball ofL/A has not extreme points. Consequently, L/A is not a dual
space.

The case A Hff, where E is a peak set for H appeared in [11]. Another
special case of Theorem 1 appeared in [17]. In [11], it is proved that if
A H + L, where F is an open subset of the unit circle, and

L ( f L" f is continuous on F },

then the unit ball of L/A has no extreme points. In this case, it is not known
whether A/H is a M-ideal or not.

All the above algebras share the property that they admit a best approxima-
tion. More importantly, they share also another property which says that if b is
a Blaschke product such that b A then the best approximation of ble to Ale
is not unique, where E is the essential set of A.

Recently, K. Izuchi and the author [8] showed that there exists a generalized
peak set F for H such that the unit ball of L/H has extreme points. In
this case the algebra H fails to have the second property that I mentioned
above.
The proof of the theorem requires the following proposition which may be of

some interest in its own right.

PROPOSITION 1. Let A/H be an M-ideal of L/H, A is not of the form
H, where E is a peak set or generalizedpeak set for H. Iff L, f q A then
there exists h A and m M(A) \M(L) such that dist(f, A) IIf h II
and h is not identically zero on supp m, the support of m.

In [11], it was shown that if A H, E is a generalized peak set for H,
then Proposition 1 is not valid. Moreover if E is a peak set for H, then
Proposition 1 is valid for b H b is a Blaschke product [11 Proposition 1].E

Proof of Theorem 1. Consider f + A with IIf + A II 1. Since A/H is an
M-ideal, we may assume that Ilfll oo 1. Following Axler [2] we write f bg
where g H + C and b is a Blaschke product with A. Choose h A
such that I1- h ll oo 1 and h is not identically zero on the support S of
some representing measure m for A which is not a point mass. This follows
from Proposition 1 if A : H, E is a peak set for H; otherwise we refer to
Proposition 1 of [11]. Let h -hg; then there exists a point x S such that
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If(x) + 1/2h(x)l < 1. Suppose f is not zero at a point x where h(x) 4: 0. Then
Ig(x)l If(x)l 4: 0, so h(x) 4: O. Thus

f(x) + 1/2h(x)= 1/2f(x) + 1/2(f(x) + h(x)),

which implies that If(x) + 1/2h(x)l < 1. On the other hand if f is zero at any
point x S, then

If(x) + 1/2h(x)l lf(x) + h(x)l < 1.

Let gl 1 If + 1/2hi. Then gl > 0 and moreover gl is not identically zero.
Let W be a clopen neighborhood of x in M(L) such that S \ W 4: O and
1 If+ 1/2hi > 0 on W. Let c min{gx(x)’x W); then c > 0. Hence
gt > cx w. Note that Xw A, otherwise we get

fxwdm jx dm (fxwdm)2.

This contradicts the inequality 0 < fX v dm < 1. Thus

f+ CXv+ A 4:f + A.

Furthermore,

IIf cxw + a II -< IIf cxw + 1/2hllo
< sup (If(x)+ 1/2h(x)[ + g(x)}

x M(L)

""-1.

Since f + A 1/2 ( f + cx + A ) + 1/2 ( f cx ze + A ), we conclude that f + A
cannot be an extreme point of the unit ball of L/A. This ends the proof of
Theorem 1.

To prove Proposition 1, we start with the following proposition which is a
refinement of a general result in function algebra.

PRO’OSITION 2. If B is a Douglas algebra, then

U {suppm" m M(B) \M(L’))

is dense in the essential set of B.

Proof of Proposition 1. Since A/H is an M-ideal of L/H then

(1) span{ h + H" h A, dist(f, A) Ilf- hll ) h/n.
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Let E be the essential set of A. If for every h in equation (1) we have
h(E) 0, then we get Ale n. Consequently, H is closed in L and
since H is logmodular, we get E is a generalized peak set for H [5, page
65]. Since A (f L: fie Ale}, we get A H. This contradiction
shows that there exists h A and h(E) : 0. By Proposition 2, there exists
m M(A) \M(L) such that h (supp m) * 0. This ends the proof of Proposi-
tion 1.

Proof of Proposition 2. If B L, then the essential set of B is empty. So
assume that B : L. If m M(B)\M(L) then supp m lies in E [9], where
E is the essential set of B. Consequently if S if the closure of

t3 {suppm: m M(B) \M(L)}

in M(L) then S c E. Note that by the Chang-Marshall Theorem [4], [12],
the set S is non-empty. Let f L be such that f(S)= 0. Clearly flsuppm
B lsupp,,, for every m M(B). By [14], we get f B. This shows that S E.
This proves Proposition 2.

In order to answer question 4 in [11], we need the following proposition.

PROPOSITION 3.
(H + C)s.

If S is a peak set for H + C then S is the essential set of

Proof of Proposition 3. Step 1. If F is a peak set for H, F c X for some
fiber X, then F is the essential set of H.

First, let us show that the essential set of Hff is non-empty. Let g be a
peaking function for F. By [6, p. 171] there exists a dopen set W in M(L)
such that g 1 on W ( X. Consequently, W n X c F. Since X is the
essential set of H. [17], there exists /x _L H. such that Ittl(W c X) > 0.
Since X F# .1_ Hff and X Ftt /t on W (3 X, we get X FIt O. Consequently
H : L. Hence the essential set E of H is non-empty.

If possible, let x F but x E. There exists a clopen set W in M(L)
such that x W and W E 0- Let h X wg. Then h(x) 1 and hl < 1
on (X \ F) 3 E. There exists a clopen set V in M(L) such that h 1 on
V X. Note that V N X c F\ E. Since X is the essential set of H., there
exists # _L H such that ttl(V c s) > 0. Consequentlyx.

Ixtl(V c x) > 0.

This means that supp X Fl intersects V. Since supp XFI C E, we get a con-
tradiction. This prove that F is the essential set of H.

Step 2. Let xS; then xX for some fiber X. If XcS then the
essential set of H which is X lies in the essential set of (H + C)s. Thus
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x E, E is the essential set of (H + C)s. If X S, let F X f3 S. Then
F is a peak set for H and so F is the essential set of Hff. Since (H + C)s
c Hff, then F c E. Thus x E. Hence S is the essential set of (H + C)s.

COROLLARY [11, question 4]. Let S be a peak set for H + C and b a
Blaschke product such that b (H + C)s. Then there exists h in (H + C)s
and m M((H + C)s)\M(L) such that

dist(, (H 4- C) s) II h II and h (supp m) 0.

Proof. If S is a peak set for H, then the result is proved in [11]. So assume
that S is not a peak set for H. Since S is a G-set and S is not a peak set for
H, then S cannot be a generalized peak set for H [5, Lemma 12.1]. An easy
argument using Proposition 3 one can show that (H + C)s cannot be of the
form Hff, where E is a generalized peak set for H. Now use the fact that
(H + C)s/H is a M-ideal together with Proposition 1 to end the proof of
the corollary.

Remark. The above corollary has been obtained independently by Pamela
Gorkin. Combining the above corollary with Theorem 1, one can conclude that
the closed unit ball of L/(H + C)s has no extreme points.

3. Countably generated algebras

First let us remark that if E is a peak set for H + C, then

t3 (suppm: m M(H + C ) \M(L), suppm E}
is dense in E. This follows by applying Propositions 3 and 2 to the algebra
(H + C)e. Another remark is that if E is a non-singleton dosed antisym-
metric set for H + C, then

A {suppm: m M(H + C)\M(L))
is dense in E. This follows from the observation that E is the essential set of
(H + C)e and Proposition 2.

If A is a Douglas algebra and f, rE,..- L, the algebra

a[fl,f2,...]

will denote the smallest closed subalgebra of L containing A and the
functions fl, f2,

THEOREM 2.
over A, then
of A.

If A and B are Douglas algebras and B is countably generated
td(suppm: m M(B)\M(L)) is dense in the essential set
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Proof. Let B A[f1, f2,... ]. There exists a Blaschke product b such that
B c A[b] [15]. Also, there exists a Blaschke product b0 such that bobn H
+ C for all n (see [2], [6]). Thus bob c A. By [15], L is not countably
generated over A. Hence the essential set E of B is a non-empty closed subset
of M(L).

Let 7-F (f L: f(E)= 0). Then oq"e lies in B. Since boq-e q’E, we
conclude that ’e C A. Now, using the fact that E is closed and lies in the
essential set of A, together with q’e C A to conclude that E is the essential set
of A. By using Proposition 2, we conclude that

U (suppm" m M(B) \M(L)}

is dense in the essential set of A.
The following corollary is immediate.

COROLLARY. If A and B are Douglas algebras and b is a Blaschke product
such that b. B c A, then t3 (supp m" m M(B) \M(L)} is dense in the
essential set of A.

Remark. Theorem 2 shows that if A and B are Douglas algebras and B is
countably generated over A, then A and B have the same essential set. In case
A H + C, Theorem 2 says that t3 (suppm: m M(B)\M(L)) is dense
in M(L). To see that, it suffices to shown that the essential set of H + C is
M(L). But if the essential set of H + C is a proper subset of M(L), then
{ f L: f(E) 0} c H + C. Consequently, H + C contains character-
istic functions. This is impossible because the maximal ideal space of H + C
is connected
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