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EQUIVARIANT ISOTOPIES AND SUBMERSIONS

BY

R. LASHOF

Introduction

Lees’ topological immersion theory [1] has been generalized in two ways.
In [2] an equivariant immersion theory was developed, and in [31 Gauld
developed a submersion theory. These theories have been important in
smoothing theory, and for similar reasons it is desirable to have an equivao
riant submersion theory for the topological category. (A smooth equivariant
submersion theory, in fact a smooth equivariant Gromov theory has already
been given by Bierstone [4].)
By now the form of such arguements is routine. The key result needed is

an equivariant lifting theorem for submersions (Theorem A below). As in [2],
we would like to use Siebenmann’s deformation of stratified spaces theorem
[5] to derive this. In fact, Siebenmann shows that his theorem gives a (non-
equivariant) lifting theorem for submersions; and indeed, the same argument
would generalize to equivariant submersions with trivial G action on the
target space. The problem is that one needs a G isotopy extension theorem in
which the parameter space has a non-trivial G action. As is often the case in
equivariant theories, this problem is solved by reducing it to the case that the
parameter space has a single orbit type. (See the proof of the Fibrewise G
deformation theorem in Section 3.) Finally, in trying to follow Gauld’s proof
of the lifting theorem, it is necessary to understand intersections of equiva-
riant tubes and products (3.1 and Corollary 3, Section 3).

DEFINITION. A G-manifold M is a second countable Hausdorff G-space M
such that for each x 6 M there is an n-dimensional G orthogonal represent-
ation space V and a Gx homeomorphism h of V onto a neighborhood of x
with hx(0) x, G the isotropy subgroup of x. We call h a Gx chart. Because
G is finite, this is equivalent to Bredon’s notion [6] of a locally smooth
G-manifold.

DEFINITION. Let N and Q be G manifolds. A G map f: N-, Q is a G
submersion if for each x N we can find a G chart hx: V-, N and a G
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chart ky" W Q, y =f(x), such that the following diagram commutes"

where gx is a surjective Gx-linear map.

Remark. If N is a G-manifold with boundary, an equivariant map
f: N-- Q is an equivariant submersion if we can extend f to an equivariant
submersion f: ]--. Q, where/ is the union of N with an open collar on the
boundary.

THEOREM A. Let f: Ik x N-- Ik x Q, f(t, x) (t, ft(x)) be a G submersion.
Let B c N be a compact set. There is an e > O, an ambient G isotopy Ht of N,
[[t < e, and a neighborhood U of B, such thatf =fo Ht on U.

Those familiar with the G-isotopy extension theorem with non-equivariant
parameter space (Section 2) may go directly to Section 3.

1. Siebenmann’s Theorem

DEFINITION.
tration

A stratified set is a metrizable space X equipped with a ill-

by closed sets called skeleta, such that for each n >_ 0, the components of
X(n_ Xtn-l are open in X(n- Xt-l. X is called a TOP stratified set if
Xt_ Xtn-1 is an n-manifold without boundary--called the n-stratum of X.

If X is a compact stratified set, the open cone cX on X has a natural
stratification (cX)t c(Xt- 1), n >_ 1, (cX)t cone point.
A stratified set X is locally cone-like if for each point x X, say

x Xin) X(- 1), there exists an open neighborhood U of x in X(n) X(n- 1),
a compact stratified set L of finite dimension, called the link of x in X, and
an isomorphism of U x cL onto an open neighborhood of x in X. A locally
cone-like TOP stratified set is called a CS set.

LEMMA 1.1. Let M be a G manifold. Then M/G is a CS set with the com-
ponents of the manifolds Mm/G as components of the strata. (Mtn is the set of
points of orbit type (H).)
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Proof. If x 6 M and say Gx H, let hx: Vx-- M be a chart about x. Then
hf X(mm) Vnx Let Wx be the perpendicular space to Vn in V. Then the
class x, of x in Mn)/G has a neighborhood isomorphic to Vxn x c(S(W)/H),
where S(Wx) is the unit sphere.

Let A c A’ be closed sets of a CS set X such that A’ is a neighborhood of
A. Let B c X be compact, and let U c X be an open neighborhood of
AB.

SIEBENMANN’S DEFORMATION THEOREM. If h: U--, X is an open embedding.
equal to the identity inclusion i: U-- X on A’ c U and h is sufficiently near to

(C-O topology), then there is an isotopy ht, 0 < < 1, of h throuoh open
embeddings ht: U X such that h on A B and h h on A and outside
some compact set K in U (independent of and h). Further the isotopy h is a
continuous function of h for h near i. Also h when h i.

Remark. It follows that h,(U) h(U), all t.

DEFINITION. A substratified set Y of a stratified set X consists of a closed
subspace Y equipped with the filtration Yt") Xt") c Y, such that for each n,
Yt")- Yt"-t) is open (as well as closed) in Xt)- Xt- t).

Example. A skeleton X") is a substratified set in X.

Addendum [5]. Let 6 be a family of substratified sets in X. Then if the
embeddings h" U--, X respect the subspaces Y ba (i.e., h(U Y) Y), then
the ht can be required to respect the Y

LEMMA 1.2. Let X be a CS set and let U X be open. Let h, 0 <_ <_ 1,
ho 1, be an ambient isotopy of U which respects skeleta and is the identity
outside a compact set K. Then h preserves strata; i.e.,

h,(U(,)_ U(, x))= U(.)_ U(. ).

Proof K U) is a finite set. Since h’K Ut)-- K c U) is an
embedding, ht is a homeomorphism on K c Ut) and hence h(U)) U).
Now assume ht(Utk)- Utk- )) Utk)- Utk- ) for all k < n. Since h(U"))

Ut") and ht is an embedding, ht(U")- U"- x))= Ut.)_ Ut. x). If C is a com-
ponent of U")- U"- ), h,(C) C since ho(C) C. Since (C w Ut"- t)) c K is
compact, h(C) is closed in C. By invariance of domain, h(C) is open in C.
Hence ht(C) C, and it follows that

ht(Ut.)_ Ut. x))= Ut.)_ Ut.

COROLLARY 1. Under the assumptions of the theorem, if the embeddings
h" U-- X respect strata then the ht can be required to respect strata.
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Proof. Apply the addendum with 6e the collection of skeleta of X. Then
apply the lemma to h-tht: U U.

COROLLARY 2. If X M/G and the embeddin#s h: U- X respect orbit
types we can require the ht to respect orbit types.

COROLLARY 3. Under the assumptions of the theorem, for each embedding h
sufficiently close to there is a homeomorphism H of X, depending continuously
on h, such that

(a)
(b)

H h on A u2 B,
H is the identity outside h(K), K a compact set in U,
H is the identity if h i.

Further, if h respects strata we may require H to respect strata.

Proof Let ht be as in the theorem; then hh?t: h(U) h(U) is the identity
outside h(K) and satisfies hh? h on A w B. Let H be the extension hh?
to X by the identity outside h(U).

Remark. Let K’ be a compact neighborhood of K. If h is sufficiently close
to we can assume h(K) c K’. Thus we can assume

(b’) H is the identity outside a compact set in U.

COROLLARY 4. Let I [--1, 1] and let Ik be the k-cube. Let ht: U--- X,
Ik, be an isotopy through open embeddings with ho the inclusion and ht the

inclusion on A’ c U. Then for some e > 0, there is an ambient isotopy Ht of X,
Iltll < e, such that

(a)
(b)
(c)
(d)

Ht ht on A w B,
H is the identity outside ht(K), K a compact set in U,
Ho is the identity,
H is strata preserving if h respects strata.

Corollary 4 implies (see [5]):

ISOTOPY EXTENSION THEOREM. Let ht: U-- X, Ik, be an isotopy through
open embeddings, ht the inclusion on A’ c U. Then there exists an ambient
isotopy Ht of X, t Ik, such that

(a)
(b)
(c)
(d)

H h on A B,
Ht is the identity outside ht(K), K a compact set in U,
Ho is the identity if h i,
H is strata preserving if ht respects strata.

LOCAL CONTRACTIBILITY THEOREM. Let X be a CS set and C B c X
compact subsets, B a neighborhood of C. Let ;c(X) (resp. a(X)) be the
group of homeomorphisms of X fixed on X- C (resp. X- B) with the C-O
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topology. Then ,c,(X) is locally contractible in ,,(X). The same result holds
for the group of strata preserving homeomorphisms.

Proof In the deformation theorem, let A’= X Int (C), A X Int (B)
and U X.

Remark. If X is compact, then rt(X) is locally contractible. (Take
C=B=X.)

2. Palais’ theorem and the G-deformation theorem

Let X and Y be G spaces, X, and Y, their orbit spaces. The following
results may be found in Bredon [6]:

LEMMA 2.1. Let f: X-- Y be isovariant and let f,:X,-- Y, be the induced
map on orbit spaces. Then f is open if and only iff, is open, and f is injective if
and only iff, is injective. In particular, f is an embedding if and only iff, is an
embedding.

LEMMA 2.2. Let Z be any space and dp Z-- Y, any map. Give the pullback

X {(z, y)e Z x Y] (z)-- y,}
the G structure 9(z, y) (z, 9Y). Then

(a) X, is naturally identified with Z,
(b) the projection f: X-- Y, f(z, y) y, is a G map and
(c) f, q under the identification of X, with Z.

LEMMA 2.3. Iff: X-- Y is isovariant, then the natural map

O: X--,ff, (Y), O(x) (x,, f(x))

ofX into the pullback of Y by f,, is a G equivalence.

THEOREM (Palais). Let X and Y be G spaces, f: X-- Y an isovariant map
and f,;X, Y, the induced map on orbit spaces, Assume every open subset of
X, is paracompact (e.g., X, metrizable). If F,: X, x I-, Y, is a homotopy of
f, that preserves orbit type, then F, is covered by an isovariant homotopy F of
f. Moreover, given two such lifts F1, F2 of F,, there is a G equivalence 0 of
X x I over X, x I with OIX x 0 the identity and F2 FIO.

Since the orbits are discrete if G is finite, we have:

Addendum 1. If G is finite, the lift F is unique. In particular, if A is an
invariant subspace of X and F, is constant on A,, then F is constant on A.

Applying Lemma 2.1 we have:
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Addendum 2. F, is an isotopy through open embeddings if an only if F is
a G-isotopy through open embeddings.

Now let X be a G manifold, B X a compact invariant subspace. Let
A c A’ be closed invariant subspaces with A’ a neighborhood of A. Let U be
an open invariant neighborhood of A w B.

G DEFORMATION THEOREM. If h: U--} X is an open equivariant embeddin9
equal to the inclusion on A’ n U and h is sufficiently close to i, then there is
a G isotopy ht, O < <_ 1, of h such that hl on A B and ht h on A and
outside some compact set K in U. Further ht if h and ht depends contin-
uously on h.

Proof. Consider the space Z of G-embeddings of U in X with the C-O
topology and trivial G-action, and let F:Z x UX be the equivariant map
F(h, x) h(x). Then if F,: Z x U,--} X, is the induced map, F,(h, h,:
U,---} X,. Siebenmann’s theorem says there is a neighborhood W of in
Z and an orbit type preserving homotopy F,,: W x U,--, X, so that
F,,(h, h,, satisfies the corresponding conditions for A,, B, and a
compact set K, in U,. Since h, h, outside K, we may pull back F, to
W’ x K,, where

W’ {hlK; h W},
K the preimage of K, in X. Then W’ x K, is metrizable and we may apply
Palais’ theorem to obtain a G-deformation F of F with h F(h,
satisfying the desired conclusions.

COROLLARY 1. Under the assumption of the G deformation theorem, for
each embedding h sufficiently close to i, there is a G equivalence H of X,
depending continuously on h, such that

a)
(b)

H=hon A B,
H is the identity if h i,
H is the identity outside h(K), K a compact subset of U.

COROLLARY 2. Let h: U--} X, Ik, be a G isotopy with ho and h the
inclusion on A’ c U. Then for some e > O, there is an ambient G isotopy Ht of
X, Iltll < e, such that

(a)
(b)

H=honA B,
H is the identity outside h(K), K a compact set in U.
Ho is the identity.

G ISOTOPY EXTENSION THEOREM [2]. If ht: U--} X, Ik, is a G isotopy
with h the inclusion on A’ U and ho i; then there is an ambient G
isotopy H of X, Ik, such that

(a) H h, on A w B,
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(b)
(c)

H is the identity outside ht(K), K a compact set in U,
Ho is the identity.

Proof This follows by a standard argument from Corollary 2; or as in
the proof above, by applying Palais’ theorem to Siebenmann’s isotopy exten-
sion theorem.

EQUIVARIANT LOCAL CONTRACTIBILITY THEOREM. Let X be a G manifold
and C c B c X compact invariant subsets, B a neiohborhood of C. Let f(X)
(resp. f(X)) be the 9roup of G homeomorphisms of X fixed on X- C (resp.
X B) with the C-O topology. Then ,utc,(X is locally contractible in t(X).

3. Equivariant fibrewise deformations

Let X be a locally smooth F manifold, F a compact Lie group. Let
p: E---Z be a G-F bundle [7] with fibre X over the compact G-CW
complex Z. In other words, p is a right F bundle with fibre X over Z and an
equivariant map of left G-spaces, such that g G acts on E as a F bundle
automorphism covering the action of g on Z, and satisfying the local
triviality condition that each z Z has a G invariant neighborhood U with
p-X(Uz)-" U x X as a Gz space over Uz. G-CW complexes are defined in
[2]. Let A c A’ be closed invariant subspaees of X with A’ a neighborhood
of A. Let B c X be a compact invariant subspace and U an invariant neigh-
borhood of A w B in X. Let Ea, En, etc., be the associated G F subbundle
with fibre A, B, etc.

FIBREWISE G DEFORMATION THEOREM. Let h: Ev-- E be an equivariant
embeddin9 over Z, equal to the inclusion on EA, v. If h is sufficiently close to
i, then there is a G isotopy ht, 0 <_ <_ 1, of h through embeddings over Z such
that hx on EA un and ht h on Ea and outside Er, K a compact set in U,
and ht depends continuously on h. If h over a subcomplex Zo of Z, we can
assume ht over Zo

Proofi We proceed by induction on the dimesnion of the G cells of Z.
Over a 0-cell G/H, E[G/H G x n X, where H acts on X through a homo-
morphism p’H-. F (see [7]). Now h’G x nU G x nX restricts to an H-
embedding h’U X. By the G deformation theorem there is an H isotopy
of h restricted to U which extends by equivariance to a G isotopy h, of h
over G/H, ht on G x n A and outside G x nK, h on G x nB and
h if h i.
Now assume ht has been defined over Zt"-). Note that we can always

replace A by a closed neighborhood A of A ih A’ U and B by a compact
neighborhood B of B in U. Then hx is the inclusion on Evl[Zt"-x), Ux
Int (Ax) w Int (Bx).
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Let f: G/H x S"-1 ___) z(n-1) be the attaching map of a G n-cell and

f: G/H x D"--)Z(")

its defining extension. Then f*E (G x HX)x D" and h pulls back to a G
embedding h’: (G x n U) x D"-- (G x H X) x D" over G/H x D". Also ht pulls
back to a G isotopy

h’t" (G xnU x S"-I--*(G xnX x S"-1

of h’ over G/H x S"-1. This obviously extends to a G isotopy, again denoted
h’, of h’ over G/H x D, using a product neighborhood of S"-1 in D" to undo
the isotopy over G/H x S"-1. Then h’l G x U1 x D" is a G embedding over
G/H x D" which is the inclusion on G x n U1 x S"-1. Now k h’ restricts to
an H embedding k: U1 x D" X x D" over D". Applying the G deformation
theorem to the H embeddings ka: U1 -- X, d D, leads to an H isotopy of k
over D" and hence a G isotopy k of k over G/H x D satisfying the desired
conditions and with kt over G/H x S"-1. Thus reattaching the G cell and
using the G isotopy h’ to extend h over Z(") and then kt to further deform the
extended h rel Z("- 1), we end up with a G isotopy of h over Zt") satisfying
the theorem.

COROLLARY 1. The theorem holds for Z a G retract of a compact G CW
complex and Zo c Z a closed invariant subset, provided we can assume h
on a neighborhood N of Zo.

Proof Since any compact G CW complex is a G ENR [8], we can
assume Z is equivariantly embedded in a G representation space V and is a
G retract of a neighborhood W c V, say r: W Z. Then r*(E) is a bundle
over W with fibre X and h pulls back to an embedding r*(h) of r*Ev in r*E.
Further r*(h) over r-I(N). Take an equivariant triangulation of W. Then
Z is contained in a finite G subcomplex L; and if the triangulation is suffi-
ciently fine, Zo Lo r-I(N), Lo a G subcomplex of L. Restricting r*E to L,
the theorem gives G isotopies r*(h), satisfying the theorem for the pair
(L, Lo). Let h be the restriction of r*(h) over Z. Then h satisfies the conclu-
sions of the theorem for (Z, Zo).

COROLLARY 2. Let X and Y be G manifolds and Z a compact invariant
subspace of Y. Let A, A’, B, U X be as above. Let h: Y x U Y x X be an
equivariant embedding over Y, equal to the inclusion on Y x (A’ c U). There
is a compact neighborhood K of Z x B in Y x U; and if h is sufficiently close
to i, a G isotopy ht, 0 < < 1, of h depending continuously on h, such that
h =ionZ x B,h=hon Y x AandoutsideKandwithh=iifh=i.

Proof. Let N be the interior of a compact neighborhood of Z in Y. Then
N is a G ENR and N embeds equivariantly in a representation space V with
N a G retract r: W--- N of an invariant neighborhood W. As in the proof of
Corollary 1 we may find a finite G triangulation L of a neighborhood of Z in
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W. Apply the theorem to r*h over L and obtain r*(h)t which restricts to a G
isotopy kt of h over L c N. By taking an invariant function 2 which is one
on Z and zero outside a compact neighborhood N1 c Int (L c N), we can
construct a G isotopy h of h which is k over Z and identically h outside N1;
i.e.,

h,(y, x) k{r},(y, x).

Then ht satisfies the conclusion of Corollary 2 with K N1 x K, K a
compact neighborhood of B in U.

COROLLARY 3. Let X and Y be G manifolds and C a compact invariant
subspace of Y x X. Let U be an invariant neighborhood of C in Y x X and
h" U-- Y x X an equivariant embedding respecting the projection
r: Y x X-. Y (i.e., nh tO. There is a compact neighborhood K of C in
Y x X such that if h is sufficiently close to the inclusion there is a G isotopy
h, 0 < < 1, satisfying:

(a) h respects
(b) h, depends continuously on h;
(c) h is the inclusion on C;
(d) ht h outside K;
(e) h,=i/fh=i.

Proof Cover C by a finite collection of sets of the form

x x u,

V a Gr chart about y 6 Y and V, a Gx chart about x 6 X, H Gx Gr; say

G xn,(Wtx Vt), i=l, 2,...,r.

Any such cover has an invariant shrinking, and for convenience we will
assume C c (,J.= G x n,(Int D(Wt) x Int D(Vt)), D(V) the unit disk in V.
We will use the following trivial observation: Call a G space of the form

G x n S an H sliced G space, with H slice S. Then"

LEMMA 3.1. Let G X IIi St, i-- 1, 2, r, be a finite set of sliced subspaces
of the G space X. Then = G x n,S is the disjoint union of sliced subspaces
of X with = gt Htg[- slices ,"=t gt St, gt G, where the slices gi Si and

g’t St determine the same sliced subspace if and only if there is a g G with
g’i - ggi Hi, 1, r.

For each sliced subspace in ,’.= G x % D(V,), pick a slice =1 gtD(V,).
Then

(t=3gt Gx, D(Wr,)) x (t= gt D(Vx,))
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is a ’=1 giGx, gf- slice, and the corresponding sliced sets are disjoint G
invariant subsets of U. Also every r intersection

g,(D(W,)) x D(Vx,))
i=1

is contained in one of these sliced sets. Now decompose the r- 1 intersec-
tions similarly, etc., until one comes to the G cubes

G x ,(D(W) x D(Vx,))= G x % (Gx, D(W,) x

themselves. The sliced sets of n intersections meet only in higher order inter-
section and the n + 1 intersection sliced sets meet each n intersection

D(W )x
k=

in a set of the form

G H (k=lG gkGx,, D(I/Vr,, x B(i,..., in)),
where

H giGx,k g
k=l

and B(i, in) is the uniion of all n + 1 intersections 7__+ 9(D(Vxo which
are contained in ,= gig D(Vx, ).

Now beginning with the r intersections, apply Corollary 2 with A 0 to h
restricted to

to obtain a (-]= g G,,gf- isotopy ht with ht h outside a compact set and
with h on (= gGx, D(Wr,)) x ([= gD(Vx,)). Extending h, by equiva-
riance and replacing h with h where defined, we may assume h is the inclu-
sion on (a neighborhood of) the r intersections. Now applying Corollary 2
indactively with A (a neighborhood of) the intersection of the n + intersec-
tions with an n intersection, we may extend h to (a neighborhood of) the n
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intersections rel the n + 1 intersections. Finally we obtain an extension of ht
to a neighborhood of

i=1

and hence with h on C and ht h outside a compact neighborhood of C
in U.

Remark. The fibrewise G deformation theorem and all the above corol-
laries can be put in the form of Corollaries 3 and 4 of Siebenmann’s theorem
or as a G isotopy extensions theorem. In particular, we have"

COROLLARY 4. Let X and Y be G manifolds, C a compact invariant sub-
space of Y x X, and U an invariant neighborhood of C. Let ht: U-- Y x X be
a G isotopy respectin9 the projection rc’Y x X Y, with ho the inclusion.
Then there is an e > 0 and an ambient G isotopy Ht of Y x X over Y, Iltll < ,
such that

(a)
(b)
(c)

H h on C,
H, is the identity outside ht(K), K a compact neiohborhood of C,
Ho is the identity.

4. Theorem A and the Equivariant Submersion Theorem

Proof of Theorem A. Let f: Ik x N Ik x Q, f(t, x) (t, f(x)), be a G sub-
mersion. It follows from the definition that for each x N we can choose a

Gx chart hx: Ux N about x and a Gy chart ky: W--- Q about y =fo(x), so
that for near O there is a Gx isotopy hx Ux--- N, hx hx, with f
rx: U W a surjective Gx linear map.
To simplify notation, we will identify Ux with hx(Ux) and Wr with kr(Wr).

We will also write Ux Vx Wx, where Vx ker rtx and Wx V, and Wx is
identified to W as a Gx space via rx. Then the above conditions become:

For each x N we can choose a Gx chart Ux in N about x so that

(a) there is a Gr chart Wr in Q about y =fo(x) with U Vx 3 Wx, W
equal to W as a Gx space, and

(b) for near 0, there is a G isotopy h" Ux--, N, h the inclusion, with

f hx rtx, Ztx" Vx 3 Wx Wr the projection

Cover B by a finite number of sliced open sets G x Ux,, 1, r, Uxi
a chart about xi satisfying (a) and (b) above. Write UiX’for Ux,, etc. Since we
can shrink the cover, we may as well assume say that the sets G x ,(Int D(V)
x Int D(W)), 1, r still cover B.
By Corollary 2 of the G-deformation theorem, there is an ambient G1

isotopy H of V1 W, near O, with H h on a compact neighborhood
of D(V1) x D(WI), and the identity outside a larger compact set; i.e., we use
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the fact that for near O, h](D(V.) x D(W1))c VI (9 W.. Extend HI by equi-
variance to G ol(Vx W) and then by the identity to an ambient G
isotopy of N.
Assume by induction that an ambient G isotopy Hts of N has been defined

for near O with f, Hts =fo on a neighborhood Us of a compact G neighbor-
hood Cs of

0 G x o, D(Vi) x D(W).
i=l

Let Ds+l be a compact Gs+ neighborhood of D(+ 1) x D(W+ 1). If is close
enough to O, (n) Xh+(/ W/ ) contains a neighborhood U’ of
CsDs+l, U’s a Gs+l invariant subset of Us. Then (hs+l)-XH’s U’s--
V + q) W+ is a Gs / isotopy commuting with fo rq / , sincef h/ fo.
By Corollary 4 of the fibrewise G deformation theorem there is a Gs/

isotopy K of V+x W+x, commuting with s+l, K, =(ht.,+)-XHt on

Cs Ds+ and the identity outside a compact neighborhood of Cs Ds+
in U’s. Define kts+l as Hs on Cs and hs+x Kt on Ds+ and by equivariance on
G x s+l Ds+ 1. Then ks+ is a well defined G isotopy of a neighborhood of

0 G x ,(D(Vx) x D(W)),
i=1

and f kts+ =fo. By Corollary 2 of the G deformation theorem there is an
ambient G isotopy Hts+l of N with Hs/ ks/ on a neighborhood of

s+l

U x x D(W,),

and thusf H+x =fo on this neighborhood.

Before we state the G submersion theorem we recall"

DEFINITION 4.1. A G manifold N satisfies the Bierstone condition if for all
H c G, the components of Mtm/G are non-closed as manifolds.

DEFINITION 4.2. Let X be a G space. Two G spaces over X with section
(E, p, s), 1, 2, are called micro G equivalent if there are invariant neigh-
borhoods E of s(X) in E, 1, 2, which are equivalent as G spaces over X
with section; i.e., there is a G equivalence b" E E2 such that bs s2 and
P2t Pl"

DEFINITION 4.3. An n dimensional G microbundle over a paracompact
G space X is a G space with section over X, (E(f), p, s), such that f is
locally micro G equivalent to a trivial n dimensional G space with section;
i.e., each x e X has a Gx neighborhood Ux such that p-(Ux) is micro G
equivalent to Ux x Vx, Vx an n dimensional G representation space, with
obvious projection and O-section.
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Example 1. If is a G vector bundle, then the O-section makes it into a
G microbundle.

Example 2. If M is a G manifold, then the tangent microbundle z zM,
E(z) M x M, p’M x MM the projection onto the first factor, and
M-- M x M the diagonal map, is locally micro G trivial.

DEFINITION 4.4. If and ,4/" are n and q dimensional G microbundles,
>_ q, over X, then a G microbundle surjection is a map $: E()- E(/’) of

invariant neighborhoods of their sections such that"

(a) $ is a map of G spaces over X with section.
(b) For each x 6 X there is a Gx neighborhood Ux and local micro Gx

trivializations h: Ux x Vx--- p-l(Ux) and k: Ux x Wx p-l(Ux) with

k-ldph 1 x nx: U, x V--* Ux x W,,
a G, linear surjection.

Two such are identified if they agree on a neighborhood of the section.

DEFINITION 4.5. If is a G microbundle over X and r a G microbundle
over Y, then a G microbundle surjection over a G map f: X Y is a map

: e(#)--, e()o

of G spaces with section over f of invariant neighborhoods of the sections,
such that the induced mapf*b: E(8) E(f*/’) is a G microbundle surjec-
tion.

DEFINITION 4.6. Let N and Q be G manifolds. Then R(zN, zQ) is the sim-
plicial set whose k simplices are G microbundle surjections

b:Ak x E(zN)-- Ak x E(zQ)

over G maps " Ak x N Ak x Q which commute with projection onto the k
simplex Ak.

DEFINITION 4.7.
submersions

Let S(N, Q) be the simplicial set whose k simplices are

f:Ak xN--ARxQ
over Ak. Then the differential d: S(N, Q) R(zN, zQ) is given by

d(f)t: E(zN)-- E(zQ), Ak, d(f), =ftx ft: N x N-- Q x Q.

G-SUBMERSION THEOREM.

is a homotopy equivalence.

If N satisfies the Bierstone condition, then

d: S(N, Q)-- g(zN, zQ)
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The G submersion theorem follows from Theorem A in the same way as
the submersion theorem of Gauld [3] follows from his non-equivariant
version of Theorem A, except that the induction step (over the G-handles)
has to follow the order of induction given in [2] for the G-immersion
theorem. We will not repeat the arguments here.
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