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A GENERALIZED H FUNCTIONAL CALCULUS FOR
OPERATORS ON SUBSPACES OF L AND APPLICATION TO

MAXIMAL REGULARITY

GILLES LANCIEN AND CHRISTIAN LE MERDY

Let (f2,/z) be a measure space and let < p < cx be a number. Consider a
closed operator A on Lt’ () and assume that it admits a bounded H (E0) functional
calculus (in the sense of Mclntosh 10]) for some sector

(1) E0 {z C*: larg zl < 0}.

Let H be a Hilbert space and let ,A be the closure, which exists, of A (R) It/ on
Lp(g2; H). In a recent joint work with F. Lancien [8], we showed that for any v > 0,
the bounded holomorphic functional calculus of A naturally extends to a bounded
H(Ev; B(H)) functional calculus for A. As a consequence, we could deduce
abstract maximal regularity results on spaces of the form Lp (; H), for operators
which are the sum of an operator acting on Lp (f2) and another one acting on H. The
purpose of this paper is to extend these results to the case p and to the situation
where Lp() is replaced by one of its closed subspaces. As a consequence, we get
a new class of operators satisfying the Lp-maximal regularity property for the first
order Cauchy problem on intervals. As a matter of fact, the present work yields a
new proof of Theorem 5.2 in [8] which is somewhat simpler than the original one.

Let us now explain the framework of this paper and fix some terminology and no-
tation. All Banach spaces considered here will be complex ones. The n-dimensional
Hilbert space will be denoted by e for every integer n > 1. The Banach algebra of all
bounded operators on a Banach space X will be denoted by B(X). We shall use the
notation (1) to denote open sectors around the half-line of positive real numbers. For
any 0 (0, rr) and any Banach space E, we denote by H (E0; E) the Banach space
of all bounded analytic functions from E0 into E, equipped with the supremum norm.
When E C,.we simply denote this space by H (E0). Given a linear operator A
on a Banach space X, we shall denote by D(A), or(A) and p(A) the domain, the
spectrum and the resolventset of A respectively. We will assume the reader familiar
with Mclntosh’s H functional calculus on Banach spaces for which we refer to
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10], [3]. Let A be a closed linear operator on a Banach space X and assume that A
admits a bounded H(EI,) functional calculus for some v 6 (0, zr). As usual, for
any f 6 H(Ev), we denote by f(A) the bounded operator corresponding to this
functional calculus. Let us denote by

(2) EA {T B(X)" T(L- A)- (L- A)-T, p(A)}

the commutant of A. In [8] (see also ]), we introduced a generalization ofMclntosh’s
functional calculus for which scalar-valued analytic functions are replaced by Ea-
valued ones. For any F H(E,; EA), we defined a closed and densely defined
operator uA (F) in a way that preserves reasonable algebraic and continuity properties.
Moreover Ua is given on the algebraic tensor product H(E) EA by the simple
formula

UA (’" ’) E fi(A). ((fi)i C H(E,), ()i C

It turns out that given any closed subspace E C EA, the operator uA (F) is bounded for
any F H(E; E) if and only if Ua is bounded on H(E) @ E, i.e., there exists
a constant K 0 such that for any finite families (fi)i C H(E,,) and ()i C E,
we have

In this case we say that A admits a bounded H(E,,; E) functional calculus. We
refer the reader to [8] for further details.

The spaces on which we shall work can be described as follows. We give ourselves
a number p < and a measure space (, ). Let S C Le() be a closed
subspace and let X be any Banach space. We denote by S(X) the closed subspace of
Lp(; X) spanned by S @ X. It should be noticed that this definition relies on the
embedding of S into LP() and does not only depend on the Banach space structures
of S and X. In the sequel, a closed subspace S of some LP-space will be called
an SLP-space and a Banach space of the form S(X) will be called a vector valued
SLe-space. This definition includes vector valued Hardy spaces and vector valued
Sobolev spaces for example. The following tensor extension results for vector valued
SLe-spaces are elementary.

LEMMA 1. Let S be an SLP-spacefor some < p < cx and let X be a Banach
space.

(i) Let A be any closable linear operator on X. Then Is@ A, defined on S@ D(A),
is closable on S(X).

(ii) Let A be any closable linear operator on S. Then A@ Ix, defined on D(A)@ X,
is closable on S(X).

Proof. We on...ly prove (i), the proof for (ii) being the same. For any S*,
let us denote by " S(X) -- X the bounded extension of @ Ix. Let (z,,),, be a
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sequence in S (R) D(A) which converges to 0 and such that (Is (R) A)(z,,) converges to
some toA S(X). Then limfi(z,,) 0and lim(Is (R) A)(z,,) (w) for any S*.
Cleay (Is (R) A)(z) A (z) for any z in S (R) D(A) hence the closability of A shows
that (to) 0 for any S*. This implies that to 0 and shows the closability of
Is(R)A.

LEMMA 2. Let S be an SLP-spacefor some < p < cxz and let X be a Banach
space.

(i) For any T B(X), Is (R) T extends to a (unique) bounded operator on S(X)
with norm equal to T

(ii) Assume that X H is a Hilbert space. Then for any T
extends to a (unique) bounded operator on S(H) with norm equal to IITI[.

Proof. We only prove (ii), the proof for (i) being obvious. So we let T B(S),
with S C LP(g2,/z) and fix an integer n >_ 1. Let (gi)l<i<,, be a finite sequence of
independent Gaussian normal random variables on a probability space (g2’, tz’). Then
for any complex numbers t t,,, we have

with 6I, Ilg II,,z’). Therefore given any sl s,, in S, we have

IT(si)l2

Lt’(2)

by Fubini

This shows the result when H e is finite-dimensional and the general case follows
by approximation. I-1

Remark 3. Let S be an SLP-space for some < p < cxz and let H be a Hilbert
space. The following observations, which readily follow from above, will be used in
the sequel.

(i) Let A be an operator on S which admits a bounded H(E0) functional calculus
for some 0 6 (0, zr) and let .A be the closure of A (R) IH provided by Lemma (ii).
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Then it follows from Lemma 2 (ii) that ,4 also admits a bounded H(E0) functional
calculus. Furthermore for any f in H(E0), f(jt) is the bounded extension of
f (a) (R) In.

(ii) Let (Ut)t>_o and (Vt)t>_o be two bounded C0-semigroups on S and H respec-
tively. We denote by -B and -C the infinitesimal generators of (Ut)t>_o and (Vt)t>_o
respectively. By Lemma 2, Ut (R) Vt extends to a bounded operator on S(H) for any

>_ 0. Letting Wt the resulting extension, it is clear that (Wt)t>_o is a bounded C0-
semigroup as well. Now let/3 and C be the closures of B (R) In and Is (R) C provided
by Lemma I. Then D(/3) 1"3 D(C) is a core for the generator of (Wt)t>_o, and the
restriction of this generator to D(B) fq D(C) is -(/3 + C).

We now turn to the main result of this paper. Before stating it, we recall that any
operator which admits a bounded H (Z0) functional calculus automatically admits
a bounded H(Z) functional calculus for all 0 < v < n’. We also observe that
given any Hilbert space H and any SLP-space S, with < p < oo, it easily follows
from Lemma 2 (i) that B(H) can be regarded as a subspace of B(S(H)). Namely
we identify T B(H) with the bounded extension of Is (R) T. Furthermore if A is a
linear operator on S, then B(H) is actually included into the commutant algebra EA
(see (2)) of the closure .A of A (R) In.

THEOREM 4. Let H be a Hilbert space and S be an SLP-space, with < p < cx.
Let A be an operator on S which admits a bounded H(E0)functional calculusfor
some 0 in (0, n).

Then the closure .4 ofA(R)I# admits a boundedH (Ev; B(H))functional calculus
for any v > O.

As noted in our introduction, the above result generalizes Theorem 5.2 of [8].
Roughly speaking, the proof of the latter relies upon integral quadratic estimates
from [3]. Here we shall appeal to a deep decomposition result for analytic functions
established by Franks and Mclntosh in [7] and which lead them to discrete analogues
of the integral quadratic estimates mentioned above.

LEMMA 5 (FRANKS-MCINTOSH [7]). Fix two numbers v > 0 in (0, :r). Then
there exist a constant C and two sequences (k)k>_ and (pk)k>_ in HC(E0) such
that thefollowing hold.

(i) For any z Eo we have >_ IP,(z)l <_ C and >_ I@,(z)l _< C.
(ii) For any Banach space E and any function F in H(Ev; E), there exists a

bounded sequence (ot,),>_t in E with sup, IIc,ll _< CIIFIIn.<x,,:e) and

(4) Yz E0, F(z) ot,qzk(z)r,(z).
k>l

Proof. This is established for scalar-valued functions by combining Proposi-
tion 2.1 with (6) and (7) in [7]. The proof for vector-valued functions is identical.



474 GILLES LANCIEN AND CHRISTIAN LE MERDY

ProofofTheorem 4. LetS C LP(2) and A satisfying the assumption ofTheorem
4 and let us fix v > 0. We let tp0 (resp. ov) denote the bounded homomorphism from
H(E0) (resp. H(Ev)) into B(S) defined by f w+ f(A). We will show that there
is a constant K >_ 0 such that for any integer n >_ l,

(5) Iltp, (R) IM,," H(E,; Mn) B(S(g))II _< K.

By an obvious approximation argument, this implies that

]ltPv (R) IB(H)" H(E) (R) B(H) --+ B(S(H))II < K,

where the space H(E) (R) B(H) is regarded as included in H(Ev; B(H)). By
Remark 3 (i), this means that .A satisfies (3) with E B(H), whence the result.

From now on, we fix two sequences (-’i)i>l and (e)i>_ of independent +l-valued
random variables on a probability space (D, ), with I(ei 1) (ei -1)
(e 1) I’(e -1) 1/2. Moreover we assume that these two sequences
are mutually independent. We will use the following well known consequence of
the two-variable version of Khintchine’s inequality. For any finite family (Yij)i,j in
Lp (g2), for some constant cp only depending on p we have

(6)
L2(D;LP())

< cp lYij 12
Lp(2)

(7)
i/2

LP(f2) L2(D;Lt’())

We now fix an integer n > 1. We let 1-’ be the set of all subsets of n} and for
By convention cor, for , 0.any , F, we let w I-Ii el.

We give ourselves a function F in H(E; M,,) to which we apply Lemma 5. We
thus dispose of (4) for some bounded sequence (otk)k>_ in Mn. For any k, we denote
by Otk(i, j) (with < i, j < n) the entries of Ctk. Furthermore for any integer rn > 1,
we let

m

k=l

Let cr (sl Sn) and or* (s’ s) be n-tuples in S and S* respectively.
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Then

m

(8) (((Po (R) IM,,l(Fml(cr), or*) ((0k(AIt(A) (R) atl(cr), o’*)
k=l

k=l I<i.j<n

ck (i, j)(k(A)/k(A)sj, si

We now introduce an arbitrary family (s)r in S* which completes o’*, in the sense
* Since {e,w" <that when y {i} is a one point set, we simply have s s

k < n, y 6 1"} is an orthonormal family in LZ(D, ]), from (8) we derive

((q)0 (R) IM,,)(Fm)(cr),

otk(i, j)k(a)(sj) eke d/k(a)*(s)ek we dI.

Hence by the Cauchy-Schwarz inequality we obtain

(9) I<< o IM,,)(Fm)(Cr),

(tk(i, J)k(A)(sJ)) e, e
LZ(D’S)

Z ,(A)*(s,)ek we
L2(D:S*)

Now let us estimate the two norms in the right hand side of (9). On one hand, we
may write Y. k(a)*(s)e w (00(Y- ek))*(Y-r ws,), whence

LZ(D:S*) B(S)

tOySy
LZ(D:S*)

Applying Lemma 5 (i), we obtain

(1o)
L2(D:S L2(D:S

_< c II,p0 wsv
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On the other hand we have

L(D;S)

E otk(i, j)k(A)(sj)

1/2

Lt’(g2)

)
1/2

_< c. sup IIotll E [Pk(A)(si)l 2

k k,j
Lp(f2)

< Cp (Eu; M,,)
k,j LZ(D;S)

Applying the same arguments as in the proof of (10), we see that

_< c I1o011
L2(D;S) L2(D;S)k,j

Now putting all together, we deduce from (9) that

by (6)

(11)

by (7).

((tp0 (R) IM,,)(Fm)(Cr), or*) <_ Cp2 C2 1199o11 FII(r;M,,)

L(D;S) L(D;S*)

Let us provisionally set r (99o (R) IM,,)(Fm)(t7) in S(e.), and let us write r
(r rn) with r/ S. Thus the left hand side of (1 1) is _,j(rj, sj*) I. By classical
duality, we have

sup { F L2(D; S*), IIFII _< }(12) ejj
L(D;S)

By means of the conditional expectation with respect to the a-algebra generated by
(e’l e’n), we can restrict to F belonging to Span{w y 6 F} (R) S* in (12). Any
such F is of the form F Y ws, with (sr)er C S* as above, and

e} rj, ws dF (rj, sj ).
j

We therefore deduce from (11) that

<_ Cp2 C2 Ilqgoll IIFIl,z,,)
L2(D;S) L2(D;S)
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Applying both (6) and (7), we infer

Ilvllse) 4 C2 Ilqg01111FII- IIllseCp (,,;M,,) ).

4 C2 Ilqg0 we have thus provedLetting K cp

II(qg0 In,,)(Fm)ll < K IIFIIn<,,.,,).

Since this holds for all m > 1, it follows from the so-called Convergence Lemma (see
10, Section 5] and [3, Lemma 2.1 for scalar valued functions, the prooffor the vector

valued case being the same 1], [8]) that in fact, (o (R) IM,,)(F)II < K IIFIIH<,:M,,),
whence (5). I--!

Remark 6. Let H be a Hilbert space and let A be an operator on H which admits a
bounded Ha(E0) functional calculus for some 0 6 (0, r). Let us consider a measure
space (f2,/z) and a number < p < cx. We let .A be the closure of IL, (R) A on
LP(f; H). Then by Lemma 2 (i), A admits a bounded H(E0) functional calculus.
In view of Theorem 4, it is therefore tempting to ask whether A automatically admits
a bounded H(E; B(LP())) functional calculus for some (or for any) v > 0. It
turns out that in general, the answer is no, except when p 2 where Theorem 4 can
be applied.

Indeed assume that H is infinite-dimensional and separable and let (en)n>_ be a
basis of H. Let A be defined by letting

A(Ztnen)=Zntnen,
where the domain of A is the space of all h Y the. in H such that Y n2lt[2

Then for any 0 > 0, the operator A admits a bounded H(E0) functional calculus.
Indeed, for any f 6 H(E0), f(a)( , t.e.) f(n)te.. Now let qI’ be the unit
circle ofC, equipped with its usual Haar measure and assume that for some v 6 (0, zr),
Jt admits a bounded H(E; B(LP(f2))) functional calculus. Then arguing as in [8,
Section 6], one can prove that LP (qI’) is both 2-concave and 2-convex (see e.g. [9] for
a definition), whence p 2. The details are left to the reader.
We shall now apply Theorem 4 to the problem of the closedness of the sum of

two commuting closed operators and then to abstract regularity theory. The next two
statements generalize Cor611ary 5.6 and Theorem 1.4 in [8]. We only provide brief
proofs since they are quite similar to those in [8] and we refer to the latter paper for
further details. We recall that by convention, the domain of a finite sum of linear
operators on a Banach space is simply defined as the intersection of the domains of
these operators.

COROLLARY 7. Let H be a Hilbert space and S be an SLP-space, with < p <
cxz. Let B be a closed and densely defined operator on H. We assume that for some
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09 s (0, zr), it satisfies the following (sectoriality) condition:

(13) a(B) C E-- and ’v’0 sup n)-lll < ,

Let A be an operator on S which admits a bounded H(E0) functional calculus for
some 0 in (0, zr). We assume the (parabolicity) condition 09 + 0 <

Let .A and/3 be the closures of A (R) In and Is (R) B respectively. Then .A +/3 is a
closed densely defined operator on S(H). Moreover .,4 +/3 is one to one, has a dense
range and 4(.A +/3)- is bounded.

Proof Let v > 0 such that o9 + v < r. By (13), the function F defined by
F(z) z(z + B)- belongs to H(E; B(H)). Consequently the result follows
from Theorem 4 and [8, Proposition 2.6]. I--I

Let us now turn to abstract regularity theory for generators of bounded analytic
semigroups. We recall a classical definition. We give ourselves two numbers <
p < o and 0 < T < cxz. Let X be a Banach space and let -B be the generator of
a bounded analytic semigroup on X. Then B is said to have the maximal regularity
property provided that:

There exists C > 0 such that for any .f 6 LP([0, T); X), there exists a unique
function u W0’P([0, T); X) N LP([0, T); D(B)) satisfying

u + Bu f on [0, T) and Ilull _< cll.fll.

In this definition, the notation W0’’ ([0, T); X) stands for the space of functions u
belonging to the Sobolev space W’P([O, T); X) which satisfy u(0) 0. Note that
the maximal regularity property does not depend on the choice of p and T (see [2],
[4], [5]). In Theorem 8 below, we consider the problem of maximal regularity for
generators ofsemigroups on spaces ofthe form X S(H) obtained as tensor products
of semigroups on S and H respectively, as explained in Remark 3 (ii). Two classical
results should be mentioned here. First, any B as above has the maximal regularity
property when X H is a Hilbert space (De Simon, [4]). Second, if X is a UMD
Banach space (in particular if X is an SLP-space with < p < cx:) and if B admits
bounded imaginary powers which generate a C0-group of exponential type < zr/2,
then it has the maximal regularity property (Dore-Venni [6], see also [1 1]). Thus in
our result below, the case B 0 corresponds to the De Simon Theorem whereas the
case C 0 corresponds to a classical particular case of the Dore-Venni Theorem.

THEOREM 8. Let S be an SLP-space with < p < cxz, and let H be a Hilbert
space. Let -B and -C be the generators ofbounded analytic semigroups on S and
H respectively, and let 13 (resp. C) be the closure of B (R) It4 (resp. Is (R) C) on the
space S(H). Assume that B admits a bounded H(Eo)functional calculus on Sfor
some 0 < r/2.

Then the operator 13 + C is closed and has the maximal regulari, proper.
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Proof. Observe that since -C generates a bounded analytic semigroup, it satisfies
(13) for some co < zr/2. Hence as a first application of Corollary 7, we obtain that
/3 + C is closed and

(14) /3(/3 + C)- is bounded.

Let X S(H) and let be the derivation operator u - u’ on LP([0, T); X),
with domain Wd’P([0, T); X). Let/3 and C1 be the closures of IL,,(O,T)) (R) 13 and
IL,,(O.T)) (R) C respectively on LP([0, T); X). We may deduce from (14) that/3 + C
is actually the closure of It,’(t0.T)) (R) (/3 + C) hence by a well known characterization
of maximal regularity (see e.g. [2], [5]), it suffices to check that

(15) .A(A + 131 + C)-1 is bounded.

It follows from a known variant of Theorem 3.1 in [6] and from Theorem 1.3 in [8]
that the operator 4 +/3 admits a bounded H(E0) functional calculus for any
0 > zr/2. Therefore, by Corollary 6, (A +/31)(A +/3 + C!)- is bounded. Now,
by [6], [1 1], .A( +/3)- is also bounded whence (15). 12]

Remark 9. Let (fZ, #) be a measure space and let A be a Banach lattice of
functions on (f2, #). We assume that A is q-concave for some q < o. Then the
estimates (6) and (7) are valid with A instead of LP(). Indeed this follows from
Maurey’s Theorem (see e.g. [9, Theorem l.d.6]) and Kahane’s inequality (see e.g.
[9, Theorem I.e.13]). For any Hilbert space H, we may define A(H) as the space
of strongly measurable functions f" f2 H such that the scalar-valued function
w IIf(o)lln belongs to A. This is a Banach space for the norm IlfllA)

IIf(.)lIH II^. For any closed subspace S C A, we let S(H) be the Banach subspace
of A(H) spanned by S (R) H.

Then it is not hard to check that Theorem 4 and Corollary 7 remain true if we allow
S to be any subspace of a q-concave Banach lattice as above. Moreover, if we assume
that A is a UMD Banach lattice, Theorem 8 remains true as well for any S C A.
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