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THE VARIATION OF VECTOR MEASURES AND
CYLINDRICAL CONCENTRATION
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B.R. JEFFERIES

The mutual relationship between the differentiability of vector measures and
the smoothness properties of the associated cylindrical measures has often
been used in the study of measure theory on vector spaces; see for example A.
Goldman [4]. In [3] it was shown that a lifting is not always the best method
for constructing weak densities for vector measures. If the notion of a
"density" is relaxed somewhat, then it follows that a vector measure rn will be
differentiable with respect to a probability X when the associated (m, ?)-distri-
bution is o-additive. Conversely, the existence of this weaker type of density
suffices to guarantee the o-additivity of the (m, X)-distribution. We give a few
examples to show the limitations of these techniques.
The construction of a regular density for a vector measure usually involves

an argument utilizing its average range with respect to a probability. By
appropriately defining the notion of the variation of a vector measure, we
point out that the differentiability of a vector measure is an intrinsic property,
independent of the associated scalar measurema simple observation that
allows us to complete the cycle relating the variation of rn to the average range
of rn with respect to X, and the cylindrical concentration of the (m, X)-distri-
bution.

In a number of locally convex spaces, indefinite integrals have special
variational properties. By using the new notion of the variation of a vector
measure, we give a number of conditions ensuring that a locally convex space
has a form of variation property which has a bearing on the regularity of
cylindrical measures defined on the space. As a by-product, a necessary and
sufficient condition for the existence of a density for a vector measure with
values in a space of regular Borel measures is given; it does not seem to have
been stated explicitly previously.

Let E be a locally convex space. Let (E) be the smallest algebra, and
Cg(E) the smallest o-algebra for which elements of E’ are measurable. The
families (E) and C(E) contain all sets of the form q-l(B) where q:
E ---> R is a continuous linear map and B is a Borel subset of Rk.
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An additive set function/: e(E) [0,1] is called a cylindrical probability
if for each continuous linear map q" E Rk, k N, the set function/ -1
defined by/ q-l(B) (-I(B)) for each Borel set B in Rk is a probability
on the Borel o-algebra B(Rk) of Rk.

Denote by o the probability on C(E’*) canonically induced by the
cylindrical probability/ on E (E’* is the algebraic dual of E’, isomorphic to
the completion of E in its weak topology). For a given measure v on a
o-algebra of subsets of a set X, the outer measure on the family of all subsets
of X is denoted by v*.

Let be a family of subsets of E. The cylindrical probability # is scalarly
concentrated on - if, for every e > 0, there is a set F for which
(/ -I)*((F)) > 1 e for all E’. It is cylindrically concentrated on ,
if for every e > O, there is a set F for which

(/xoq-l)*(q(F)) >_l-e

for all continuous linear maps q0: E Rk and k N.
Now let M be a saturated family of subsets of E [10]. The space E’ with the

topology of uniform convergence on elements of is denoted by E). Let E
be the space E’ with the locally convex topology 0.

Suppose that p > 0. The cylindrical probability/: (E) [0,1] has p-th
order moments if t(llp) < for every E’. It has (O, p)-moments if the
map T: E’ R defined by T(/j) (llP), E’ is continuous on E. If T
is continuous on E then is said to have (, p)-moments. A systematic
study of cylindrical probabilities is given in [11].

If (f, 6, X) is a probability space, then the indefinite integral of a function

f: f E (in Pettis’s sense) is denoted by fh, with h(f) f(2).
Cylindrical measures and vector measures are related in the following

manner. Denote by the identity map on E’*. Let z be the Mackey topology
of E. If has (r, 1)-moments, then is/o-integrable and

e.

Conversely suppose that E is sequentially complete and that is/o-integra-
ble with ol taking values in E. Then has (r, 1)-moments.

Furthermore, if the vector measure m: 5a E is absolutely continuous with
respect to the probability X: 5a [0,1], then the (m,X)-distribution t is
defined by

lg f[) )t ( dq) m/d, ) -1

on the Borel o-algebra of R, for every continuous linear map : E Rk,
k N. If E is sequentially complete, then the (m, )-distribution has (z, 1)-
moments, and conversely, if/t has (z, 1)-moments, then/ is the (tolo,/o)-dis-
tribution [4].
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The bearing that the regularity of/ has on the existence of densities for rn
with respect to k has been previously studied [4], so the question arises of
what can be said if/ is only o-additive or -additive. First we point out ways
of showing when a cylindrical probability has (z, 1)-moments.

Let E and F be locally convex spaces. The family of continuous linear
maps from E into F is denoted by (E, F).

PROPOSITION l. Let u .’(E, F). If has (z, 1)-moments on E, then
x u- has (, 1)-moments on F.
Let tt be the ( m, ,)-distribution on E. Then u-1 is the ( u m, )-distribu-

tion on F.

Proof Suppose that / has 1st order moments and let T: E’ R be the
map defined by T() =/(]]), E’. Let e: R R be the identity map on
R. Then for each E’, T() =/ -l(le[).
Now suppose that " F’. Then

,o =,

so the map " u-(1’1), ’ F’ is defined and continuous for the Mackey
topology on F’ whenever/ has (z, 1)-moments.
If/ is the (m, X)-distribution and q" F --> Rk is a continuous linear map,

then

(ou-1)o-1

X o(d(q) u)o m/dX)

Xo(dq)o(uo m)/dX) -1

Consequently, u-1 is the (u m, ,)-distribution.

PROPOSITION 2. Let be the (m, X)-distribution on E and let f: f - E’*
be a C(E ,, )_measurable function such that m fX. Then f- and
t,,lo mo f-.

Proof Let : E Rk be a continuous linear map. Viewing E as a
subspace of E’* in the natural way, is the restriction to E of a uniquely
defined linear map %" E’* R. Furthermore, / q- o - on the
Borel o-algebra of R and we have

IO q)- h o(dq) m/d,) -1 , o(q)oo f )-i (o f-1)o qo-1,
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so/ )t f-x. Furthermore, for each A Cg(E,,),

too(A ) to()k of-1)(A) (f?t)(f-l(A)) mof-l(A), m

PROPOSITION 3. Let be a saturated family of subsets of E for which E) is
barrelled. Let be a cylindrical probability on E. Ifp > 1 and has pth order
moments and is scalarly concentrated on , then has (, p)-moments.

Proof The proof is essentially that of Proposition 10.2 of [1]. Suppose first
that has pth order moments. Then the set S (: t(llp) _< 1) is disked
and absorbing in E’. If S is closed in E) then S is a barrel, and because Es is
assumed to be a barrelled space, S is a neighbourhood of zero in E).
Consequently, has (N’, p)-moments.
To see that S is closed in E), suppose that ,. S is a net converging to
E’ in E). Let M: E’ Lp(o) be the random linear function associated

with / [11]. Then M(,) converges to M() in o-probability, because is
scalarly concentrated on the family M [11].
Now for every e > 0 there exists > 0 such that for every A Cg(E’*)

with o(Ac) < i,

/.to([M()[P < [M()[Po(A) -t- el2.

Choose such that

p,,{l[M()[p [M()[P[ > e/2} < .
Let A (x e E’*: [[(x, )[P [(X, ,)IPI e/2}. Then

/([,lp) < IM(Iij)lPt,,(A) + el2 < [M(I,)[Po(A ) + e < 1 + e.

Therefore S and S is closed.

COROLLARY 1. Let X be a Banach space. If the cylindrical probability
: .e(X) [0, 1] has 1st order moments, then it has (fl, 1)-moments if and only
if it is scalarly concentrated on the balls of X.

COROLLARY 2. Let E be a locally convex space. The following conditions are
equivalent.

(i) The space E is semireflexive.
(ii) A cylindrical probability /.t: r(E) [0,1] has (, 1)-moments if and

only if it has 1st order moments and is scalarly concentrated on the bounded sets
in E.

A saturated family of subsets of E is said to be complete if for each
closed disked member B ’, the normed space EB is complete. A set A c E
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is said to be -strictly weakly compact if there exists a disked set B such
that A c B and A is weakly compact in EB. The saturated hull [10] of the
-strictly weakly compact sets is denoted by
The next theorem is an extension of a result of Schachermayer [9] to the

locally convex space setting. It uses an analogue of Grothendieck’s complete-
ness theorem proved in [6].

THEOREM 1. Let be a complete saturated family of subsets of the locally
convex space E. Let p > 1 and let l: (E) [0,1] be a cylindrical probability
onE. If

(i) l* has (, p)-moments, and
(ii) t* is scalarly concentrated on weakly compact convex subsets of E, then i

has ( ’tUcg, q)-moments for every 0 < q < p.

Proof Let M: E’ L’(t,o) be the linear random function associated with
/, [11]. As/, has (g, p)-moments, there exists a closed disked set B ’ such
that M(B) is a subset of the unit ball of
The image of the unit ball of LP(Io) in Lq(txo) is uniformly integrable of

order q for 1 < q < p, so the topologies of L(lo) and Lq(I,to) coincide there
[2, p. 122]. Since/ is scalarly concentrated on weakly compact convex sets in
E, M is (E’, E)-continuous into L(lo) [11], so MIB is z(E’, E)-continu-
ous into Lq(t,o). Now M’. E--+ Lq(i.to) is continuous, so from [6, Corollary
2.4] the map M is (E’, E)- Lq(t,o)-continuous because the family ’ is
complete.

Furthermore, M(B) is relatively compact in Lq(txo) because p > 1 and
1 < q < p. From [6, Theorem 2.5], the map M: E’ Lq(o) is continuous for
the topology of uniform convergence ong for every 0 < q < p.

COROLLARY 3. Let E be a sequentially complete locally convex space. Let
m: 5t’- E be a vector measure absolutely continuous with respect to the probabil-
ity X: 5a [0, 1]. Let be a complete saturated family in E. Suppose that for
some p > 1, ,(Id m/dl) < for every E’, and the map

is continuous on E. Then for some closed disked set B , m: 5a EB is a
vector measure.

Proof Let # be the (m, )-distribution on E. Let e be the identity map on
R. Then for each E’,

X(Id m/dXIp) X o(dg:o m/dX)-l(lelp) to -l(lelP ) tx(llP).

Thus / has (, p)-moments and (z, 1)-moments. By Theorem 1, / has
( g/" if, 1)-moments.
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Therefore there exists a disked set D YV’cg such that for every D,
I(m, 6) 1(2) X(Id6 m/dXl) t(161) -< 1,

so that co(m(S)) is weakly compact in EB for some closed disked set B .
By the Orlicz-Pettis theorem m" 6" Es is o-additive, m

In [12, Theorem 1], conditions related to those of Theorem I ensuring that a
cylindrical probability has (, 1)-moments are given. The completeness of the
whole space E is used in a similar manner. However, such an assumption is
often inappropriate in the general locally convex space setting, as for example
when E is endowed with its weak topology.
The conclusion of Corollary 3 may fail to hold for p 1, as may be seen

from the vector measure m: 6a- (L(?), o(L, L1)) defined by

m(A) X,, A 6a,

which is absolutely continuous with respect to the Lebesgue measure ?: 6a
[0,1] on the unit interval.
To see the beating that the additivity of the (m, ,)-distribution has on the

differentiability of rn with respect to ,, we need to introduce a weaker notion
of a density for a vector measure.

Let (2, 6a, ?) be a probability space and m: 6a E a vector measure such
that m << ,. Denote by 6"(m, ) the o-algebra generated by the family

{(dp m/d,)-(B) q .a(E,ak), B (Rk), k N}
in 6’.
A measure space (F, T, ) is said to be an inessential extension of the

measure space (F, T, v) if T c ]’, (A) ,(A) for every A ’, and if for
every T ’, there is a set S " such that (SAT) 0.

If m: -- E is absolutely continuous with respect to ,, then there exists a
unique extension rh of rn to such that rh << .
A typical example of an inessential extension of a measure space (F, ’, ,)

is where q" is the o-algebra of Baire subsets of a completely regular topologi-
cal space F, and is the canonical extension of the tight Baire measure , to
the Borel o-algebra 4-of T. Another example is where S is some subset of the
set F. ,- is the o-algebra generated by q- and S, and (S) takes some value
between the u-inner measure and the v-outer measure of S [5].
A function f: f E is said to be a virtual density for m with respect to ,

(briefly, (m, h)) if there is an inessential extension (rh, ) of (m, ) such that
f is ,-integrable and rh f,.
A function f: f E is called a cylindrical density for (m, ,) if f is a

virtual density for (m 16a(m, h), h 16a(m, h)).
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If f: fl E is X-integrable and m fX, then we merely say that f is a
density for (m, X).

Viewing E as a subspace of E’* in the natural way, a componentwise
application of the scalar Radon-Nikodym theorem shows that there always
exists a density f: f E’* for (m, ,). A density dm/dX for (m, ,) with
values in the space E may not exist, but the (m, X)-distribution is a substitute
for the distribution of dm/dX. The relationship is made precise in the
following theorem (see also [7]).

THEOREM 2. If (m, ) has a cylindrical density in E, than the ( m, ,)-distri-
bution is o-additive.

In particular, a cylindrical probability IX with (z, 1)-moments is o-additive if
and only if (toix o, tx o) has a virtual density.

Proof Let Ix be the (m, ,)-distribution, and suppose that f: fl E is a
virtual density for (rn 16a(m, X), X 5a(m, X)) with an inessential extension
(,, ,).

If .(E, Rk), B (Rk) and k N, then (dep m/d,)-l(B)
5"(m, ,) and

Ix tp-l(B) k o(d m/dX)-X(B) X o(do m/d,)-l(B).

Furthermore,

h-a.e., so

dq At/d, dep m/dk

X o(dcpo m/dX)-l(B) X o(dtpo n/dX)-(B) X(( of)-l(B))
x

Consequently, t
, f- [Y’(E) and is o-additive.

Now suppose that has (, 1)-moments on E and is o-additive. Then
Ix*,(E) 1. Let o be the extension of Ix, to the o-algebra Cg(E’*) generated
by C(E’*) and the set E, with o(E) 1 [5, p. 75].

Define f: E ’* E by letting f(x)=x forxE and f(x)=0 forx
E’* \ E. Then (E’*, C(E,,), /2o) is an inessential extension of
(E’*, C(E’*), Ix,) and f is scalarly ,-measurable with too f. Thus f is a
virtual density for (t,ix o, Ix o). 1

To prove that the (m, )-distribution is o-additive, it suffices to show that a
cylindrical density for (m, h) exists. There is no distinction between a cylin-
drical density and a virtual density for (toix,, Ix,). The following example
shows that there is a need to distinguish between the two notions in general.
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Example 1. Let f] [0,1], let X: [0,1] [0,1] be the Lebesgue measure
on [0, 1], and let 6a= ..[0,1]. Define f: f LI() by f(t) Xt0,/l for
[0, 1]. Then v , f-1 is a o-additive cylindrical probability on LI(X) with
(’, 1)-moments. Its extension to ff(Ll(h)) is also denoted by v.

Let A c [0,1] be a set with X*(A)= 1 and the h-inner measure of A,
X.(A) 0. Give the subspace

E span((xt0,tl’t A} tO C[0,11)
of LI() the relative topology. Then v*(E)= 1 and v.(E)= 0. If is the
identity on LI(X), then the range of the vector measure

tv (fX)of-
is contained in the space E. The (tv, v)-distribution on E has (z, 1)-moments
and it is clearly o-additive.

Suppose that (tv, v) has a density h: LI() E. Then the separability of
LI(,) implies that h tv- a.e.. Consequently,

p,(g) p,(t-l(g)) v,(h-l(g)) p(h-l(g)) 1,

which is a contradiction.
However if is the extension of v to the o-algebra generated by (L())

and E satisfying (E)= 1, then the is a density in E for (t, ), and so a
virtual density for (tv, v).

It follows that a pair (m, k) may have a virtual density but no density. If in
Example 1, is the extension of v to the o-algebra generated by (L())
and E satisfying (E)= 1/2, then it follows that (t, ) does not have a
virtual density in E, but tXe is still a cylindrical density for (t, ); that is, a
virtual density exists for

(,,, ,),

but not for (t, ).
The (tv, v)-distribution/ on E is the cylindrical probability satisfying

,u(A E) v(A) for everyA .Z(LI(X)).

Because v is a regular Borel measure on LX(A) and v*(E)= 1, is even
z-additive in the sense that for each net (V)i i of open cylinder sets with
V ’ E, we have limi I(V) 1. Therefore there is still a need to distinguish
between virtual densities and cylindrical densities for (m, X) when the
(m, h)-distribution is z-additive.
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The condition that every cylindrical probability with (,l)-moments is
o-additive is a type of weak Radon-Nikod,m property for E.
To guarantee the existence of a density for (m, ,), something more than just

the o-additivity or the r-additivity of the (m, )-distribution is needed, so
some additional concepts have to be introduced.

Let m: ow E be a vector measure. Let D be a disked subset of E with PD
the gauge of D. The D-variation

V(m, D): 5t’ [0, ]

is defined by

where B 5a and H(B) is the family of all finite partitions of B by elements
of .

Let - be a family of subsets of E. The vector measure m is said to have
finite --oariation if there exists a disked set F - such that V(m, F)(f]) < o.
It has o-finite --ariation if there exists a partition (2k), of f by elements
of 5a such that m lSan fk has finite -variation for every k N.

If m << ,, then the average range ARB(m, ) of m with respect to X on
B 5a is defined by

ARB(m, ,) (m(C)/X(C): C 5a, C c B, ,(C) > 0}.

We say that (m, ,) has local -average range if for each B 5 with
X(B) > 0, there exists C 5 with C c B, 3(C) > 0 and ARc(m, ) F.
Now let T be a Hausdorff topological space and some family of subsets

of T. A Borel probability ,: ’(T) [0,1] is said to be fCregular if
(i) for each A ’(T), ,(A) sup((C): C c A, C is closed in T }, and
(ii) sup(,*(G): G f } 1.
The next theorem connects the concepts of average range, cylindrical

concentration and variation.

THEOREM 3. Let (f, 5a, ) be a probability space and m: 5 E a vector
measure such that rn << X. Let " be a family of subsets of E such that:

(i) any subset of E contained in an element of " is also in ’;
(ii) scalar multiples of elements of , are also in ’;
(iii) closed disked hulls offinitely many members of are in ’.

The following conditions are equivalent.
(a) (m, , ) has local -average range.
(b) rn has o-finite --variation.
(c) the ( m, 3)-distribution is cylindrically concentrated on .
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Proof For every disked set F - and linear map L(E, R), k N,

q ( F ) (’ aq ( F )
a>l

so the equivalence of (a) and (c) follows from [4, Th6or6me 2.1].
Suppose that the average range of (m, ) on the set B 6a is contained in

the disked set D ’. Then for every A c B, A 6a with X(A) > 0, we have
pD(m(A)/X(A)) < 1. It follows that m has finite 5-variation on 5e B.
Combined with an exhaustion argument, it follows that (a) implies (b).

Suppose that rn has finite --variation. Then for some closed disked set
D -, V(m, D)(f) < o. The set function V V(m, D): 6a [0, ) is a
measure (because PD is lower semicontinuous on E), such that rn << V << ,.

For some non-negative function g: f [0, o), V g. Let

,= (0 :n- 1 <g(0) < n) for eachn N.

Then

po(m(A)) < V(A) < nX(A)

for every A 5a 2,, so that (m, ) has local o--average range. Thus (b)
implies (a), and the proof is complete.

COROLLARY 4. Let (f, S, h) be a complete probability space, m: 5t’- E a
vector measure such that m << 2, and x the (m, ,)-distribution on E.

Let p be a topology on Efiner than the weak topology o(E, E’). Denote by
the family of p-compact convex subsets of E.

The following statements are equivalent.
(i)

(ii)
(iii)
(iv)
(v)

(m, 2) has an essentially unique (Ep)-measurable density ffor which
k f-1 is -regular on E.

is cylindrically concentrated on .
t is the restriction of a unique -regular Bore! measure on E.
rn has o-finite -variation.
rn has locally relatively p-compact average range.

Proof If (i) holds, then / X f-xl(E) so (ii) follows. Conditions (ii)
and (iii) are equivalent by Prokhorov’s theorem [11]. From the preceding
theorem (iv) follows from (ii), and (iv) implies (v).
As in [4, Proposition 2.6], it follows that (v) implies that (m, X) has local

--average range for the saturated hull " of , of all subsets of elements of .
By Theorem 3 again, / is cylindrically concentrated on t and so condition
(iii) holds. According to [13, 1.7], there exists a (E)-measurable function
f: E for which , f-1 is a -regular Borel measure on E. Because the
topologies O and o(E, E’)agree on 0-compact sets, f is even ’(Ep)-mea-
surable, and , o f-1 is a -regular Borel measure on E.
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The essential uniqueness of the density f can be established in the following
manner. Suppose that g: fl - E is o(E, E’)-Borel measurable and

x g( o) [o, a]

is a Radon measure.
Then as in [4, Th6or6me 2.1], for any closed cylinder set C containing

ARu(g,, ), , g-l(c) l. Because Radon measures are continuous for
decreasing convergence of closed sets, denoting the o(E, E’)-closure of
ARu(gX, ,) by -(g,, ,), we have

X g-l(--’(’X, .)) 1.

Consequently, if h" fl E is a o(E, E’)-Borel measurable function such
that

, h -1. .(Eo ) --.) [0,11

is a Radon measure and hX fX, then (h f),(A) 0 for every A 5’,
and so ARu((h -f)?, X)= (0}. Moreover, the function h -f is o(E, E’)-
Borel measurable and ? o(h -f)-i is a Radon measure. Thus, h f ,-a.e..

The essential uniqueness of densities of the above type does not seem to
have been previously noticed. It often has some useful implications.
Note that the topology O need not be compatible with the vector space

structure of E, let alone locally convex. Corollary 4 may be viewed as an
extension of the classical theorem of Phillips for Banach spaces.
An additive set function rn with values in the space of bounded additive set

functions on an algebra of sets ze, will have finite variation-bounded variation
if and only if it can be written as rn m r m- for two additive set functions
m r, m-, with values in the non-negative bounded additive set functions on z.
Let T be a completely regular space, and denote by Mt(T) the space of signed
Radon measures on T endowed with the topology of convergence on finite
families of bounded continuous functions on T. A subset of Mt(T) is bounded
if and only if it is bounded in variation. Thus a vector measure m: 5a Mt(T)
can be written as the difference between two vector measures with values in
the space Mt+(T) of non-negative Radon measures on T if and only if rn has
finite bounded variation in Mt(T).

Suppose now that the vector measure m" 5r’ Mt(T) has o-finite bounded
variation in the space Mt(T) and m << X. Then according to Theorem 3, for
every e > 0 there exists a Borel set S c T such that ,(SC) < e and ml(T)
q S can be written as m r m- for vector measures m r, m-" ’(T) n S
Mt+(T) such that both (m r, ,) and (m-, ,) have bounded average range in
Mt(T ). Applying Th6or6me 4.2 of Goldman [4], we see that ml.(T) tq S has
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a density with respect to X. Therefore (m, ,) has a density with values in
M (T) by patching.
We will also see that m: 5a Mt(T) has a density with respect to X only if

m has o-finite bounded variation (respectively, o-finite uniformly tight varia-
tion).

Let - be a family of subsets of the locally convex space E. We say that E
has the --oariation property if every indefinite integral with values in E has
o-finite o:variation.

THEOREM 4. Let be a saturated family of subsets of the sequentially
complete locally convex space E. Then E has the 5-oariation property if and only
if each o-additive cylindrical probability with (z, 1)-moments is cylindrically
concentrated on .

Proof Suppose that each o-additive/: e(E) [0,1] with (, 1)-moments
is cylindrically concentrated on .

Let f: ] E be a -integrable function. Then f-ll(E)=/ is the
(f?, )-distribution, and it has (,l)-moments because E is sequentially
complete. Now/ is cylindrically concentrated on since it is o-additive, so
by Theorem 3, fX has o-finite variation.

Conversely, let E have the ’-variation property, and assume that the
(too,/ o)-distribution is o-additive. Then (too,/ o) has a virtual density by
Theorem 2, and the corresponding inessential extension of ,oo has o-finite
’-variation. From Theorem 3, / is cylindrically concentrated on .
The family of bounded subsets of a locally convex space is denoted by G0.

The following facts are easily verified.

PROPOSITION 4. (i) Every subspace of a locally convex space with the
o-variation property also has the o-variation property.

(ii) The projective limit of a sequence ofspaces with the o-variation property
has the o-variation property.

(iii) The strict inductive limit of a sequence of complete spaces with the
o-variation property has the o-variation property, m

A completely regular space is said to be strongly measure-compact if every
measure on the Baire o-algebra is tight; that is, it is the restriction to the Baire
sets of a uniquely defined Radon measure. It follows from Theorem 4 that a
locally convex space which is strongly measure compact for its weak topology
has the weakly compact variation property, provided it is quasi-complete for
its Mackey topology. This last condition ensures that the family of relatively
weakly compact sets is saturated. In particular, any quasi-complete Souslin
locally convex space [11] or separable Frrchet space has the compact variation
property, and so the bounded variation property. For these spaces any
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o-additive cylindrical probability is the restriction of a uniquely defined Radon
measure to the algebra of cylinder sets.

If the locally convex space E contains a bounded absorbing set, then K.
Musial [8, Proposition 1] has shown that E has the bounded variation
property. By localization, it follows that if E or E’ has a countable covering
consisting of bounded sets, then E has the 0-variation property. In particu-
lar this applies to a metrizable locally convex space.
The family of all measures with variation < 1 is a bounded absorbing set in

the space Mt(T) of Radon measures on the completely regular space T, so

Mt(T ) has the ’0-variation property. The discussion is summarized in the
following statement.

PROPOSITION 5. Let (, 5, ) ) be a complete probability measure space. Let

m: SP Mt(T )

be a vector measure such that m << )k. Then (m, ) has a density f: 2 Mr(T)
if and only if m has o-finite bounded variation (respectively, o-finite uniformly
tight variation).

In this case, there exists an essentially unique Borel measurable density f such
that , f- is --regular for the family of uniformly tight subsets ofM (T). m

The uniform tightness property is a consequence of [4, 4.2].

Example 2. Let X and Y be Banach spaces. The space (X, Y) of
continuous linear operators from X into Y with the strong topology has a
bounded absorbing set; namely, those operators u: X Y such that [lull < 1.
Consequently (X, Y) has the bounded variation property. If Y is reflexive,
then q(X, Y) is semi-reflexive, so by Corollary 4, m: 5 5o(X, y) has a
density with respect to 3, if and only if m has o-finite 0-variation.
Dual nuclear spaces also have a strong form of variation property. Suppose

that E, is quasi-complete and E’ is nuclear [10]. Then every vector measure
m: 5 E has a Bochner integrable density f: 2 EB for some weakly
compact subset B of E, so E certainly has the compact variation property.
The prescribed conditions hold whenever E is quasi-complete with Et nuclear;
that is, E is dual nuclear. All complete metric and dual metric nuclear spaces
are dual nuclear, so this includes all the common spaces of distributions.

It is not sufficient that E be complete and nuclear for it to have the
bounded variation property. This is easily seen by taking the space RI’11, the
Lebesgue measure X on the unit interval, and the X-integrable function

f: [0, 1] 11[0’11 defined by

f(t)(s) sl -1/ s,t . [0,1], s 4= t,
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and f(t)(t) O, [0, 1]. The vector measure f has infinite ’0-variation on
every set of positive measure.
We now return to the situation considered in Theorem 2.

LEMMA 1. Let E be a subspace of the locally convex space F with the relative
topology. Let (2, 50, ) be a probability space with m: 50 E a vector measure
such that rn << X. Suppose that there exists a function f: II F such that
rn fX and f( ll ) Cg F ), the X of-l-completion of C F).

If the ( m, X )-distribution is o-additive, then (m, ) has a cylindrical
density in E.

Proof Let j: E F be the inclusion map. Let be the extension of/z to
o-additive measure on Cg(E). Then j-1 is o-additive on (F) and
j-I)*(j(E)) 1.

Moreover, j-i._ )k of-1 so that (X of-X)*(j(E))--1. Because f(f])
C(F), ()k f-x),(j(E ) (3 f(f)) 1.
Let X o be the restriction of X to 5(m, X). Then it follows that

,*o( f-l(j(E))) 1.

Let X be the extension of Xo to the o-algebra generated by 50 and f-l(j(E))
with Xl(f-(j(E))) 1. Put f(o) f(o) if 0 f-(j(E)) and f1(o) 0 if
o f \f- I(j(E)). Then m [50(m, X) fxX [50(m,)k ) and fx is scalarly mea-
surable with respect to the o-algebra 50(m, X), so fl is a cylindrical density
for (rn, X).

Lemma 1 suggests that the existence of a cylindrical density for a vector
measure rn with respect to a probability X is related to the so-called "image
measure catastrophe" of L. Schwartz [11, p. 30]. This phenomenon explains
why the regularity of the (m, X)-distribution is so important in this context. If
the (m, X)-distribution is not regular, then the problem is likely to involve
subtler measure-theoretic arguments [3].
Example 1 and the argument following it shows that (m, X) need not have a

density, or even a virtual density in E. The following theorem gives conditions
guaranteeing the existence of a cylindrical density.
A measure space (F, .Y-, ,) is said to be perfect if for every real valued

.Y:measurable function f: F R there exists a Borel set B such that

B c/(F) and v(/-l(B)) ,(F).

For such a measure space, the same holds true for a .--measurable function
with values in a Polish space. Every Radon measure is perfect.
Let/ be a o-additive cylindrical probability on the locally convex space E.

Then the image of/ by the natural inclusion of E in E" defines a probability
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measure on W(Eo"). Denote the completion of the o-algebra W(Eo") with
respect to this measure by ff"(Eo").

Let E, denote the family of bounded subsets of the locally convex space
with the following two properties"

(i) For each F , there exists a countable subset of E’ separating
points of the closure of F in Eo";

(ii) The closure of each set F in E" belongs to c,(Eo,,).

THEOREM 5. Let (, 50, ) be a perfect probability space with m" 50-o E a
vector measure such that m << k. Suppose that the (m, ,)-distribution is
o-additive.

If m has o-finite -variation, then (m, X) has a cylindrical density.

Proof By Lemma 1, it suffices to show that (m, Jk) has a density f: 2 E"
such that f(f) cg"(E’).

Let (2k)kr C 5 be a partition of f for which m has finite B-variation
on 50tq 2k, Bk , k N. Let Hk _be the linear span of a countable subset
of E’ separating points of the closure B of B in Eo". Then Hk also separates
points of E, [.JnunBk.

Let F, E, E’/(EBk). Then (Ek, Hk) is a metrizable_ topology coarser
than o(E,, Fk). Since B, is bounded, the closure B, of Bk in E’* is a
compact subset of Eo". It follows that B, can be identified with the closure of
Bk in (F*, (F*, Fk)) and (Hk, (H*, Hk)), and the two topologies agree and
are metrizable on ,. Let /,
The completion of a perfect measure space is perfect, so it may be assumed

from the outset that (f, 50, )}s complete. By Corollary 4, there exists a Borel
measurable density f,: f_g -* E, for the _relative topology of Eo". It may be
supposed that f,(2,) c B,, and because B, is compact and metrizable in _Eo"
and (f, 50, ,) is perfe,ct, it can also be~ assumed that_ fk(f]k) (Eo" Cq Bk.
Moreover, (E’) q E, c(Eo") O E, because Bk is compact and metriz-
able in E".
By assumption k c’(Eo"), so / c"(Eo"). Thus f(2) c"(Eo").

Put f(o:) f,(o:) if 0: fl,, k N. Then f: -o E" is a density in E" for
(m, X), and f(fl) "(Eo").
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