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A SIMPLIFICATION OF ROSAY’S THEOREM ON
GLOBAL SOLVABILITY OF TANGENTIAL

CAUCHY-RIEMANN EQUATIONS

BY

MEI-CHI SHAW

In a recent paper by Rosay [6], the global solvability of the tangential
Cauchy-Riemann complex Ob on the boundaries of weakly pseudo-convex
domains is studied. He proved the following theorem"

THEOREM 1. Let be a weakly pseudo-convex domain in C with smooth
boundary b2. Assuming n >= 2 and p <= n, the equations

(1) where a is a smooth (p, n 1) form on bf,

has a smooth solution u if and only if a satisfies

(2) oaaA for every O-closed ( n p, O) form

The same result for strictly pseudo-convex domains has been proved by
Henkin in [2] using the integral representation for the operator.

In his paper, Rosay also noted parenthetically that, following the work of
Kohn and Rossi [5] and Kohn [3], the necessary and sufficient conditions for
the solvability of the equations

(3) 3bU=a, whereaisasmooth(p,q) formonbfandq<n-1,

are

(4) Oba 0

Rosay’s method for proving Theorem 1 is to use the solution of the
O-Neumann problem in an ingenious way. However, it is not the most direct
one. In this note we shall show that, with a simple argument of integration by
parts, Kohn and Rossi’s method can be directly extended to (p, n 1) forms,
thus providing a unified approach to the solvability of equations (1) and (3).
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Let us first review how one can apply Kohn and Rossi’s result to solve (3)
under condition (4). Condition (4) allows one to extend a to a -closed form. On a weakly pseudo-convex domain, there exists a smooth fi (see [3] and
[4]) such that and the restriction of to the boundary gives a solution
of (3). More specifically, assume r is the defining function of 2, i.e., f
(xlr(x) < 0) and r 0 on the boundary.

(i) Extend a to a smooth form a on f such that o /k 0r a A Or on bf.
(ii) Set

(5) O2 * ON* o
where n is the 3-Neumann operator on (n p, n q 1) forms and is the
Hodge star operator. Then by the result of Kohn and Rossi [5], for q < n 1,
one has

(6) Oa2 i)al on f, O2 A Or 0 on bf.

(iii) Set t Ct a 2. Then

O=0onf, A Or=aA Or onbf.

Then by the result of Kohn, one can find a smooth fi such that 0 fi k and
the restriction of fi to bf gives us a smooth solution of (3).

We note that the above _argument, as in Rosay’s paper, assumes the
unproven existence of the O-Neumann operator N on (n- p, n-q- 1)
forms on a weakly pseudo-convex domain in general. Kohn [3] has proven that
the weighted 9-Neumann operator exists and the proof should be limited to
the weighted 3--Neumann operator and weighted L2 space. However, since the
arguments are similar with or without weight, we follow Rosay in assuming
the existence of N on (n p, n q 1) forms when q < n 1 for the sake
of simplicity in presentation.
The three steps (i), (ii) and (iii) can also be extended to the case when ct is a

(p, n 1) form and satisfies (2). The only part that needs justification is step
(ii). The 3-Neumann operator for the (n -p, 0) forms must exist and the ct 2
defined by (5) must satisfy (6). A crucial observation is that if the O-Neumann
operator on (n- p, 1) forms (denoted by N1) exists, then the O-Neumann
operator on (n p, 0) forms (denoted by No) can also be defined (see Folland
and Kohn [1] Theorem 3.1.19 and the remark after that). In fact, NO is defined
by

(7) NO tN12 for smooth (n p, 0) forms

and

(S) OONo= I- H
where is the adjoint operator of and H is the Bergman Projectio_n
operator from square-integrable (n- p,O) forms into square-integrable O-
closed (n -p, O) forms.
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We prove that (5) satisfies (6) in the following way. Using the relations

= -,0, and ** =I, wehave

0 0 (* ONo * 0 )

,vONo * 00

* (* C H(, o1) by (8)

0 * H(, Oal).

We claim that under condition (2), H( Oal) 0. For every 0-closed (n p, 0)
form q), one has

{ * 1, Oq) a A by Stoke’s Theorem

-a.. A

0 by (2)

which proves Oa2 Oa. It is easy to check that a2 A Or 0 on b by
observing that ON, Oa belongs to the domain of the LZ-adjoint operator *of 0, thus its "normal part" vanishes on the boundary. Ts justifies step (ii)
which allows one to have a 0-closed extension of a and hence completes our
alternative proof to Theorem 1.
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