A SIMPLIFICATION OF ROSAY'S THEOREM ON GLOBAL SOLVABILITY OF TANGENTIAL CAUCHY-RIEMANN EQUATIONS

BY

Mei-Chi Shaw

In a recent paper by Rosay [6], the global solvability of the tangential Cauchy-Riemann complex $\bar{\partial}_b$ on the boundaries of weakly pseudo-convex domains is studied. He proved the following theorem:

THEOREM 1. Let Ω be a weakly pseudo-convex domain in C^n with smooth boundary b Ω . Assuming $n \ge 2$ and $p \le n$, the equations

(1)
$$\overline{\partial}_{b}u = \alpha$$
, where α is a smooth $(p, n-1)$ form on $b\Omega$,

has a smooth solution u if and only if α satisfies

(2)
$$\int_{b\Omega} \alpha \wedge \Phi = 0 \quad \text{for every } \overline{\partial} \text{-closed } (n-p,0) \text{ form } \phi.$$

The same result for *strictly* pseudo-convex domains has been proved by Henkin in [2] using the integral representation for the $\bar{\partial}$ operator.

In his paper, Rosay also noted parenthetically that, following the work of Kohn and Rossi [5] and Kohn [3], the necessary and sufficient conditions for the solvability of the equations

(3)
$$\partial_b u = \alpha$$
, where α is a smooth (p, q) form on $b\Omega$ and $q < n - 1$,

are

(4)
$$\bar{\partial}_b \alpha = 0$$

Rosay's method for proving Theorem 1 is to use the solution of the $\bar{\partial}$ -Neumann problem in an ingenious way. However, it is not the most direct one. In this note we shall show that, with a simple argument of integration by parts, Kohn and Rossi's method can be directly extended to (p, n - 1) forms, thus providing a unified approach to the solvability of equations (1) and (3).

Received October 11, 1983.

^{© 1986} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

MEI-CHI SHAW

Let us first review how one can apply Kohn and Rossi's result to solve (3) under condition (4). Condition (4) allows one to extend α to a $\bar{\partial}$ -closed form $\tilde{\alpha}$. On a weakly pseudo-convex domain, there exists a smooth \tilde{u} (see [3] and [4]) such that $\bar{\partial} \tilde{u} = \tilde{\alpha}$ and the restriction of \tilde{u} to the boundary gives a solution of (3). More specifically, assume r is the defining function of Ω , i.e., $\Omega = \{x | r(x) < 0\}$ and r = 0 on the boundary.

(i) Extend α to a smooth form α_1 on Ω such that $\alpha_1 \wedge \overline{\partial}r = \alpha \wedge \overline{\partial}r$ on $b\Omega$. (ii) Set

(5)
$$\alpha_2 = - * \partial N \overline{* \overline{\partial} \alpha_1}$$

where *n* is the $\bar{\partial}$ -Neumann operator on (n - p, n - q - 1) forms and * is the Hodge star operator. Then by the result of Kohn and Rossi [5], for q < n - 1, one has

(6) $\overline{\partial}\alpha_2 = \overline{\partial}\alpha_1 \text{ on } \Omega, \qquad \alpha_2 \wedge \overline{\partial}r = 0 \text{ on } b\Omega.$

(iii) Set
$$\tilde{\alpha} = \alpha_1 - \alpha_2$$
. Then
 $\bar{\partial}\tilde{\alpha} = 0 \text{ on } \Omega$, $\tilde{\alpha} \wedge \bar{\partial}r = \alpha \wedge \bar{\partial}r \text{ on } b\Omega$.

Then by the result of Kohn, one can find a smooth \tilde{u} such that $\bar{\partial}\tilde{u} = \tilde{\alpha}$ and the restriction of \tilde{u} to $b\Omega$ gives us a smooth solution of (3).

We note that the above argument, as in Rosay's paper, assumes the unproven existence of the $\bar{\partial}$ -Neumann operator N on (n - p, n - q - 1) forms on a weakly pseudo-convex domain in general. Kohn [3] has proven that the weighted $\bar{\partial}$ -Neumann operator exists and the proof should be limited to the weighted $\bar{\partial}$ -Neumann operator and weighted L^2 space. However, since the arguments are similar with or without weight, we follow Rosay in assuming the existence of N on (n - p, n - q - 1) forms when q < n - 1 for the sake of simplicity in presentation.

The three steps (i), (ii) and (iii) can also be extended to the case when α is a (p, n-1) form and satisfies (2). The only part that needs justification is step (ii). The $\bar{\partial}$ -Neumann operator for the (n-p,0) forms must exist and the α_2 defined by (5) must satisfy (6). A crucial observation is that if the $\bar{\partial}$ -Neumann operator on (n-p,1) forms (denoted by N_1) exists, then the $\bar{\partial}$ -Neumann operator on (n-p,0) forms (denoted by N_0) can also be defined (see Folland and Kohn [1] Theorem 3.1.19 and the remark after that). In fact, N_0 is defined by

(7)
$$N_0 = \vartheta N_1^2 \bar{\vartheta}$$
 for smooth $(n - p, 0)$ forms

and

(8)
$$\vartheta \bar{\vartheta} N_0 = I - H$$

where ϑ is the adjoint operator of $\overline{\partial}$ and H is the Bergman Projection operator from square-integrable (n - p, 0) forms into square-integrable $\overline{\partial}$ -closed (n - p, 0) forms.

466

We prove that (5) satisfies (6) in the following way. Using the relations $\vartheta = -* \vartheta *$ and ** = I, we have

$$\begin{split} \bar{\partial}\alpha_2 &= -\bar{\partial}\left(\ast \partial N_0 \overline{\ast \partial} \overline{\alpha_1}\right) \\ &= \ast \overline{\partial} \bar{\partial} N_0 \overline{\ast \partial} \overline{\alpha_1} \\ &= \ast \left(\ast \overline{\partial} \alpha_1 - \overline{H(\overline{\ast \partial} \alpha_1)}\right) \quad \text{by (8)} \\ &= \bar{\partial}\alpha_1 - \ast \overline{H(\overline{\ast \partial} \alpha_1)} \,. \end{split}$$

We claim that under condition (2), $H(\overline{* \overline{\partial} \alpha_1}) = 0$. For every $\overline{\partial}$ -closed (n - p, 0) form ϕ , one has

$$\langle \overline{\ast \,\overline{\partial} \,\alpha_{1}}, \phi \rangle = \langle \vartheta \ast \overline{\alpha}_{1}, \phi \rangle$$
$$= \langle \ast \overline{\alpha}_{1}, \overline{\partial} \phi \rangle - \int_{b\Omega} \overline{\alpha_{1} \wedge \phi} \quad \text{by Stoke's Theorem}$$
$$= -\int_{b\Omega} \overline{\alpha \wedge \phi}$$
$$= 0 \quad \text{by (2)}$$

which proves $\overline{\partial}\alpha_2 = \overline{\partial}\alpha_1$. It is easy to check that $\alpha_2 \wedge \overline{\partial}r = 0$ on $b\Omega$ by observing that $\overline{\partial}N * \overline{\partial}\alpha_1$ belongs to the domain of the L^2 -adjoint operator $\overline{\partial}^*$ of $\overline{\partial}$, thus its "normal part" vanishes on the boundary. This justifies step (ii) which allows one to have a $\overline{\partial}$ -closed extension of α and hence completes our alternative proof to Theorem 1.

References

- 1. G.B. FOLLAND and J.J. KOHN, *The Neumann problem for the Cauchy-Riemann complex*, Ann. of Math. Studies, No. 75, Princeton University Press, Princeton, N.J., 1972.
- 2. G.M. HENKIN, The Lewy equation and analysis in pseudoconvex manifolds, Russian Math. Surveys, vol. 32:3 (1977), pp. 59–130.
- 3. J.J. KOHN, Global regularity for $\overline{\partial}$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., vol. 181 (1973), pp. 273–292.
- 4. _____, Methods of partial differential equations in complex analysis, Proceedings of Symposia in Pure Math., vol. 17 Amer. Math. Soc., Providence, R.I., 1977, pp. 215–237.
- 5. J.J. KOHN and H. ROSSI, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., vol. 81 (1965), pp. 451-472.
- 6. J. ROSAY, Equation de Lewy-résolubilite globale de l'éguation $\partial_b u = f$ sur la frontière de domaines faiblement pseudo-convexes de C^2 (ou C^n), Duke Math. J., vol. 49 (1982), pp. 121–128.

TEXAS A & M UNIVERSITY COLLEGE STATION, TEXAS

University of Houston-University Park Houston, Texas