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Introduction

Let

(1) P’V" /. a(x y)P,,,(a; x, y)Pm(b; x, y)f(y) dy
C(a, b" f)(x) Ji. ix yl.+M-2

where

Pm(a,x,y) =a(x)- 1E -df..a(’)CY)( x Y)’

and M m + m_. In this paper we establish the inequality

(2) IlC(a, b; f)lip "< CpllVml-lallBMOllVm2-1bllBMollfllp, 1 < p < ,
where f satisfies certain conditions and IIv mall BMo Ell=lla()llmo. BMO
denotes the space of functions of bounded mean oscillation on Rn.
The first result in this direction was established by Coifman, Rochberg, and

Weiss [7] where it was shown that the commutator of the Hilbert transform
and multiplication by a function A is bounded on LP(R), 1 < p < o,
providing A is in BMO. The result for a single remainder of order 2 was
proved by the first author in [3]. The methods used here are extensions of
those in [3]. The main differences are: (1) a generalization of a basic estimate
of Mary Weiss to Taylor series remainders (our lemma); (2) the boundedness
of operators similar to C(a, b; f) when a and b have appropriate derivatives
in zq(Rn) (see [2]); (3) a more complicated partition of the operator due to the
presence of products and the fact that the order of the remainders is arbitrary.

Finally we note that the result proved here holds for any finite number of
remainders. For simplicity we give the proof here for the case of two
remainders. The authors wish to point out that while going from one re-
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mainder to a product of remainders presented no major obstruction in the
present case, this is not always so. For example, the reader should compare the
proofs in [4] for the commutators [A, DH] and [B[A, D2H]]. It is also of
interest to point out that the methods developed by Coifman and Meyer [5]
apply only to commutators with one remainder. Finally, we note that the
result from [2] used in this paper is a non-trivial extension of the single
remainder case in [1].

Preliminaries

Throughout this paper we will work in Euclidean space Rn. Let a

(c an) denote a multiindex and let [a[ al + + an denote the order
of ct. If b is a smooth function on Rn, b() or b will denote the partial
derivative

"1 t"2

Let P,,(b; x, y) denote the mtla order Taylor series remainder of b at x
expanded about y. More precisely

(3) Pm(b;x, y) b(x) _, b()(Y)a! (x- y)

where

if! O1!O2! On! and (x y)a (x yl) al (x yn) a".

Let EI denote the Lebesgue measure of a measurable set E c Rn. In this
paper Q will denote a cube with edges parallel to the co-ordinate axes and if b
is an integrable function on Q, mQ(b) will denote the average of b over Q i.e.,
IQl-lfo_b(x) dx. A locally integrable function b is said to be of bounded mean
oscillation, b BMO, provided there exists a constant C such that

IQI b(x) mQ(b)l dx < C

for every Q. More generally, for 1 < q < o, we let

(4) Sqb(x) sup Ib(t) mQ(b)l qdt
xQ

Then it is well known (for example, see [8]) that b BMO implies Sqb
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L(Rn). If b is a function with mth order derivatives in BMO, we let
Sqm ESq(b)(x) where the sum is taken over all a with lal rn. We will also
use the following L p, t9 > 1, version of the Hardy-Littlewood maximal
function

Apf(x) sup ]f(t)l p dt
xQ

Finally we will let C be a constant that may vary from line to line.

Statements of results

Our main result is the following"

THEOREM. Let be homogeneous of degree zero, satisfy l2(x) (Y)I-<
Clx- Yl for Ixl- [yl-- 1, and have vanishing moments up to order M- 2
over the unit sphere in R. Let f LP(R"), 1 < p < , and let a and b be
functions with derivatives of order rn 1 and m 2 1 respectively in BMO.
Then if C(a, b; f) is defined by (1), we have

(6) IIC(a, b; f)llp -< CpllXZm’-Xall,MollVm-bll,ollfllp

We introduce the maximal operator

(7)
e,,,,(a; x, Y)em2(b; x, y)f(x y)f(y) dy

C,(a, b; f )(x) sup f Ix yln+M-2e>O "[x-y[>e

The theorem above follows by standard arguments from the following "good ?"
estimate on the maximal operator.

MAIN ESTIMATE. For > 0 sufficiently small,

x Rn" C,(a, b; f)(x) > 3, sqml_,a(x)Sqm2_,b(x)Apf(X ) <

< cyrl( X Rn" C,(a, b; f)(x) > X

where 1/p + 1/q 1/r and q > max(n, p’) where 1/p + 1/p’ 1.

The pointwise estimate

In proving the main estimate one analyzes the operator by writing

C(a, b, f) C(a, b; fl) + C(a, b;/2)



448 JONATHAN COHEN AND JOHN GOSSELIN

where fl is supported on a cube Q and f2 is supported on the complement of
Q. The estimate for C(a, b; fl) (see (17) and (26)) is obtained from the
theorem of Cohen and Gosselin on multilinear singular integrals [2]. The
estimate for C(a, b; f2) is obtained from a pointwise estimate for the Taylor
series remainder Pm(a; x, y) in terms of Lp averages of the mth order
derivatives of a over cubes containing x and y and having volume comparable
to Ix- yl n. This estimate generalizes a lemma of Mary Weiss which in one
form states

(9) 1 [va(y)lqdy[a(x) a(y)[< Cn E IQ(I Y)I (x y)

where Q(x, y) is the cube centered at x with edges parallel to the axes and
having diameter 2v--lx y]. (For one version of this lemma see C.P. Calderon
[6, page 145]). For our purposes we prove the following"

LEMMA. Let b(x) be a function on R with m
where q > n. Then

th order derivatives in Lq(Rn)

IP(b; x, Y)I -< C,.Ix yl m
i/qa

ib(t)lqdtIO( y)l (x, y)

where Q(x, y) is the cube centered at x with edges parallel to the axes and
having diameter 5v%-[x Yl-
The estimate for C(a, b; f2) is somewhat technical.~ The prim_ary term is the

first integral in (28). The cases of e -- diam Qj and e >> diam Qj. are handled
separately. In each case, k(x, y)- k(xo, y) is written as a sum of several
terms. The pointwise estimate is used repeatedly.

Proof of the lemma We use induction on m. For m 1, the result is that of
Mary Weiss cited above. We now assume the result is valid for 1 < j < m 1.
Let z be on the perpendicular bisector of the line segment from x to y and
such that the angle betwen the line segment from z to x and the line segment
from x to y is < rr/4. Then

(10) Pro(b; x, y) P,,(b; x, z) + P,,(b; z, y)

+ E (x-y)"
a! P,,-II ( b; z, y ).

0<lal<m
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We apply the induction hypothesis to each term in the sum in (10) and obtain

(ll) E (x y)
ba! Pm I1( "z,y)

O<lal<m

1

0<lal<m
x -yllllPm_ll(b"; z,

<--CnE
O<lal<m

1
iillz m_[a-.IX --Y

1 fQ [ba+fl(s)lqds) 1/q

]O(z, y)l (z,y)

<- CIx-ylm E ( 1- fQ Ibm( s
Il=m

IO(z,y)l (,y
)l q ds )

l/q

It is easy to check that Q(z, y) c Q(x, y) and IQ(z, y)l > 2-nlQ(x, Y)I. This
permits us to replace Q(z, y) by Q(x, y) in (11) and obtain

(12) E (x -y)"
,! em_o(,; z, y)

O<lal<m

< CIx yl
13’l--m

IQ(x, y)l (x,y

Let S denote the unit sphere in Rn. Let z x + [z x[o where o Sn_ 1,

and let y z + [y- z[o’ where o’ S,_1. Then using the integral form of
the remainder, we have

(13) Pm(b;x,z)+Pm(b;z,y)

n(fo’ -16oE ". OOa
x lom ( X + 1060)do

Taking absolute values in (13) and averaging over appropriate o’s and (o’)’s
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on S (call these sets 2 and f’) we have

(14) IP(b; x, z) + P(b; z, Y)
m ( fufoX-ylpm-Xlb(x + po)l dp do

+ f folX-ylpm-X[b(y po’)l dp do’)
By symmetry we consider only the first integral in (14) wch we write as

Ix-Yllb(x + pro)[qpn- dp d

x --Y -n)q’+n-1x Ip(m dp do

(fs, fo -yllba )l/q
_
C Ix (x 4- )lq"-1 dd Ix- yl m-’/q

-1

1
ib()lqdn_< cl yl I(x, y)l (x,

Summing (15) over I1 m and combining this with (12) the lemma now
follows.

The good X inequality

We now turn to the proof of the main estimate (8). Using a Whitney
argument we write

( C,(a, b; f)(x) > h }

as a union of cubes (Qj } with mutually disjoint interiors and with distance
from each Qj. to Rn\ U2Qj. comparable to the diameter of Q2. It now suffices
to prove the main estimate for ea.ch Qj.. There exists a constant C C(n)
such that~ for each j the cube Qj with the same center as Q2 but with
diam Q2 C(n)diam.Q2 intersects Rn\U2Qj. Thus for each j there exists a
point x0 xo(j) Q such that C,(a, b; f)(xo) < h.
We now fix a cube Qj., and assume there exists a point z z(j) with

sqml_l(a)(z)gqm2_(b)(z)Apf(Z ) <_ yX.

(If no such point exists, the result is trivial for Q.) Let Q Q and write
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f- fl + f2 where fx fx-j-
f2 separately.

We now make appropriate estimates on fl and

The fl estimate. We first note that

4

C.(a, b; f l(x) < E C(a, b; f l(x)
j=l

where

b;

sup
e>O

C.(a, b; f)(x)

Pml_x(a; X, y)Pm2_l(b; x, y)(x -y)f(y) dy

C3.(a, b; f)(x)

1

C4.(a, b; f)(x)

sup
e>0 -yl>e

1

iBl=m2_

sup
e>O

E
lal=ml-1
Ifll=m:-I

Ix -Yl n+M-2

sup
e>O

Pm2_x(b; x, y)(x y)’f(x y)a’(y)f(y) dy

Ix -yl "+M-2

Pm_l(a; x, y)(x y)fl"(x y)bt(y)f(y) dy

Ix yl "+ 4-2

flx-yl> Ix yl n+ M-2
(x y)’+ta(x y)a’(y)b(y)f(y) dy

We note that if a and b have derivatives of orders m
respectively in Lq(Rn), q sufficiently large, then

(17) IlC,J(a, b; f)llr C( Ila’llq
[al=m-I

1 and m 2 -1

for 1 < j < 4 where 1 > 1/r 1/p + 2/q. For j 1,2, 3, this follows from
[2] while for j 4, the result follows from standard Calderon-Zygmund
theory (see [S]).
We now choose a C0 function q such that qg(x) 1 for x Qj., qo(x) -= 0

for x Qj, [q(x)l < 1 for all x, and for any multiindex a with [a] < M,

](p"(x)] _< C(diam jj)
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We note that C is independent of j. We now define

( 1(18) a,(y) Pm-I a(.)- E -d-f..mo,(a’)(.)’; y, z q)(y),

b(y) =- 1%_ b(.)- E Nme(b)(.) y, z (y).
IBI--m-i

We note that a and b have support in Q.. We now estimate the derivatives
of order m 1 of a. Let be a multiindex of order m 1. Then

(9

Y(Y) E ’ m-I a(.)- E -.mo.,(a)(.) y zaqo
,=/x+ lal=ml-1

y=/x+v lal=ml-1

From the lemma we have

(20) Pm,_l_l/xl - a(.) E -aT..moj(a)(.) y, z
}al=ml-1

<- flY z[ mx-l-ltl

( 1 fQ la(l)(x)- mQj(a())lqdX)x/qE IQ(,)I (,Ix/[=m1-1

< Cly zl m’ -1-ItlS q (a)(z)

From the assumptions on p, we have Ip()(y)l _< Cly zl -I1. Combining this
with (20) we have for [3’[ ml 1,

(21) aL’(y) E q,,Sqml-l(a)( Z )
y=+

<_ CSqm,_l(a)(z).

Since a

(22)

has support in Qj, we finally obtain, for 11- ml 1,

]]allq--< CSqmx_l(a)(z)ljjl l/q.

Similarly, for Il- m
_

1 we have the estimate

(23) Ilbllq _< csq_,(b)(z)[l 1/q.



A BMO ESTIMATE 453

It is easy to see that

We observe that for y Qj,

(25)
Pm,(a; x, y) Pm,(em,_,(a; (.), z)qo(.); x, y)

Pro, Pro,-1 a(t) mQ(a())t (.), z (.); x, y
lal=ml-1

and likewise, P+(b; x, y) P+(b+(.); x, y). It now follows that for x

C,(a, b; fl)CX) C,(a, b; f,)Cx).
Thus from (17), (22), (23), and (24) we now have

(26) ix Oj" C,(a, b;/1)(x) > fix

=ix Q" C,(a, b; f,)Cx) > nxl
4, lx ; C(a’ ’ fl)(X) >

IIc(a, b; f)[1
j=l

lal m Ifll m2-1

This completes the estimate on fl-

The f2 estimate for e diam 0j. Let K K(n) be a large positive integer
depending only on n. The estimate for f2 is split into the two cases

diam 0s. <e < K(n)diam 0 and e > K(n)diam 0j..
The case of e < diam Qj. is ignored since f2 has support outside Qj.. Let

1
aj(x) =a(x)- E -.. mQ,(a)x‘

lal=ml-1
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and bi(x b(x) F.IBI=m2_I(1/B!)mQj(b)xB. We now set

P,,,,(ad; x, y)Pm=(bj; x, y)a(X y)
(27) k(x, y)

Ix yl+-

We now choose xo in Q. with xo R’\ UQ and for x Q we write

(28) IC(a, b; f)_)(x) C(a, b; f=)(x)

< flx-yl> (k(x’ y) k(xo, y))f=(y) dy

f k(x, y)f(y) dy
<lx-y I<- C

f k(xo’Y)f2(y)dy

+ fix k(xo, y)f_(y) dy
-Y[ >

In the last integral we write f= f-fl and incorporate the fl part of this
integral into the third integral after enlarging the region of integration to

diam 0j < [Xo- Y[ < K(n)diam
Here K(n) is chosen to be large enough to insure that the ball centered at )c o
with radius K(n)diam 09 contains Qg. We finally obtain

(29) ICE(a,b; f )(x)l < f [k(x, y)- k(xo, y)] f=(y) dy
"Ix --y[>

(x) aR (x0)

+C(a,b;f)(o)l
where R(.) diam ]. y] k(n)diam . The last integral is bounded
by since xo UQ. The middle integrals are error terms which we will
estimate later. We now deal with the first integral in (29). We have

(30) (, y) (o, )

a(Xo -)
Ixo-Yln+M-

a(Xo
+Pml(aj; Xo, y)[em(bj; x, y) em(bj; Xo, y)]

[Xo_ y[ 2

(x, o, y) + (, o, y) + (x, o, y).
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For Ix Yl > e, standard arguments imply

(3) f(x y) 2(xo Y)
Ix -yl "+M-2 Ixo-yl"+M-2

<c Ix Xo[
Ix

We now write

(32) flx ekl(X, Xo, y)f(y) dy kl.(x, xo, y)f(y) dy

where

(33) kll(X Xo, y) Pm_l(aj; x, y)Pm2_l(bj; x, y)

e(x-y) e(Xo-y) ]Ix yl "+-2 ix- yl.+a-2

E (x y)’a},(y))pm l(bj.x y)
a=ml-1

a(x-y) a(xo-y) ]Ix yl "+m-2 IXo yln+M-2

kt3(x, xo, y) P,,,l_t(aj; x, y)(
a(x y)x

ix yl,+M-2

k14(X xo, y) (
__

(x Y)’a}’) ) ( (x Y)bJ()(y))ot (y) E ,
a=ml-1 fl=m2-1

a(x-y)
X

Ix -y

We estimate these integrals separately. We have using the lemma and (31)"

(34)

fix kxl(X’ x’ Y)f(Y) dy

<Cdiam(O+/)fx IPma-t-!a;x’-Yl )
-yl>e X Yl ml

P,,,=-I(b9; x, Y)
x -yl m2-1

IfCY)l
Ix yl "+1

dy
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< C diam(Oj)

-,>
_

I(,)1 (x,,

IQ(x y)l (x) Ix fl+1 dy
fl=m2-1 ,y

Replacing me(a) by mo(x,y)(a a) and likewise for b() and then using an
estimate from [3, p. 695, Lena 2.2] we obtain

(35) fix kll(X’ x’ y) dy < CSqm,_l(a)(z)Sqm:_l(b)(z)diam(Oj)

1 + log Ix y.I If(y)l
diam Qj

-Yl >e iX yln+l
The last integral can be estimated as

o
1 + log diamOj

diam(Oj) 1f,,=< [x-Yl < 2v+l IX y[n+X. diam(J) fl: x!f(y)ldy-< (+ 2) (5-7- _,+

If(y)l
(36)

2v 2v+ 1g 2 llf( y)l p dy
v=l ( )n -Yl <

<__ C’Apf(Z).
Thus we obtain

(37) flx-yl>ekll(X’ x’ Y)f(Y) dy < CSqml_l(a)(z)Sqm2_l(b)(z)APf(z)
< Cy,.

For the next integral, for q > p’ we have

(38)

flx-yl>?x(x’x’ y) dy

1

[al=ml--1

fix
[a(")(y) mQ(a(a)) Ilem_l(a,; x, y)IIx Xo[[f(y)[dy

-yl>. Ix yl n+m
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1 sq (b)(z)Apf(Z)m2-1

51
(v + 2) 1 (, (a (’

q
1/q

2" 12"+lOj[ +0,
a (y) ma, ) dy

1
< C

_
-.Sqm:_(b)(z)Apf(Z)

[al=m-I

o ( f21 )
a/q

__v
(v+2) ’) dy

v=l

CVX.
A completely silar argument will give us the same estimate for
[fl_yl>kl(X, xo, y)f(y)dy[. Finally, we note that the same estimate for
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Iflx_yl>k14(x, xo, y)f(y)dy follows by an argument analogous to the one
above except that both the a and b terms must be treated in a manner similar
to the way in which the a terms were treated above. The details are left to the
reader.

Returning now to (30), we now deal with the second term involving
k2(x, xo, y). A similar argument will apply to the last term involving
k3(x, Xo, y). We use the following identity (see [1]).

(39) P,,,(aj; x, y) P,,x(aj; xo, y)

Pm,(aj; x, Xo) + E (x- Xo)’*
0<ll<mx

Pml-lOq(aa); Xo, Y)

Pm-l(aS; x, Xo) + E
0<lal<mx-1

Pml_lal(aSa); x0, Y)

+ y, (x- Xo)’aj,)(y )Or!
[al=mx-1

Each of the three terms above can now be used to write k2(x, xo, y) as

k2(x, Xo, Y) + k22(x, Xo, Y) + k23(x, xO, Y).

We now estimate each of the corresponding integrals separately. We have

(40)

fix k:n(x’ x’ Y)f2(Y) dy

flx_yl> ix0 yl,+t-2
Pml_(a; X, xo)Pm2(b; x, y)a(Xo y)f(y) dy

’(x-y[> IX y 1,+ M-2
Pm,_l(aj; x, xo)Pm2_l(bj; x, y)a(x0 -y)f(y) dy

+C

Pm,_l(aj; x, xo)b})(y)(x y)a(x0 y)f(y) dy

Ix -yl "+t-2
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The first integral in (40) is majorized by

Pml_l(aj; x, Xo)
(41) CIx xolflx_yl> X XollX yl m1-2

Pm2-1(bj; x, Y)

< csqm,_l(a)(z)Sqm2_l(b)(z)Apf(Z )

< C’l.

If(y)ldy
]x

Each integral in the sum in (40) is majorized by

(42) Clx xolflx_y[>
Pml_l(aj; x, Xo)

Ix xollx Yl ml-2
Iba)(Y) llf(y) dy

IX yl n+

<_ Cgqm_l(a)(z)gqm=_l(b)(z)Apf(Z )

We note that each of the above estimates follows from the same type of
argument used in estimating the integral with k12 above. We now estimate the
integral with k22(x, x0, y). We have

(43)

fix k22(x’ x’ Y)f2(Y) dy

1

0<[al<m

Pm,_l,l(a5); xo, y)Pm2_,Cbj; x, y)(x Xo)’(Xo- y)f(y) dy

+C
0<lal<mt

Pmx-i,l(aS’); Xo, y)(x Xo)’(x y)a(xo y)bl)(y)f(y) dy

Ix -yl



460 JONATHAN COHEN AND JOHN GOSSELIN

We now estimate I2 by breaking up the first remainder. We have

(44)
1

I2 < C .lx- x0l
O<lal<ml

eml-1al-21. (a;a); Xo, Y)
-yl> Ixo Yl

Pm2-x(bi; x, Y)
Ix yl m2-1

1
+ c F

O<ll<mx

1

il=mFlal_ -.fIx X0l

Pm:-(bj; x, Y)
IX yl m-I

laS"+’>(y) lJ f(y) dy

Ix -Yl "+1

If(y)ldy
Ix -Yl "+1

By familiar arguments, each of these integrals is bounded by

Sqm_x(a)(z)Sq_l(b)(z)Apf(z < cyX.

We now estimate I again by breaking up the first remainder. We have

(45)
1

Ix- xolI < C Y’
0<l,l<m
Ifll=m2-1

-]ot12_l(aS’}; xo, Y)
-yl> Ixo Yl ml-I’l-i

Ib}t(Y)llf(y)l dy

Ix yl "+

1+ c E
O<lal<mx
IBl=m2-1

1

fx
la;"++>(y) II+)">(y; II:(y)

@.X
-yl > Ix yl "+

Again by familiar arguments each of these integrals is bounded by

CSqm,_l(a)(z)Sqm_l(b)(z)Apf(Z ) < C"/,.

This completes the estimate of the integral in (43) involving k22(x X0, y). The
same estimate holds for the integral involving kz3(X x0, y) by the above
argument with the roles of a and b interchanged. This now completes the
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estimate of the first term in (29). To summarize, we have shown that

(46)
yl>

[k(x, y) k(xo, Y)] f2(Y) dy < CyX.

To complete the f2 estimate for diam Oj. < e < K(n)diam(Oj) it only remains
to estimate the error terms in (29). We will estimate the first error term while
the second one is handled similarly. We have

(47) fR Ik(x’ Y)f(Y)IdY
(x)

f, IPm,(a,; x, y)Pm(bj; ,,x’ -Y)(x Y)f(Y)
(x) Ix Yl +

Pm_l(aj; x, y)

(x) x ylm

Pm2-1(bj; x, Y)
ix y[m2-1

1

I1-- ml Ix Yl m2-1

1E
]Bl=m2-1

Pml_l(aj; X, y)

ix ylml-

+ E
Ifll=m2-1

la},(y)llf(y)l

Ib)a(y)llf(y)l

1 aJ’(y)I b’(Y)IIf(y)ldy
a!fl! fR(x) Ix

We note that for y R(x),

1<
K(n)diam(Qj)

Thus each error term is increased by multiplying by K(n)diam(Qj) on the
outside and increasing the exponent of Ix Yl under If(Y)[ by 1. After doing
so each integral can be estimated by familiar arguments used earlier. Each
error term is majorized by

CK(n )S,_(a)( z)Sqm,__( b )( z) Apf( Z).

It now follows that the entire error term is majorized by C(n)yX. In summary
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we have shown that for any x Qj,

(48) sup [C,(a, b; f2)(x) < CVh + .
diam (j

The f2 estimate for e > K(n)diam j. Let Q denote the cube with sides
parallel to the axes with the same center as Qj and diameter e. Let

1a,(x) a(x) Z -. mQ;(a)x’
Iotl= m

and let be(x ) be defined in a similar manner. Let

(49) k (x, y)
Pml(a*; x, y)Pm2(b,; x, y)2(x -y)

Ix -yl"+-2

Proceeding as before we have

(50) IC,(a, b; f)(x)l -< flx-yl>,[k*(x -y) k,(xo, y)l f(y) dy

+ f Ik(x, Y)f(Y) dY
<_lx-yl<_Ce

+ Ik(xo, y)f(Y) dY

fix k*(x’ Y)f(Y)
o-yl>e

The last integral in (50) is < X since x0 UQg. The same estimates hold for
the error terms since diam Q e. For the first term we must be careful since

Ix xol and diam Q are no longer comparable. In particular we no longer
have the estimate

[eml_l(ae; X, Xo) <_ C[x xolmx-lSqm_l(ae)(z)

since the ratio of ]Q,] to IQ(x, Xo) may become unbounded. To deal with
such terms we select a point x, such that Ix x,[ 2e. Then e < Ix0 x,] <
3e. We then write

(51) P,_(a; x, Xo) Pm,_(a; x, x) Pmx_l(a; Xo, x)_. (x- Xo)’pm (a xo x)a! -1-lal ’O<[al<mx--1
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The appropriate estimates now hold for each of these terms. For example, the
first term in the first integral in (40) can be estimated as follows:

()
Pm_l(a; x, x)Pm2_(b; x, y)(xo -y)f(y) dy

flx_.vl> IX yln+M-2

<_ CIx- x,l.,ixf -Yl >e Xel’--f ix ylm-i x Yl +
dy

( fix
Pm-l(b;x’Y) If(Y!l )< 2CSqml_l(a)(z) e

-yl> Ix- yl - Ix- yl +
dy

2csqm(a)(z)Sqma(b)(z)Apf(2 )
<_ C’T.

All the remaining estimates can be handled similarly. Ultimately, for e >
K(n)diam(Oj.), we obtain

(53) fix [k,(x -y) k(xo, y)] f(y) dy
-yl>e

From (50) it now follows that

(54) sup IC(a, b; fz)(X) <--
e> K(n)diam(Oj)

The estimates on f2 now yield the pointwise estimate C.(a, b; f:)(x) < +
C3,, for all x Qj.

Conclusion

We now choose 3’0 such that C’0 < 1 where C is the constant in (54). Then
by (26) with fl 1, we have, for 3’ < 3’0,

(55)

<

+

c’v’IQI
Ts establishes the good X inequality and completes the proof of the theorem.
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