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TWO SPACE SCATTERING AND
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MARTIN SCHECHTER

1. Introduction

Wilcox [27] showed that many wave propagation phenomena of classical
physics are governed by systems of partial differential equations of the form

OU(1.1) E(x)--
n 0U
AyOxj iAu
j’l

where x (Xl,... xn) fF_. an, u(x, t) is a column vector of length m describ-
ing the state of the medium at position x and time t, and E(x) and the Aj are
m m matrices with the following properties:

(a) E(x) is real, symmetric and uniformly positive definite.
(b) The A. are real, symmetric and constant.
From the point of view of spectral and scattering theory it is desirable that

the solution of (1.1) be of the form

U e-itHuo, UO(X ) U(x,O)

where H is a self adjoint operator. This would require that H be an extension
of E-XA. When E 1, one can easily obtain a self adjoint realization H0 of A
in ’= (L2)m using Fourier transforms. On the other hand, if E 1, the
operator E-1A need not be Hermitian on ". However, it is Hermitian on the
Hilbert space f’l with scalar product

(1.3) (u, o)1 fO(x)*E(x)u(x) dx,.

If E(x) is uniformly bounded, it can be shown that E-Ho is self adjoint on

’ (cf. [27]). However, when E(x) is unbounded, it need not be self adjoint.
In the present paper we give sufficient conditions on the matrix E(x) for the

operator E-A to have a self adjoint extension H on "1. We then study the
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spectrum of H and develop a scattering theory for it. In particular, we give
sufficient conditions for the wave operators to exist and be complete.

Let eij(x ) denote the elements of the matrix E(x), and let

p(x) (1 + Ixl )
Our first assumption is:

(I) There are constants a, C such that

(1.4) /flx
We have:

-Yl <1
lei(y) dy < C#(x)2a

THEOREM 1.1. Under hypothesis (I), the operator E-XA has a self adjoint
extension H on ,’.

Next we study the spectrum of H. It is easily checked that

(1.5) O(no) R.

We give sufficient conditions that the same hold for H. We let P0 be the
projection onto N(Ho) l and put F(x) E(x)/2. We have:

THEOREM 1.2. IfD(H)c
operator for some k, then

and (F 1)(Ho i)- kPo is a compact

(1.6) o(H) R.

Another way of stating the hypothesis of Theorem 1.2 is to say that
(F- 1)P0 is H0g-compact. Sufficient conditions for this to be true can be
found in [16].
Next we turn to scattering theory. Let J be a bounded linear map from

to (’t. We shall say that u D(W+(H, Ho, J)) if

(1.7) eitHJe-itHu --’> f in ’ as +

and we set W(H, Ho, J)u f.
First we have:

THEOREM 1.3. Assume

(1.8) (Ju)" =J(p)(p)

where J( p ) is a matrix function ofp which commutes with each Aj. Assume also
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that there are constants a > 1 and q, 2 q < o, such that

(1.9) (1 + Ix[)
Ix-el <1

IF(y) 112 dy HLq.

Then

(1.10) D(W+/-(H, Ho, J)) .
THEOREM 1.4. Let J J(x ) be a matrix function of x and suppose there is a

constant matrix Jo such that JoHo c HoJo and

(j jo)( Zo)- Po
is compact for some k >_ O. If D(H) c g’l and (1.9) holds, then

(1.11) N(Ho)J c D(W+(H, Ho, J)).

Now we strengthen our hypotheses on A. This will allow us to weaken our
hypotheses on E. We shall say that the system (1.1) has constant deficit if the
matrix

n

(1.12) A (p) E Ajpj

has constant rank for 0 p (Px,..., Pn) H Rn. Let S be the self adjoint
realization of (1 A)1/2 in L2, where A is the Laplacian in R. We shall prove
the following stronger version of Theorem 1.2.

THEOREM 1.5. If D(Sk) c t’ and (F- 1)s-gPo is a compact operator for
some k, then (1.6) holds.

COROLLARY 1.6. /f

f IF(y) 112 dy
-yl<l

is bounded and tends to 0 as Ixl oo, then (1.6) holds.

We also have the following generalization of Theorem 1.4.

THEOREM 1.7. Assume that (1.1) has constant deficit and that

(1.13) flx-yl <IF(y) [2 dy L.
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Let J J(x ) be a matrix function of x and suppose there is a constant matrix Jo
such that JoHo c HoJo and

(1.14) fix-el <IIF(Y)(J(Y) Jo)I 2
dy

is bounded and tends to 0 as Ix[ -+ oo. Then (1.9) implies (1.11).

Following Wilcox we shall call the system (1.1) uniformly progagative if the
roots of

(1.15) det(XI-A(p)) =0

have constant multiplicities and constant algebraic signs for real vectors
p = 0. (A uniformly propagative system has constant deficit.) For such sys-
tems we have:

THEOREM 1.8. Let (1.1) be a uniformly propagative system and let J satisfy
(1.8). If there are constants q, a satisfying

(1.16) 2<q< o, a>l
n-1

such that (1.9) holds, then (1.10) is true.

THEOREM 1.9. If (1.1) is uniformly propagative, then the hypotheses of
Theorem 1.7 can be weakened to allow (1.9) to hold for some q, a satisfying
(1.16).

Now we turn to the question of completeness. We shall say that the wave
operators W+/-(H, Ho, J) are complete if their domains contain a(H0) and
their ranges are dense in c(H). Here ’c(H) denotes the subspace of
absolute continuity of H (cf. [12]).

THEOREM 1.10. Assume that (1.1) is uniformly propagative and that (1.8)
holds. If D(lHo[ x/2) c .,Vfl, C c R(J), IE(x) 11 x/2 is S1/2-compact and,
for some a > 1,

(1.17) (1 + Ixl)f_y,<
then the wave operators are complete.

IE(y) lldY Z

THEOREM 1.11. Let (1.1) be uniformly propagative, and let the hypotheses of
Theorem 1.7 hoM. Assume in addition that D(lnol 1/2) c .,v,, Jo is invertible,
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IE(x) 1[ 1/2 is S1/2 compact and that (1.17) holds for some a > 1. Then the
wave operators are complete.

Theorem 1.1 will be proved in the next section while Theorems 1.2 and 1.5
are proved in Section 3. The remaining proofs are given in Section 5. In
Section 4 we present a new criterion for the existence of wave operators. It
generalizes the work of the author in [18],[19],[21],[22]. Subsequent to our
work in [18], [19], several authors generalized or simplified our results. These
include Simon [25], Kato [13], Davies [16], Enss [10], Ginibre [11] and
Combes-Weder [4]. Our present theorem (Theorem 4.1) generalizes all of their
results.

Spectral and scattering theory for uniformly propagative systems were
studied by Wilcox [27], [28], [29]. He proved the existence of the wave oper-
ators under the assumption

(1.18) E(x) 1 0(Ixl -) as Ixl --, o

for some a > 1. Completeness was proved by Mochizuki [14], Birman [2], Deic
[7], Suzuki [26], Yajima [30] under this assumption and various others. It was
proved by Schulenberger-Wilcox [23], Birman [3], Deic [8] and Schulenberger
[24] under the assumption

(1.19) f(1 / Ixl)/ le(x) ll2 dx <

for some fl > n together with various other stipulations. Deift [9] was able to
remove the other assumptions. Schechter [17] proved completeness under
assumption (1.9) with q oo and a > 1. This includes the other results. In all
of these results it is assumed that E(x) is bounded and J is the identity
operator. The author’s paper [21] was the first to allow E(x) to be unbounded.
For systems not uniformly propagative very little work has hitherto been done.
Avila [1] proved the existence of the wave operators under condition (1.19)
with fl 4 in addition to (a), (b) and the boundedness of E(x). Nenciu [15]
has considered eigenfunction expansions under the conditions that system
(1.1) has constant deficit.

2. The self adjoint extension

In this section we shall construct the self adjoint extension H of E-1A. If
A(p) is the matrix given by (1.12) and A is the operator on the righthand side
of (1.1), then (Au)= A(p)(p) for any test function u Cf, where
denotes the Fourier transform of u. We shall say that u D(H) and
Hu=f.. if uM’l and

(2.1) fO(p)*.4(p)a(p)dp (f v), v .,.
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Clearly f is unique. Since the bilinear form on the left of (2.1) is Hermitian,
the same is true of H. It is clear that H is an extension of the operator E-tA.
To prove that H is self adjoint on ’’1, consider the norm

(2.2) Ilull r sup
I(u, v)[

o Ilollx

and let Y be the .completion of ’= [L2] m with respect to this norm. We shall
show that Y consists of tempered distributions. Assume this for the moment,
and note that t" c ’c Y with continuous inclusions. We can define the
scalar product (u, o) for u Y and o A’ with the inequality

(2.3) I(u, v) II ull rll vll, u e Y, o e d’1.

If u Y, we can extend fi to apply to the Fourier transforms of functions in

’ with

(2.4) (,)=(u,o), uc Y, oc.gf’1.

Let F E1/2. Then F is a bijective map of ’1
implies

onto ’. Moreover, (2.2)

(2.5) IIFull r Ilull

for u d’. Thus we can extend F to a bijective map of onto Y satisfying
(2.5).
Now we turn to the proof of Theorem 1.1. Suppose u, f ’1 and

(2.6) (u, Ho)l (f o)1, o D(H).

By (2.1) this is the same as

f[a(p)O(p)]*a(p)dp (f v), v D(H)

This gives

(2.7) f(p)*A(p)a(p)dp (g, v), v D(H)

where g F(Ff) Y. Let 6a denote the space of rapidly decreasing func-
tions. We shall show that Sac D(H). By (2.7) this implies that

(2.8) fS(p)*[A(p),(p) g(p)] dp 0
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holds for v 5’. Consequently A(p)(p) g(p) is the Fourier transform of
an element in Y. Thus (2.8) holds for all v 5. Hence

(2.9) f(p)*A(p)(p) dp (g, v) (f, v), v

This shows that u D(H) and Hu f.
It remains to show that Y consists of tempered distributions and 5c D(H).

We do this by proving that there are constants C, k such that

(2.10) IIF,/,II -< c E sup [p(x)kDt’0(x)[
I1 <k R"

holds for all q 5. Once we have (2.10), we see that 5c’ and conse-
quently Y consists of tempered distributions. Also, if u 5, then A(p)(p)
is in ’. Hence the lefthand side of (2.1) is a bounded linear functional on
’. Thus there is an f "t such that (2.1) holds. Consequently u D(H).
To prove (2.10) we let S (1 A)t/2, where A is the self adjoint realization

of the Laplacian in L2. We note that (1.4) impes that there are constants
N, C such that

(of. [16, p. 10S]). Thus

IIFo-,/,ll _< c’ IID011 _< C"
1I2N

,, sup p(x)’/+lD’q,(x ) I.
Itl 2N

This implies (2.10), and the proof of Theorem 1.1 is complete.

3. Spectral theory

In proving Theorems 1.2 and 1.5 we shall use a few lemmas. We denote the
essential spectrum of an operator T by oe(T) (cf. [16]). Let o be the
restriction of Ho to R(Po) N(Ho)+/-. We have:

LEM.M 3.1. %(Ho) c %(o) U (0).

Proof.
that

If 0 e %(Ho) then there is a sequence {Uk) c D(Ho) such

(3.1) Ilull 1, uk.-.O, (, Ho)uk -> 0

(cf. [16]). Thus

X(1 Po)Uk (, Ho)(1 Po)Uk (1 Po)(h Ho)uk 0
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and consequently,

IIPoull 1, PouO,

Thus , oe(Ho) (cf. [16]).

(X- no)eoU= eo(X- Io)U o.

LEMMA 3.2. If r is an even integer and , is real, then

(3.2) M, XJH-j > (," + H).
j-0

Thus M, has a bounded inverse of , O.

Proof. We use induction on r. The lemma is true if r 0. Assume it is true
for r. Then

since

(3.3) 1 1x: + Xno + no >_ X:.
Forj < r we have

(3.4) IIHdull 2 < C(IIH[ull 2 + Ilul12), u D(H[)

LEMMA 3.3.

Proof. For any a > 0 we have

211noull 2= 2(no2u, u) < alln20ull 2 / a-Xllull 2

An induction down gives

An induction up now gives (3.4).

LEMMA 3.4. If the hypotheses of Theorem 1.2 hold, then

(3.5) oe(no) C (le(n) C) {0}
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Proof. Let , #: 0 be real. Then o(Ho). We may assume that k is a
positive odd integer. By the spectral mapping theorem Xk o(Hok) oe(Hok).
By Lemma 3.1 there is a sequence (vj) c D(Hok) N(Ho) +/- such that

(3.6) IIvll 1, o-0, (X- no)V --, O.

Now (Xk_ Hok) Mk_l(X_ H0), where M_I is given by (3.2). By Lemma
3.2, M_ has a bounded inverse. Thus

(3.7) (X Ho)v O

Note that v f’x and consequently it is in D(H). Moreover

(3.8) F(A- H)vj F(A- E-1no)uj- F-I(XE- Ho)vj
X(1 + F-X)(F 1)(H0- i)-Xeo(Ho i) vj + F-(X- Ho)vj.

Since

(Ho- i)
j-o

j (--i)k ’H

we see from Lemma 3.3 and (3.6) that II(no- i)%11 -< C for some constant
C. Thus there is a subsequence (also denoted by { vj }) such that (Ho i)vj
converges weakly. Since v- 0, we must have

(3.9) (Ho i) kvj 0

This together with (3.7), (3.8) and the hypothesis implies

(3.10) F(X H)vj --) 0

Moreover since

(F-1)vj= (F-1)(Ho- i)-Po(Ho- i) k

we see that Foj-.-O. Since

1 IIvll IIF-FoII <-IIF-XlIIIvII,
we see that h oe(H).

It is now a simple matter to give the following proof.
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Proof of Theorem 1.2. By (1.5) we know that oe(Ho) R (cf. [16]). Lemma
3.4 tells us that R {0} c oe(H). Since %(H) is a dosed set, we must have
oe(n) R. v1

In proving Theorem 1.5 we shall use:

LEMMA 3.5. If the system (1.1) has constant deficit, then there is a self
adjoint operator H such that D(H1) D(S), Poll1 H1Po Ho, and HIS
SH

Proof For p c Rn {0}, let /30(p) be the orthogonal projection of Cm
onto N(A(p)).L. Since the system (1.1) has constant deficit, the dimension of
R(,#o(p)) is constant. It is easily checked that/30(p) is analytic and homoge-
neous of degree 0. Put

(3.10) B(p) A(p) + Ipl(1 -/30(p)).

Note that B(p) is homogeneous of degree I and det B(p) 4= O. Thus there are
constants C > co > 0 such that

(3.11) c01pl lul -< IB(p)ul <- Clpl lul.

Hence B(p)t iff IPl X’. Define the operator H by

Thus u is in D(H1)iff B(p) ,. By (3.9),

(3.12) IlSull C(llnxull + Ilull) C’llSull.

Thus D(S) D(H). Itis easily checked that (Pou) 13o(p). Since

o(P)B(p) B(p)fio(p) A(p)

we see that PoH c: HxPo Ho.
Now it is a simple matter to give the next proof.

Proof of Theorem 1.5. By Lemma 3.5 we have

(Ho -i)-’Po (H- i)-kPo S-’Po[S(HI- i)-] k.

Since D(S) D(HO, and they are dosed operators, it follows that S(Hx
i)- is bounded. Hence the hypotheses of Theorem 1.2 are satisfied.
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Corollary 1.6 follows from Theorem 1.5 if we note that D(S) Hk,2. We
take k large and apply the results of [16]. ra

4. Existence of wave operators

In proving Theorem 1.3 we shall use an abstract theorem which we state and
prove below. A weaker form was proved by Schechter [19]. Several general-
izations of this have appeared. They are all special cases of our Theorem 4.1.
They are given as corollaries.

Let Ho, H be self adjoint operators on Hilbert spaces ’0, 9if, respectively.
Let J be a bounded operator from ’0 to ’. Set

(4.1) Uot e-itHu, V, e-itHv, W(t)u eitHJuot
For a particular element u .0 we assume that there are complex valued
functions f(h), g(,), a real number a and a function (t) from [a, ) to
such that:

(1)
(2)
(3)
(4)

(4.2)

(5)

D(g(H)*) is dense in ’.
u D(Ho) D[f(Ho)1.
W(a)u e D(g(H)).
For > a,

(Juot, Hg(H)*v) (JHouot g(H)*v) (dp(t), v),
v D(Hg(H)*).

The function g}(t) satisfies fa II (t)II dt < .
THEOREM 4.1. Under the above hypotheses the following conclusions hold:

g(H)W(t)u converges to some element h in Aa;(a)
(b)

limsupll W(t)f(no)u hll limsupll [g(H)J Jf(no)]uo, ll
t---} oo

(cl

limsupll [W(s) W(t)] f(Ho)ull < 2 limsupll [g(H)J Jf(Ho)]Uotll.
s, t’-- oo t--}

Proof.

(4.3)

We observe that for a < s < t,

(JUot, g(H)*vt) (Juo, g(H)*vs)

ifst{(Juoo Hg(H)*vo) (JHouoo, g(H)*vo))do

ft((O), vo)do, v D(Hg(H)*)
s
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by hypothesis (4). In particular, we have

(W(t)u, g(H)*o) (W(a)u, g(H)*o) + fat((o ), vo)do.

By hypotheses (3) and (5) we see that there is a constant C such that

(4.4) I(W(t)u, g(H)*v) CIIvll, v D(ng(n)*)

A density argument now shows that (4.4) holds for all v D(g(H)*). Thus it
follows that W(t)u D(g(H)) for > a. Moreover (4.3) implies

I(g(H)tW(t) W(s)]u, o)1 < Iloll ftll(o)ll do

for o D(Hg(H)*). Hypothesis (1) now gives

(4.5) f’ll(oIIg(n)[w(t) W(s)]ull )lldo 0

as s, ---) . This proves conclusion (a). To prove (b) and (c) note that

W(t)f(Ho)u eitn(jf(Ho) g(n)J)uot + g(H)W(t)u D

Let M be the set of those u ’0 such that W(t)u converges in ’. We
have:

COROLLARY 4.2. If in addition to the hypotheses of Theorem 4.1 we assume

(6) [g(H)S Jf(Ho)]Uot ---) 0 as ---) ,
then f(Ho) u M.

COROLLARY 4.3 (Combes-Weder [4]). Assume that there are a bounded
complex valuedfunction f(X ), an operator A from D(Ho) to a Banach space
a bounded operator B from to {" and a set D c D(Hof(Ho)) such that:

(i) f(Ho) on D has a range dense in D;
(ii) for u D, v D(H) we have

(4.6) (f(H)Jf(Ho)u, Ho) (f(H)JHof(Ho)u, o) (Au, Bo);

(iii) for u D,

(4.7) [f(H)J- Jf(Ho)]Uot---) 0;
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(iv) for each u D there is an a > 0 such that

(4.8) IIAuo,ll= dt < .
Then D c M.

Proof By hypothesis (i), we can replace u by f(Ho)u in (4.7). Thus
f(Ho)2U M for each u D by Corollary 4.2. The result now follows from
hypothesis (i). r

COROLLARY 4.4 (Ginibre [11]). Assume that

(4.9) IIE(CI)JE(Io)II 0 as III o

for each bounded interval 10 and that there is a dense subset D c ’’ac(Ho) such
that

(4.10) fllE(I)[nJ Jno]Eo(Io)Uotll dt < o

for each u D and bounded intervals I, 1o. Then c(Ho) c M.

Proof Let Io be any bounded interval, and let e > 0 be given. Let I be a
bounded interval such that ]]E(CI)JEo(lo)II < e. Let f()), g(h) be the
characteristic functions of the intervals Io, I, respectively. For u 9’ac(Ho), v

we have

(JEo(lo)uot, HE(I)v) (JnoEo(Io)Uot E(1)O)
(E(I)[HJ JHo]Eo(Io)uot v)

=(,(t),v)

For u .9’ac(Ho) we apply Theorem 4.1 to Eo(Io)u. Hypotheses (1)-(5) are
easily verified. From conclusion (c) we have

limsupl[ [W(s) w(t)l Eo(Io)ull
s, t oo

< 211 [E(Z)J Seo(o)] eo(o)ll Ilull
21lE(CI)JEo(Io)ll Ilull

< 2llull

Since e was arbitrary, we conclude that Eo(Io)u M. Since Io was arbitrary
we conclude that u
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COROLLARY 4.5 (Kato [13]). For Im z 0 let

(4.11)

C(z) S(z)J- JSo(Z).

OOllC(Z)Uotll dt <

then u M.

Proof. Put f(h) (z h)- in Corollary 4.3. Note that

(R(z)JRo(z)w, Hv) (R(z)JRo(z)How, v)
-(JSo(’)w, o) + (S(,)Jw, o)

---(C(z)w,o)

for w ’o, v D(H). Let D be the set of those u a’o
We note that

satisfying (4.11).

(4.12) C(z)uot 0 as oo, u D

To see this, let u D, and let

Ca " Uotdt u as a ---> O.

Then

IIC(z)o,ooll 11 C(z)Uo;,+odtll

< -S IIC(z)uo,lld, -" 0 aso

Since C(z) is bounded, we get (4.12). The result now follows from Corollary
4.3.

COROLLARY 4.6 (Davies [6]). Assume u D(Ho) and there are constants
a > 1, fl > 1 such that R(z)a[HJ- JHo]Ro(z)uot L1. Assume also that
there is a function F(X) such that F(X)I > 1 and F(A)I oo as I,1 --’ c,

and

limsupllF(H)JRo(z)auotll < c

Then u M.
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Proof. Setting f(z) (z ,)-a, g(z) (z A)-" in Theorem 4.1 we
see that R(z)W(t)Ro(Z)lu converges. For each bounded 1, (z H)aE(1) is
bounded. Consequently E(I)W(t)Ro(z)u converges as well. On the other
hand,

IIe(cI)W(t)Ro(z)tull < sup [F(,)[-XllF(n)SRo(z)a
CI

Thus W( )Ro(z) tu converges. Hence R0(z) tu M. Therefore u M. []

COROLLARY 4.7 (Enss [10]). Assume that g(H)[HJ- JHo]g(Ho)uot L
for every g C and every u such that u g(Ho)u. If there is a z such that
C(z) is a compact operator, the ,"c(Ho) c M.

Proof If C(z) is compact, the same is true of g(H)J Jg(Ho). We apply
Corollary 4.2 with f(X) g()) C, u .ac(H0) such that u g(Ho)u.
Note that hypothesis (6) holds. Hence M contains all such u. Since they are
dense in ",,c(Ho), the result follows.

COROLLARY 4.8 (Schechter [18], [19]). Assume that there are a Banach space

" and linear operators A from 9’o to and B from 3’ to ,f’ such that
D(Ho) c D(A), B is H-bounded and

(4.13) ( Juot ng)- ( Jnouot g) (auot ng)

holds for some u D(Ho) and all g D(H). If u satisfies (4.8), then u M.

Proof. Note that (4.13) implies

(4.14) [BR(5)]*Auot C(z)(z- no)uot.

Thus (4.8) implies that (z- Ho)u M by Corollary 4.5. Since M is a
reducing subspace of H0, we see that u M. t

5. Scattering

Now we prove Theorem 1.3 by applying Theorem 4.1. We note that

(Ju, Hv)t (JHou, v)
(Ju, HoO ) (FJHou, Fo)

(IF-t- FIJHou, Fv)
([1 t]Jnou, (1 + F)o), u D(Ho),v D(H).
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Let ,x( p),..., ,(p) denote the roots of

(5.2) det(?I- A(p)) =0

which do not vanish identically. We shall need the following result.

LEMMA 5.1. There exists a closed set N of measure 0 and measurable
functions ol(p),..., o,,(p) from Rn to Rm such that:

(a) The Xj(p) are analytic on CN R N with ,j(p) 4: O, X7 X(p) 4:0
there.

(b) The v(p) are analytic on CN and orthonormal in Rm for each p CN.
(c) [A(p) ,(p)]o(p) O, and every function u 9ff can be written in

the form
m

(5.3) (p) E wj(p)v(p)
j--’l

where ( w(p),..., win(p) ) .
Proof. This was essentiallly proved by Avila [1] and Wilcox [27], [28]. Avila

showed that the set where the ,:(p) vanishes has measure 0.
Wilcox [27] showed that the h.(p) are continuous and that their multiplici-

ties are constant on the complement of a dosed set of measure 0. He showed
how to construct the v:(p) on this complement. It follows from his work [29]
that the X:(p) and v:(p) are analytic there as well. The set of points where
X7 X(p) 0 is also dosed and of measure 0. o

Proof of Theorem 1.3. Let Q be the set of those u off which satisfy (5.3)
with the w(p) C(CN). This set is dense in ogg. Assume for the moment
that J J(p) C. Then we have

m

(5.4) [eitnJHou] ^= Y’ e-itx,(’3J(p)hj(p)wj(p)v.i(p).
j-1

Note that all components of this vector are in C(CN). By a lemma of Veselic
and Weidmann [31] for each real s there is a constant C such that

leitHJnoul <- Cltl-t(x) , Itl >- 1

where p(x) 1 + xl. Let q,(x) be a function in 5a such that (p)
C(CN) and (p) 1 on the support of a(p). Let V(y) IF(y) 112. We
are going to show that (1.9) implies

) 1/2(5.6) O(x) ’ fv(y)lq,(y x)[dy Zq.
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Assume this for the moment. Put h JHou. Then hot dPhot and conse-
quently hot *h or. Hence

I([F llh0/, v) < ffV(y)l/2lq(y x)hot(X)V(y)ldxdy

<_ ( ffv(y)l ,(y x)[[hot(X)12 dxdy)X/211q, lllloll

Now assume that (5.6) holds for a > 1, q 2. Take s a in (5.5). Then (5.7)
gives

II[F- 1]hotll -< CIIpV, II Itl -, Itl >- 1

where

(5.9) ) 1/2V,(x) fv(yllO(y x)ldy

This shows that the lefthand side of (5.8) is in L(Itl > 1). We can now apply
Theorem 4.1 to obtain the desired conclusion.
Next suppose (5.6) holds for a > 1, q oo. Take s in (5.5) so that

[ n ](5.10) s > max 1, 2(a- 1)

and let , satisfy

2s- 2(5.11) a-1 < ’ < 2s- 2a + n

Then we have

(5.12) .V,(x)2lhot(X) [2 dx

"} 2(s- a) (2s- 2a + n)v- 2s< Clt1-2 f(x. dx < Cltl

and

(5.13) V(x)lhot(X) I9dx Cltl-llhll.
>ltl

In view of inequalities (5.10) and (5.11), we see from (5.7), (5.12) and (5.13)
that the lefthand side of (5.8) is again in Z(ltl >_ 1). If (5.6) holds for
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a > 1, 2 < q < oo, the same result follows from interpolation. Thus by Theo-
rem 4.1 we see that (1.10) holds.
Now assume J(p) arbitrary. Since it maps into A’ it must be a

bounded function of p. For any u such that C and any e > 0 we can
find a matrix J(p) COo commuting with A(p) such that

flJ(p) Jx(p)121(p)12 dp < e2.

If we let

(5.14)
we have

W( J, t) eitHjeitHo,

II w(J, t)u W(J, )ullx
II w(J Jx, t) u IIx + II W(Jx, t) u W( Jx, ) u IIx
/ II W( Jx J, ) u

The first and third terms on the right are bounded by 211ull while the middle
term tends to 0 as t, oo by what has just been proved. Since such u are
dense in L2, (1.10) holds for J.

It remains to show that (1.9) implies (5.6). This follows from the next result.

LE 5.2. Let q(x) be a function satisfying I(x) l Cp(x)- for some
b > a + n, where a >_ O. If

(5.15) (x) f-yl <lh(y)ldy’
then for any p, 1 < p < o,

(5.16)

Proof Let

aCx) f Ih(y)q, Cx y) dy,
< Ix-yl <k+l

Ih(y)lo(y)dy

Since p(y) < p(x)p(x y), we know that

(5.17) ,(x) < 2"O(x)"(x).
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Let Zl(),..., z).) be points in the set k < Izl < k + 1 such that this set is
covered by the N(k) balls of radius 1 centered at the zj(. g). We know that
N(k) < Ckn-1. Now

< Ix-yl <k+l
Ih(y)p(y)p(x y)cl,(x y) ldy

N(k)

<- Co(k) E +
j’-I

Thus

The lefthand side of (5.16) is bounded by

The result now follows from (5.17).

Proof of Theorem 1.4. The operator Jo(i H0)- k is a bounded operator
from to ’1 and it satisfies (1.8). Thus

by Theorem 1.3. On the other hand R(Po)= ’ac(H0), the subspace of
absolute continuity of H0 (el. [12]). Thus

(5.18) eitHPou--. 0 in ", u ’.

By hypothesis, this implies

(J- Jo)(i- Ho)-kPoeitnoPou 0

This shows that

D(W+(H, Ho, J(i Ho)-kpo)) D(W+/-(H, Ho, Jo(i Ho)-Po)) .Yta

and

W+/-(H, Ho, J(i Ho)-Po) W+(H, Ho, Jo(i Ho)-/CPo)
Thus W(J, t)(i Ho)-Pou converges as + , where W(J, t) is given by
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(5.14). This means that W(J, t)v converges for v R(Po)N D(Hg). Since
this set is dense in R(Po) and II W(J, t)ll -< IIJII, we see that (1.11) holds. []

To prove Theorem 1.7 we note that its hypotheses imply those of Theorem
1.4 in the case of a system with constant deficit (see the proof of Corollary 1.6
in Section 3).

Proof of Theorem 1.8.
can replace (5.4) with

We follow the proof of Theorem 1.3. In this case we

r

(5.19) [e-itIJHou] ^= E e-itxj(’)J(P)j(P)Pj(P)(P)
jl

where r is the rank of the matrix (1.12) and the P.(p) are homogeneous
matrix functions of degree 0 (el. [27]). It was shown in [31] that there is a
dense set Q in such that each u Q satisfies fi C and for each u in Q
and each real number s there is a constant C such that

(5.20) le-"noJnoul < Cltl--<"-x)/2p(x), Itl > 1

We use this inequality in place of (5.5). If we use this in (5.7), we obtain

(5.21) II[F- 1]h0/ll < cIIpVll Itl --<-1)/2, Itl 1

in place of (5.8). Thus in this case all we need is a + 1/2(n 1) > 1, which is
the new inequality for a when q-- 2. If we now proceed as in the proof of
Theorem 1.3 we get the desired result via interpolation (cf. [17]). r

To prove Theorem 1.9, follow the proof of Theorem 1.4 replacing Theorem
1.3 with Theorem 1.8. Note also that the hypotheses of Theorem 1.7 imply
those of Theorem 1.4 (see the proof of Corollary 1.6 in Section 3).

In proving Theorem 1.10 we shall make use of the following theorem proved
in [2].

LEMMA 5.3. Let Ho(H) be a self adjoint operator on a Hilbert space
and let J be a bounded linear operator from ,Wo to ,’f’. Assume:

(I) There are a Hilbert space and linear operators A from :"f’o to : and
B from ’ to such that D(Ho) c D(A), D(H) c D(B) and

(5.22) (Ju, Hv) (JHou, v) (Au, Bv)r, u D(Ho), v D(H)
(II)
(III)

that

ARo(i ) and BR(i) are bounded operators.
There is an open subset Q of R with complement of measure 0 such

(5.23) limsup sup (allARo(s + ia)ll 2 + allBR(s + ia)ll 2 } < c
a-,O sI

for each interval I with compact closure in Q.
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Then ac(H) c D(W(H, Ho, J)) and ’ac(H) c D(W(Ho, H, J*)).
We shall also use:

LEMMA 5.4. There exist Hermitian matrices V(x), W(x) such that

IE(x)- 11x/: =lW(x)l -< V(x) <_ F(x) + 1,

V(x) is invertible and S/2-compact,

(5.24) V(x)W(x) W(x)V(x) 1 E(x)

and

(5.25) (1 + Ixl)"gx_yl< { IV(y)I + IW(y)12) dy L

LEMMA 5.5. If V, W satisfy (5.24), then

R(z)E-1- Ro(z ) zR(z)VWE-IRo(z) zRo(z)VWR(z)E-
Proof By (2.1) we have

(5.26) (Hou, v) (u, Hv), u D(Ho), v e D(H).

Thus

([H0 z]u, v) (u, [H- 5]v) + z([E- 1]u, v)

or

(5.27) (E-Xf R(5)g)l (Ro(z)f g) + z(WF-1R (z)f VF-R(5)g)0

where f= (z- Ho)u and g (5- H)v. This gives the first identity. To
obtain the other we note that (5.27) is equivalent to

( f R(5)g) (Ro(z)f Eg) + z(WRo(z)f VR(5)g)

or

(f R(5)E-h) (f Ro(5)h) + (WRo(z)f VR(5)E-lh)
where h Eg. This gives the other identity.

LEMMA 5.6. Let

Go(z) I zVRo(z)W, G(z) 1 + zVR(z)WE-1.
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Then

(5.28) G(Z)Go(Z ) Go(z)G(z ) 1, Imz, 0.

Proof. The first product equals

1 + zV(R(z)E-- Ro(z))W- zVR(z)WVE-Ro(z)W I

by Lemma 5.5. The same result is obtained if we reverse the order of
multiplication, rq

LEMMA 5.7. For Im z 4: 0,

(5.29) Go(z)VR(z)E-x= VRo(z )

and

(5.30) R(z)E-1V(1 zWRoV) Ro(z)V.

Proof By one identity in Lemma 5.5,

(1 zRo(z)WV)R(z)E- Ro(z )

Applying (V) to both sides, we obtain (5.29). By the other identity in Lemma
5.5,

R(z)E-(1 zVWRo(z)) Ro(z )

Applying this to V, we obtain (5.30). t3

LEMMA 5.8. If V(x) is S1/2-bounded and satisfies (5.25), then for each
bounded interoal I bounded away from 0 there is a constant CI such that

(5.31) allS/2Ro(s + ia)Vull 2 < Cllull 2, s 1,0 < a < 1.

Proof Note that

allRo(s + ia)Vull 2= f + ia A(p) l-21t?’u(p) 2
dp.

As a 0, this converges to fs, u[ 2dS where S ( p Rla(p) s }. If
s 4: 0, Ss consists of smooth bounded sheets [27]. On the other hand, the limit
of the lefthand side of (5.31) is a.e. equal to

d (eo()u, u)
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where Eo(s ) is the spectral projection of H0. We can now apply Lemma 3.7 of
[17] to conclude that

d(5.32) -(Eo(s)Vu, Vu) (T(s)u, u) a.e.

where T(s) is a locally Holder continuous map from R- {0} to B(L2) (the
bounded operators on L2). Thus we have

allS/(Ro(s + ia) Ro(i))Vull
als + ia- ilZ(ll Sx/Ro(i)Ro(S + ia)PoVull

+ Is + ial-Zll(1 Po)gull -)
< als + ia -il2(cfls + ia -t[-2(T(t)u, u)dt

+ Is + ial-211(1 eo)mull 2)
where we used the fact that R(P0) ac(H0)" Since (T(t) u, u) is locally
Holder continuous, we see that (5.31) holds, ra

LEMMA 5.9. If V, W are S1/2-bounded and satisfy (5.25), then

[VRo(S + ia)W]

is uniformly continuous in any rectangle s I, 0 < a < 1 when the interval I is
bounded and bounded away from O.

Proof. By (5.32) we have

(V[Ro(zl) Ro(z)]Wu, v)

(z- zx)f(z- t)-(z- t)-(T(t)u, v)dt

+(z- zl)z-zCX(V(1 Po)(1 Po)Wu, o).

Since T(t) is locally Holder continuous, there are positive constants a, C such
that

IIV[Ro(zx) Ro(z)]Wull ClZl zlllull
for z, z in the rectangle.

LEMMA 5.10. If V(x) is S/-compact, then Go(z) Go(z) is a compact
operator for non-real z, zl.
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Proof We have

Oo(zl) Oo( ) w
(g z)VnoRo(z)Ro(Zl)W

z n) 1poS-/2W

where Hx is the operator constructed in Lemma 3.5. Since VS-/2 is compact
and the remaining combination of operators is bounded, the result follows.

Now we can give the next proof.

Proof of Theorem 1.10. We apply Lemma 5.3. By (524) and (5.26) we have

(Ju, Hv)x (JHou v)t (.VJHou, Wv) (Au, By)

Now, ARo(i) VJHoRo(i ) is bounded on L2 since II VJII <-II(1 + F)JII
and J is a bounded operator from L2 to t. Moreover, by (5.28) and (5.29),

BR(i)F-= WV-G(i)VRo(i)F

WV-G(i)VIRo(i)l/21i HolRo(i)[IRo(i )

This is bounded since WI < V and V is IHol/2-bounded. Thus hypotheses
(I) and (II) are satisfied. To verify (III), note that

all[Ro(s + ia) Ro(i)]A*ull 2

als + ia- il2llnoJ’Ro(i)Ro(s + ia)Vull 2

<_ CallRo(s / ia)Vull 2

-< Ctll ull 2

by Lemma 5.8. Thus the first part of (5.23) holds. To verify the second, note
that

(5.33) BR(z)F- WV-G(z)Vli Hol/2Ro(z)[lRo(i) lX/2F].
By Lemma 5.9, Go(s + ia) is uniformly continuous in every bounded rectangle
sI,0<a<l as long as I is bounded away from 0. Thus it can be
extended to be continuous on the boundary. Moreover, if z is any fixed point
in the rectangle,

(5.34) G(z)Go(Z) 1 G(zx)[Go(z ) Go(z) K(z)

by Lemma 5.6. By Lemma 5.10, K(z) is compact. Since Go(z ) depends
analytically on z, its limit as z approaches the real axis must have a bounded
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inverse on an open set with complement of measure 0 (cf. [32],[33]). Thus
there is an open subset Q of R with complement of measure 0 such that G0(z)
has a bounded inverse in any dosed bounded rectangle with base in Q. Since
G(z) is the inverse of G0(z), we have

(5.35) IIG(s / ia)ll -< Cz, s c a,0 < a < 1

where C depends on ! but not on s or a. Thus for such rectangles, by (5.33),
we have

(5.36) IIBR(z)F-II CII Vii nolX/2Ro(z)ll

In view of (5.31), this implies

(5.37) allBR(s- ia)F-Xll 2 < Ct, sIQ,O<a<l.

Thus (5.23) holds. Hence we may apply Lemma 5.3 to conclude that ,’a(Ho)
is contained in the domains of W+/-(H, Ho, J). To show that their ranges are
dense in Oa(H), let g be any element in "g’ac(H) which is orthogonal to the
range of W/(H, H0, J). Let u by any function such that Vu is in C. Then
there is a w scf satisfying Jw Vu. Hence

aft(JRo(z)w, R(z)g)t ds - r(W+Eo(I)w, g)t 0

as a 0 for any interval I (cf. [20]). On the other hand, in view of Lemma 5.7
we have

(JRo(z)w, R(z)g)t (u, VRo(,)ER(z)g)

(VGo()*u, R(,)R(z)g)

Let Q be the set described above and let I c Q. Then the lefthand side of
(5.38) converges to

(5.39) g)

where m(s, f, g) is a measurable function of s, defined everywhere, and equal
to d(E(s)f, g)/ds whenever the latters exists (cf. [20],[34]). Thus we can
conclude that (5.39) vanishes for all u such that Vu is in C. Such u are dense
in f’. For if h is orthogonal to all such u, then V-Xh 0 and consequently
h 0. By (5.31),

allRo(z)Vull2 allFS-/211211S/2Ro(z)Vull 2 C/llull 2, u 1,0 < a < 1
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provided I is bounded and away from 0. Thus the expression (5.39) is
bounded by C1[lullllgllx. Since V-lC is dense in t, we see that (5.39)
vanishes for all u in o". This is true for all I such that I c Q. Hence

(5.40) m(s, E-1VGo(s) *u, g) =0, s Q, u 3’.

Since Go(s) has a bounded inverse on A’ for each s Q, this implies

m(s, E-IVh, g) =0, s Q, h 3’.

Consequently, (E-XVh, g)l 0, h or (Vh, g) 0, h 3’. If we take
h Vg, we have Vg 0 and hence g 0. This completes the proof, ra

Proof of Theorem 1.11. For k sufficiently large,

(5.41) (J- Jo)S-k

is a compact operator on o*’. On the other hand JoS-k satisfies the hypothe-
ses of Theorem 1.10. Hence the wave operators W+_(H, Ho, JoS-k) are
complete. Since (5.41) is compact, we see that

w+/-(H, Js- )eo w+/-(H, Ho, goS- )eo

in view of (5.18). Since the domain of Sk is dense in o,’, we have

W+(H, Ho, J)Po W+(H, Ho, JS-)Po
Thus the wave operators W+/-(H, Ho, J) are complete.
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