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Introduction

A. Weft showed that a birational group law that is only partially defined can
be extended to an algebraic group [15], [16]. We show below (1) that a similar
construction can be carried out in a topological setting, where the topology is
not necessarily the Zariski topology. In 2 we enrich our topological spaces
with sheaves and prove a version of Weirs theorem for this "structured"
setting. We then derive Weirs original theorem as well as two variations,
coveting the cases of "quasi-algebraic" group chunks and "differentially
algebraic" group chunks (3). Wc note that our theorem, though quite general,
does not include the scheme theoretic version of Weirs theorem given in [1].
Our version of weirs theorem can be applied to resolve a problem arising in

model theory. The question whether all groups that arc first order definable in
algebraically closed fields arc isomorphic to algebraic groups is connected with
work of Cherlin, Poizat, and Zirbcr (cf. [10, [11]). As we show here (4) a
positive solution follows from the group chunk theorem. In characteristic 0,
weirs theorem suffices, and in characteristic p > 0 the quasi-algebraic version
is needed, together with a theorem of Scrrc [13] characterizing quasi-algebraic
groups.

Another approach to the latter problem was given by Hrushovski (unpub-
lished); there are expositions of his treatment in [2], [12]. It is similar in spirit
to our approach, with two variations: since in this application the abstract
group is already given to us as a definable group, hc omits the first step in the
proof of weirs theorem, and passes directly to the introduction of a topology
and structure sheaf; secondly where we combine our generalized Weil theorem
with a result of Serre, Hrushovsld uses the idea of Serre’s proof to reduce to an
algebraic group chunk. Hrushovski also gave a generalization of weirs group
chunk theorem in quite a different direction in his thesis [4].
Our group chunk theorem is inspired by unpublished notes of W. van dcr

Kallen [5], and in particular we .follow his approach to the construction of the
enveloping group as an abstract group in 1. In topologizing the group and
equipping it with a sheaf we adopt a different approach which works in greater
generality.
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An earlier version of this article contained excessively detailed proofs. I
thank the referee for assistance with the present more condensed treatment.

1. Weil’s theorem in a topological setting

(1.1) Homogeneous groups.
A homogeneous group is a group G carrying a topology for which inversion

and all left multiplication maps are continuous; then fight multiplication maps
are also continuous.

This notion covers both topological groups and algebraic groups equipped
with the Zariski topology.

(1.2) Group chunks.
Let X be a topological space. By a dense X-homeomorphism we mean a

homeomorphism between two dense open subsets of X.
A group chunk is a nonempty topological space X equipped with multiplica-

tion and inversion maps p, defined on sets U X X, V
_
X respectively,

satisfying the following conditions, in which we write xy and x-1 in place of
p(x, y) and i(x):

Ia For x X the left multiplication map )x=p(x, .) is a dense
X-homeomorphism; in particular its domain is dense open in X.

Ib For x V the right multiplication map Px =p(.,x) is a dense
X-homeomorphism; in particular its domain is dense open in X.

II The inversion map is a dense X-homeomorphism; in particular V is
dense open in X.

III For x X the set {z X" (xz)z- is defined} is a nonempty open
subset of X.
IV For x, y, z X the identities (xy)z x(yz), (xz)z- x, z-(zx)

x hold whenever both sides are defined.
The canonical example is as follows. Let G be a homogeneous group, X a

dense open subset of G, U {(x, y) X X" xy X}, V-- X N X-, p
and the restrictions of multiplication and inversion respectively.

(1.3) The main theorem.
Let ( X; p, i) be a group chunk. Then:
(1) There is a homogeneous group G and a homeomorphism h" X -o h[ X]

G such that h[X] is dense open in G and h(xy) h(x)h(y) for (x, y) dom
p. Call the pair (G, h) a realization of ( X; p, ).

(2) If (G*, h*) is a second realization of (X, p, i) then there is a unique
homomorphism a" G -o G* of abstract groups such that ah h*, and this map
is then a homeomorphism of G with G*.
We remark that in this theorem, if U

___
X X is open with the product

topology on X X, and p" U -o X is continuous then the resulting group G
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is a topological group//; this is because any homogeneous group whose
multiplication has at least one point of continuity on G G is a topological
group.
For the remainder of this section a group chunk (X; p, i) is given, and we

prove the theorem in several stages. Let U dom p, V-- dom i.

(1.4) The group G.
Call two dense X-homeomorphisms equivalent if they agree on an open

dense subset of X. Let f be the set of equivalence classes of dense X-homeo-
morphisms. Then carries a natural group structure induced by composition.
For x X let h(x) be the equivalence class of the left multiplication Ax, and
let G be the subgroup of f generated by h[X]. G will be equipped with a
topology below (1.7). Clearly, the axioms imply that h(xy) h(x)h(y) for
(x, y) U, and h(x -x) h(x) -1 for x V.
We remark that if i’ is the restriction of to a dense open subset of V, then

(X; p, i’) is a group chunk and our construction of (G, h) yields the same
result when applied to this group chunk. Thus whenever it is convenient we
may shrink V in this fashion.

(1.5) Generic identities in X.
We will say that a property P(x) holds for generic x X if the set of x for

which P holds contains an open dense subset of X. Note the following left
invariance of genedcity: if P(x) holds for generic x, and y X, then P(yx)
also holds for genetic x, by Axiom Ia.
We now define the notion " represents y" for (xx,..., x,) with

xl,..., x, y X. We proceed by induction on n. For n 1 this means
x y. For n > 1 it means that there is m with 1 _< m < n and there are
elements y, Y2 represented by (x,..., x,) and (x,+x,..., x) respectively,
so that YY2 Y.

LEMMA 1. Let xx,..., x, X.
(1) If represents y then for generic z,

YZ=Xl(X2(...(x,,z)...))

(and in particular both sides are defined).
(2) represents at most one element of X.
(3) lf x, x’, y X with xy=x’y then x=x’. In particular the map

h" X ---> G is injective.

Proof. (1) As the maps ,x are dense X-homeomorphisms, for fixed
(x, x2) dom p the law x(xEz ) (xx2)z holds genetically on the basis of
Axiom IV and the left invariance of genericity. The general case follows
similarly by induction on n.
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(2) Suppose represents both Yt and Y2- By part (1), yxz y2z for
generic z. Hence by Axiom III there is z X for which (ytz)z -t is defined
and ytz y2z. By Axiom IV, yt (ytz)z -x (y2z)z- Y2 for such a z.

(3) By part (1), x(yz) x’(yz) for genetic z, so xz x’z for genetic z,
and as in the proof of part (2) we obtain x x’. m

LEMMA 2. Let V’ i-t[V], and let i’
i’" V’ --> V’, and i’2 1.

V’. Then V’ is dense open in V,

Proof. If x V’, then i(i(x)) is defined and it suffices to check that
i(i(x)) x. For generic v we have i(i(x))v i(i(x))(x-(xv))= xv, so by
Lemma 1, part 3" i(i(x)) x.

As noted earlier, we may replace V by the dense open subset V’ defined in
the preceding lemma. In other words after a change of notation we assume V
is i-invariant and i2= 1.

(1.6) Generation.

LEMMA 3. Let A be a nonempty open subset of V. Then h[A] h[V] G.

Proof It suffices to show that h[X]h[V] 2 c_ h[A]h[V]. Let x X, y, z
V. For generic v, xv and (v-ty)z are defined and in V. For v in a nonempty
open set, xv A. Hence for v in some nonempty open set,

h(x)h(y)h(z) h(xv)h((v-y)z) h[A]h[V].

(1.7) The topology.
For x V define x" V G by x(Y) h(x)h(y). A set t9

___
G will be

taken to be open if and only if its preimages under all the x are.

LEMMA 4. G is a homogeneous group.

Proof. We first check the continuity of inversion. Let d9 be open in G,
x V, y x-[tV-t], that is h(y)-Xh(x) -t . Take v V such that
(v-ly-)x-1 is defined and in V. Then h(y-)h(x-) qo((v-ty-t)x-t), so
on a neighborhood of y a similar formula holds, and as o is continuous by
definition of the topology, we have h(y{)h(x-) for yt in a neighbor-
hood of y, as required.

Similarly we check that g-td is open for g G, V open. As h[ X] generates
G we may suppose g h(a), a X. Then for x V we have

y th;[g-tV] iff h(a)h(x)h(y) tO.
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If a, x, y are fixed with y t[g-t9] and v V is taken so that av
(vx)y are defined and in V, then we have

h(a)h(x)h(y) h(ao-t)h((ox)y) d)

and the same holds for y’ in a neighborhood of y. Also

(vx)y’ ao-X[O]

for y’ in a neighborhood of y, so we have a neighborhood of y in -t[g-(9].

LEMMA 5.
open set.

For x V the map kx: V x[V] is a homeomorphism onto an

Proof As h is injective, x is injective. Continuity is immediate. Thus we
need only show that for A

___
V open, [A] is open in G; that is y-t[[A]] is

open in V for y V. Suppose therefore that z y-[[A]], say y(Z)=
fix(a), with a A. With o V chosen so that x-t(y(zv)) and av are defined,
they are then equal. For z’ in a neighborhood of z,

x-( y(z’v)) a’o for some

aThen all such z are in y- [x[ ]], as required.

a’A.

LEMMA 6. h: X G is a homeomorphism with dense open image.

Proof. Let x X. By Axioms III, IV we have x uo for some u, o V.
Then uV is a neighborhood of x on which h u ’S (in the notation of
Axiom Ia). Thus h is an injective map which is locally a homeomorphism onto
an open set. Thus h is a homeomorphism with open image.
Now we check that hi X] is dense in G. Let tP be nonempty and open in G,

and by Lemma 3 take u, v V with h(u)h(v) d). Thus ,-t[d] is nonempty.
For generic z, uz exists, hence also for some z -[dg], uz exists, and
h(uz) h(u)h(z) d). m

(1.8) Uniqueness.

LEMMA 7. Let h X G where G is a group and h (xy ) h (x )h (y)
for (x, y) dom p. Then there is a unique group homomorphism a: G G so
that ah h 1.

Proof. It suffices to show that if

h(xt).., h(xn) h(yt).., h(Ym)
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with the xi, yj X, then h satisfies the corresponding relation. For generic
z X, x(... (xz)...) and yt(...(ymZ)...) are defined, and in view of the
injectivity of h they are equal. Hence by applying the homomorphism law for
hi and canceling, our claim follows, m

Now to complete the proof of part 2 of the theorem, it is clear that if (G, h)
and (G*, h*) are two realizations of (X; p, i) then they are isomorphic as
abstract groups by a unique isomorphism

compatible with h, h*. It will suffice now to check the continuity of a. Let
tO
_
G* be open. For x V we must check that ;-Xa-[t9] is open in V. We

have

Xa-[tP] (o V" hl(x)h(o) d)} VN h{[h(x-)[d)]],
which is open

2. Weil’s theorem for locally afline group chunks

We now develop a form of Weil’s theorem for group chunks with a structure
sheaf. To include cases like differential algebraic groups it is useful to
formulate this quite generally.

(2.1) k-spaces.
Let k be an abelian group. A k-space will be a pair (X, ’) where X is a

topological space and " is a sheaf of abelian groups on X [3], where for open
U
_
V in X we require that ’(U) be a subgroup of kv, and that the

restriction -(U) --, -(V) be induced by the restriction from kv to k v.
A morphism of k-spaces ( X, ’), (Y, ) will be a continuous map a X --, Y

such that for V open in Y, (V) o a

___
’(a-V). Typically k will be a field

and each group -(U) will be a subalgebra of the k-algebra kv.
(2.2) k-groups and k-group chunks.
A k-group is a group G equipped with a topology and a sheaf " such that

(G, -) is a k-space and the inverse and left multiplication maps are mor-
phisms from (’, ’) to (, -). In particular G is a homogeneous group.
We call (X, ’; p, i) a k-group chunk if (X; p, i) is a group chunk and the

inversion, left multiplication, and right multiplication maps are all morphisms,
where their domains are equipped with the restriction of - as structure sheaf.

LEMMA 8. Let X, ’; p, i) be a k-group chunk. Let G be the homogeneous
group associated with the group chunk according to Theorem 1, and identify X
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with h[X]. Let g G, W
_
X open with gW

_
X. Then the map x gx

induces a morphism from (W, . W) to ( X, ).

Proof. Let g=ab with a,bX. If gx=y with x,yX then for
generic v we have a(b(xv))= yr. There is such a v so that, in addition,
(yv)v -1 y; hence

[a(b(xo))]u -1 y.

For x’ in a neighborhood of x we then have

[a(b(x’v))] v- gx

defined and (by hypothesis) a morphism as a function of x’, near x.

THEOREM 2. Let (X, ; p, i) be a k-group chunk. Let G be the homoge-
neous group associated with the group chunk according to Theorem 1. Then there
is a unique sheaf f on G making G a k-group and h an isomorphism onto
(hi X],f hi X]).

Proof. For g G let g" be the direct image of " under left multiplica-
tion by g, a sheaf on gX. We claim there is a unique sheaf on G which restricts
to g- on gX for each g. It suffices to check that for g, h G, g- and h-
restrict to the same sheaf on gX N hX.

Let W gX n hX. Multiplication by (g-Xh) gives a morphism from

( h-xW, ’ h-xW) to (g-XW, ’ g-lw),

by the previous lemma. Hence the identity map, factored as x ---) g(g-h)h-x,
gives a morphism from (W, h’t W) to (W, g’ W), and conversely, m

(2.3) Altine models and products.
It will be useful to mimic the algebraic case more closely. We assume that

certain subsets of k" have been singled out, for all n > 0, which will be called
affine sets, and that to each affine set V a topology tV and a sheaf -v are
associated making V (that is, (V, v, -v)) a k-space. These distinguished
k-spaces will be referred to as affine models. A k-space will be called affine if
it is isomorphic to an affine model. A k-space is called locally affine if each
point has an affine open neighborhood.
Our assumptions on the class of aftine models are as follows.

Aft" I

Aft II
Aft III

For every affine model A, all constant functions A ---)k lie in
(A).
The restriction of an affine model to an open subset is locally affine.
If A c_ km, B

_
k" are attine sets then A B G km+" is an affine

set, and using the same notation for the corresponding affine
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models, we require that A B (with natural projections to A, B)
be the product in the category of affine models and morphisms of
k-spaces.

In connection with the third property, we will say that a pair of locally
aftine spaces X, Y have a set-like product if the product X Y of the
underlying sets can be given a (necessarily unique) locally aftine structure
which makes it their product (with respect to the natural projections) in the
category of locally aftine spaces with k-morphisms. This forces the topology
on X Y to contain as open sets the products U V for U, V open in X, Y
respectively (since U V q-xU t3 r2- iV). It follows from the axioms Aft II,
III that any two locally affine spaces have a set-like product, by equipping
each subset U V, where U, V are open affine in X, Y, with the k-structure
making it the product of U and V in the category of affine k-spaces, and
checking coherence on intersections.

(2.4) Locally aitine groups and group chunks.
We define a locally affine group to be a group G which is also a locally affine

space such that the multiplication and inversion maps are morphisms
G G -o G, G - G respectively. By Aft I, constant maps G - G are mor-
phisms and hence G is a k-group.
A locally affine group chunk is a locally atiine space X together with

morphisms p, from open subspaces U, V of X X, X (respectively)to X,
such that (X; p, i) is a group chunk.
Then the corresponding k-group G will be a locally affine group, because U

is open in G G and the multiplication map is a morphism when restricted to
U. (This is analogous to the remark concerning topological groups following
Theorem 1.)

3. Examples

(3.1) The algebraic case.
Let k be an algebraically dosed field. The aftine models are taken to be the

Zariski closed sets A
_
kn with the Zariski topology on A and the structure

sheaf d9a of regular functions (locally, given by rational functions with
nonvanishing denominator). A regular function on A itself is just the restric-
tion to A of a polynomial function (Hilbert’s Nullstellensatz; see [9, p. 6] for
example). Thus the morphisms between aftine models are also given by
polynomial maps. Our axioms Aft I-III hold in this case.
A prevariety is a locally afline space with a finite coveting by attine open

pieces. An algebraic group over k is a locally affine k-group G which is also a
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prevariety. (It is then a variety, that is, the diagonal of G G is closed, as it is
the inverse image of (1) under (x, y) x-ty.) We define an algebraic group
chunk as a prevariety X with morphisms p, from open subspaces U, V of
X x X, X (respectively) to X such that (X; p, i) is a group chunk. Weil’s
theorem is then the existence and uniqueness of the corresponding algebraic
group G. In (2.4) we constructed G as a locally affine k-group. It is also the
image of X X under a continuous map, and X X is noethedan (satisfies
the d.c.c, on closed subspaces), so G is noetherian and hence a prevariety.

(3.2) The quasi-algebraic case.
Here k is algebraically dosed of positive characteristic p. The affine models

in the quasi-algebraic context are the Zariski closed affine sets A with their
Zariski topology and the structure sheaf tVj’-, the closure of the usual
structure sheaf under p-th roots. Hence morphisms are given by p-th roots of
polynomial maps. The axioms Aft I-III hold, the affine models are still
noetherian, and the analog of a prevariety or an algebraic group in this context
is called a perfect preoariety and a perfect group [13], which is then a perfect
variety. From any prevariety one obtains a perfect prevariety by closing the
structure sheaf under p-th roots. Conversely Serre shows in [5] that any perfect
group is obtained in this fashion from an algebraic group. Weil’s theorem
holds in this setting, and shows that a perfect group chunk (defined in the
usual fashion) gives rise to a perfect group, which by Serre’s theorem comes
from an algebraic group by enlarging the structure sheaf. Because of Serre’s
theorem perfect groups are also called quasi-algebraic groups.

(3.3) The differentially algebraic case.
Let k be a differentially dosed field of characteristic 0, possibly with several

commuting derivations. (This is called a constrainedly dosed differential field
by Kolchin [7].) A closed set for the differential Zariski topology on k" is the
set of common zeros of a collection of m-variable differential polynomials over
k. The affine models are the dosed sets A

___
k’ with the induced differential

Zariski topology, and the structure sheaf tVa now consists of differential
rational functions (locally quotients of differential polynomials with nonvan-
ishing denominator). We do not have as simple a description of the global
functions in try(A) as in the preceding cases, but it remains true that the
morphisms between affine models A and B are given coordinate wise by
global functions in tV(A).
The conditions Aft I-III may be verified as before. By the Ritt-Raudenbush

basis theorem [6] the aftine models are again noetherian. Thus we have
differential prevarieties and varieties, differential algebraic groups, the differ-
ential algebraic group chunks, and Weil’s theorem applies, with the same
argument as in our first example.
We remark that our notion of a differential algebraic group appears rather

different from Kolchin’s [7].
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4. Constmctible groups

(4.1) Constructible versus algebraic groups.
A constructible subset of a prevariety is a finite union of locally closed sets

in the Zariski topology. A map from a constructible subset of one prevariety to
a constructible subset of a second prevadety is called constructible if its graph
is a constructible subset of the product of the ambient prevarieties. In affine
spaces over an algebraically closed field the constructible sets and maps are
just the definable ones (Tarski’s theorem). The constructible sets and maps
form a category. A constructible group is a constructible set G together with a
constructible map p: G G G making (G, p) a group. Constructible
groups are just the groups interpretable in algebraically closed fields by [11],
and in this guise they are potentially of considerable importance in pure model
theory [10]. We prove here that such groups are in a certain sense disguised
versions of algebraic groups, namely:

THEOREM 3. For each constructible group G there is an algebraic group Gang
and a constructible group isomorphism

such that .for any constructible group homomorphism q: G H with H an
algebraic group, tht is a morphism of perfect groups (in characteristic zero, a
morphism of algebraic groups).

The universal property is a rather straightforward matter involving the
structure of constructible morphisms between two algebraic groups; el. Lemma
9 below. We will confine our discussion to the construction of Glv Our
approach is somewhat indirect: from the constmctible group extract a quasi-
algebraic group chunk (in characteristic zero, this just means an algebraic
group chunk), thereby throwing away some of the original information, and
then by the quasialgebraic version of Weil’s theorem (Example 3.2 above)
construct a quasialgebraic group G agreeing with G on the chunk. The rest
then follows from Lemma 7 and Theorem 1, part 2. So it will suffice to find a
quasialgebraic group chunk in G.

(4.2) Constructible maps.
We quote a basic result on constructible maps from [8]. Our base field k is

algebraically closed throughout.

LEMMA 9. Let V be an irreducible affine variety and f: V km a con-
structible map. Then there is a nonempty open subset U of V on which f is a
morphism of varieties, if characteristic(k)= 0, and a morphism of perfect
varieties if characteristic(k) p > 0.
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DEFINITION. If A is a constructible set then the irreducible components of
maximal dimension of A’s Zariski closure in its ambient prevariety will be
called the blocks of A.

LEMMA 10. Let f: A B be a constructible bijection between nonempty
constructible sets, and let A1,..., Ak be the distinct blocks ofA. Then B also has
k blocks B1,..., Bk which can be arranged so that for each there is nonempty
open U in A with U c_ A and f[U/] open in B and f U an isomorphism of
perfect prevarieties (where in characteristic O, "perfect prevariety" simply means
"prevariety ").

Proof. Let W be the Zariski closure of B. Using Lemma 9 we can find
nonempty open subsets U,. of the blocks A of A such that U

___
A, U/F U

for j, and f U: U ---> W is a morphism of perfect prevarieties. Let B be
the Zariski closure of f[U]. Then dim(Bi)= dim(Ai) and in particular
dim(B) > dim(A). By symmetry dim(B) dim(A), and the B are distinct
blocks of B. Again by symmetry they are all the blocks of B. m

(4.3) The group chunk.
We now fix a constructible group G with multiplication p and inversion i.

Let B1,..., B be the blocks of G, B their union.

LEMMA 11. There are sets V c_ G, U c_ V V such that the following hold.
(1) V is dense open in B, and the sets V V N B are disjoint and open

in V.
(2) i[V] V and V is a perfect prevariety isomorphism.
(3) U is dense open in V V, p[U] c_ V and p U is a perfect prevariety

morphism.

Proof By Lemma 10 there are dense open S, S’ in B, both contained in G,
so that induces a perfect prevariety isomorphism between them. Let (ini-
tially) V S N S’. This gives (2) and if S is small enough, also (1), which
implies that the V are the irreducible components of V. It follows that V V
has components of constant dimension, so there is a dense open subset U of
V V such that p U is a perfect prevariety morphism. We note that for
a G, a can be restricted to a perfect prevariety isomorphism between dense
open subsets of V.

Let U U p-[V], so U is open in V x V. To see that U is dense in
V V, we check that it meets each V/ Vj. Fix i, j and

(a,b ) U n (Vx V).
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Then a-tV contains a nonempty open subset of V., hence meets

{x Vj" (a,x) U1).
If x is in this intersection then (a, x) U q (V/x V.), as desired.

Now we will construct a perfect group chunk, thereby completing the proof
of Theorem 3. The key step is the following.

LEMMA 12. The sets U, V constructed above can be chosen to satisfy the
following additional properties for all a V:

(4) The set ( x V: ( a, x) U} is dense open in V.
(5) The set { x V: (x, a) U} is dense open in V.
(6) The set { x V: ( a, x) U, ( ax, x-t) U} is dense open in V.

Proof. Let U, V have the properties (1)-(3) of Lemma 11. If V’ is dense
open in V with i[V’] V’ and U’ U D (V’ V’) D p-I[Vp] then the pair
(U’, V’) inherits properties (1)-(3), as well as (4) (or (5)) if it held originally.
Indeed properties (1)-(3) hold as in the proof of Lemma 11, while if U, V
satisfy (4) and a V’, then { x V’: (a, x) U } is dense open in V’, and
a-1/’ D V’ contains a dense open subset of V’, so their intersection

(x V"(a,x) U’}

is dense, and is certainly open.
Now begin with sets U, V satisfying (1)-(3). With the notation of Lemma

11, let V’ be { a V: ({ a } V/) O U 4: ). Then V/’ is dense open in V: it
is easily seen to be open, and it meets each Vj. Let V0 V/,

v’= i[v0] n v0, u’= u n (v’ v’) n

Then U’, V’ still has properties (1)-(3), .and we check (4): if a V’ then
({ a ) x V/) meets U for each i, so (a, x) U for a dense open set of x V,
and (4) follows.

Similarly we may achieve (1)-(5) by a second shrinking operation. Finally
we achieve (6) as follows. Let the injective morphism : U V V be
defined by (a, x)= (ax, x-l). Since U has the B Bj as its blocks, it
follows from Lemma 10 that [U] has the same blocks, which are the blocks
of U q[U] as well. As maps -t[U] bijectively onto U 0[U], the blocks
of -t[U] are also the same. So -t[U] D (V/x Vj), for all i, j. Let
V x V -, V be the first projection, Vo *q[,-t[U]], V’ Vo r i[Vo], U’
defined correspondingly. For a V’ the set

{x V: (a, x) U, q(a, x) U}
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meets each V, hence is open dense in V. Intersecting with (x V’: ax V’}
we see that { x V" (a, x) U’, (ax, x-) U’) is dense (and clearly open)
in V’. This is (6).

It follows from (1)-(6) that (V; p U, V) is a perfect group chunk, as
required.
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