ITERATED INTEGRALS AND EPSTEIN ZETA FUNCTIONS WITH HARMONIC RATIONAL FUNCTION COEFFICIENTS

BY
Bruno Harris
In memory of Kuo-Tsai Chen

1. Introduction

Theta functions (of one complex variable z in the upper half plane) with harmonic polynomial coefficients are well known ([4], [5], see (2.1) below). They satisfy a transformation formula (2.2) under $z \rightarrow-z^{-1}$ and their Mellin transforms are Epstein zeta functions of s (see (2.3), (2.4)) which satisfy a corresponding functional equation (2.5) under $s \rightarrow k-s$ (k a constant). Using Chen's iterated integrals we find in this paper theta functions with certain harmonic rational function coefficients which (when a polynomial coefficient theta function is added) satisfy the same transformation formula (but they are not modular forms). Corresponding Epstein zeta functions satisfy the classical functional equation (2.9 below). We study a particular example related to the Fermat quartic $F_{4}: X^{4}+Y^{4}=1$ and its Jacobian $J\left(F_{4}\right)$ [1]. Here the value at $s=1$ of the Epstein zeta function with rational function coefficients divided by the product of the L-functions of two elliptic curves (namely $Y^{2}=X^{3} \pm 4 X$) generates the Abel Jacobi image, in $\mathbf{C} / \mathbf{Z}(i)$, of the 1 -cycle in $J\left(F_{4}\right)$ given by $\left[F_{4}\right]-\left[\iota\left(F_{4}\right)\right]$. (We consider only the AbelJacobi image in

$$
\left.H^{3,0}\left(J\left(F_{4}\right)\right)^{*} / H_{3}\left(J\left(F_{4}\right) ; \mathbf{Z}\right)\right)
$$

Section 2

We recall now the formulas defining the theta and Epstein zeta functions associated to a real symmetric positive definite $h \times h$ matrix Q, two vectors $A, B \in \mathbf{R}^{h}$, and a (non-zero) homogeneous polynomial $P(X)$ of degree g in h

[^0]variables with complex coefficients, which is harmonic:
$$
\sum_{i=1}^{h} \frac{\partial^{2} P\left(x_{1}, \ldots, x_{h}\right)}{\partial x_{i}^{2}}=0
$$

The theta function of $z=x+i y, y>0$, is

$$
\begin{align*}
\theta^{P, Q} & {\left[\begin{array}{l}
A \\
B
\end{array}\right](z) } \tag{2.1}\\
& =\sum_{N \in \mathbf{Z}^{h}} P(\sqrt{Q}(N+A)) \exp \left(i \pi z Q[N+A]+2 i \pi(N+A)^{\prime} B\right)
\end{align*}
$$

where X^{\prime} is the transpose of X and $Q[X]=X^{\prime} Q X . \quad h$ will always be even. Further we assume that as function of y, θ decreases at least like $e^{-k y}$ as $y \rightarrow \infty$ and like $e^{-l / y}$ as $y \rightarrow 0(k, l>0)$; in other words, the constant term in 2.1 is zero and the same for the transformed series $\theta\left(-z^{-1}\right)$ (see 2.2): equivalently either P is non-constant or A and B are non-integral. This will assure convergence of all integrals we will write. The transformation formula (equivalent to [5], Prop. 8) is

$$
\begin{align*}
\theta^{P, Q} & {\left[\begin{array}{l}
A \\
B
\end{array}\right]\left(-z^{-1}\right) } \tag{2.2}\\
& =(-1)^{g+h / 2} i^{h / 2} z^{g+h / 2}(\operatorname{det} Q)^{-1 / 2} \exp \left(2 \pi i A^{\prime} B\right) \theta^{P, Q^{-1}}\left[\begin{array}{c}
-B \\
A
\end{array}\right](z)
\end{align*}
$$

By taking the Mellin transform of (2.1) we obtain the Epstein zeta function $\zeta(s, A, B, Q, P)$:

$$
\int_{0}^{\infty} y^{s-1} \theta^{P, Q}\left[\begin{array}{c}
A \tag{2.3}\\
B
\end{array}\right](i y) d y=\pi^{-s} \Gamma(s) \zeta(s, A, B, Q, P)
$$

which we denote as $\xi(s, A, B, Q, P)$. Thus
$\zeta(s, A, B, Q, P)=\sum_{N \in \mathbf{Z}^{h}} \frac{P(\sqrt{Q}(N+A)) \exp \left(2 \pi i(N+A)^{\prime} B\right)}{Q[N+A]^{s}} \quad$ for $\operatorname{Re} s>1$.
$\xi(s)$ is an entire function of s and by (2.2) satisfies

$$
\begin{align*}
& \xi(s, A, B, Q, P) \tag{2.5}\\
& \quad=i^{-g}(\operatorname{det} Q)^{-1 / 2} \exp \left(2 \pi i A^{\prime} B\right) \xi\left(g+\frac{1}{2} h-s,-B, A, Q^{-1}, P\right)
\end{align*}
$$

We can now state our generalization from polynomials P to certain rational harmonic functions R. In the simplest case, R will be as follows: for $i=1,2$ let $P_{i}\left(X_{i}\right)$ be harmonic polynomials in h_{i} variables, homogeneous of degree g_{i} and assume

$$
\begin{equation*}
g_{i}+\frac{1}{2} h_{i}=2 \tag{2.6}
\end{equation*}
$$

(so either $h_{i}=2, g_{i}=1$ or $\left.h_{i}=4, g_{i}=0\right)$. Let $X=\left(X_{1}, X_{2}\right)$, an h dimensional variable where $h=h_{1}+h_{2}$ and let $g=g_{1}+g_{2}-2$. Define R by

$$
\begin{equation*}
R(X)=\frac{2 P_{1}\left(X_{1}\right) P_{2}\left(X_{2}\right)}{X_{1}^{\prime} X_{1}} \tag{2.7}
\end{equation*}
$$

$R(X)$ and a whole series of similar rational functions will be shown to be harmonic (3.1). $\quad R(X)$ has degree $g=g_{1}+g_{2}-2$ and $g+\frac{1}{2} h=2$ again. Given $A_{i}, B_{i}, Q_{i}, P_{i}$ for $i=1,2$, let

$$
A=\left(A_{1}, A_{2}\right), B=\left(B_{1}, B_{2}\right), Q=Q_{1} \oplus Q_{2} \quad(\text { block direct sum })
$$

and define $\theta^{R, Q}\left[\begin{array}{l}A \\ B\end{array}\right]$ by (2.1) with P replaced by R and similarly $\xi(s, A, B, Q, R)$ by (2.3), (2.4). Note that the denominator of $R(\sqrt{Q}(N+A))$ will only vanish when the numerator vanishes, by our earlier assumption on the " vanishing of the constant term" so in the series (2.1) or (2.4) these terms are to be taken as zero. Let now

$$
\begin{align*}
& Z(s, A, B, Q, R) \tag{2.8}\\
& \quad=\zeta(s, A, B, Q, R)-\zeta\left(1, A_{1}, B_{1}, Q_{1}, P_{1}\right) \zeta\left(s, A_{2}, B_{2}, Q_{2}, P_{2}\right)
\end{align*}
$$

Then this Dirichlet series satisfies the functional equation

$$
\begin{align*}
& \pi^{-s} \Gamma(s) Z(s, A, B, Q, R) \tag{2.9}\\
&=-i^{-g}(\operatorname{det} Q)^{-1 / 2} \exp \left(2 \pi i A^{\prime} B\right) \pi^{-(2-s)} \Gamma(2-s) \\
& \quad \times Z\left(2-s,-B, A, Q^{-1}, R\right)
\end{align*}
$$

(Recall the main assumptions: P_{i} are harmonic polynomials of degree g_{i} in h_{i} variables with $g_{i}+\frac{1}{2} h_{i}=2, R(X)=2 P_{1}\left(X_{1}\right) P_{2}\left(X_{2}\right) / X_{1}^{\prime} X_{1}, A_{i}, B_{i}$ are real vectors, Q_{i} are real symmetric positive definite $h_{i} \times h_{i}$ matrices with h_{i} even, in fact, $h_{i}=2$ or 4 and ζ are defined by (2.3) or (2.4) with $P=P_{i}$ or $P=R$.) We prove (2.9) in the next section where we also discuss more general rational harmonic functions. Finally we have formulas corresponding to (2.8), (2.9) for
the theta functions: with the same notation, define

$$
\tilde{\theta}^{R, Q}\left[\begin{array}{l}
A \tag{2.10}\\
B
\end{array}\right](z)=\theta^{R, Q}\left[\begin{array}{l}
A \\
B
\end{array}\right](z)-\frac{1}{2}\left(\int_{i \infty}^{0} \theta^{P_{1}, Q_{1}}\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right](z) d z\right) \theta^{P_{2}, Q_{2}}\left[\begin{array}{c}
A_{2} \\
B_{2}
\end{array}\right](z) .
$$

Then

$$
\tilde{\theta}^{R, Q}\left[\begin{array}{l}
A \tag{2.11}\\
B
\end{array}\right]\left(-\frac{1}{z}\right)=i^{h / 2}(\operatorname{det} Q)^{-1 / 2} \exp \left(2 \pi i A^{\prime} B\right) z^{2} \tilde{\theta}^{R, Q^{-1}}\left[\begin{array}{c}
-B \\
A
\end{array}\right](z)
$$

Section 3

Examples of rational harmonic homogeneous functions of degree g in h variables can be built up as follows:
(3.1) Lemma. If $R_{i}\left(X_{i}\right), i=1,2$ are harmonic functions of degree g_{i} in h_{i} variables (h_{i} even) with $g_{i}+\frac{1}{2} h_{i}=2$, then

$$
R\left(X_{1}, X_{2}\right)=R_{1}\left(X_{1}\right) R_{2}\left(X_{2}\right) / X_{1}^{\prime} X_{1}
$$

is harmonic of degree $g=g_{1}+g_{2}-2$ in $h=h_{1}+h_{2}$ variables, with $g+\frac{1}{2} h=2$.

Proof. Since the two set of variables are disjoint and R_{2} is harmonic, R will be harmonic if and only if R_{1} / r_{1}^{2} (where $r_{1}^{2}=X_{1}^{\prime} X_{1}$) is harmonic: we will check that this holds (for harmonic R_{1}) if and only if $g_{1}+h_{1} / 2=2$.

Denoting by Δ the laplacian and ∇ the gradient, we have the following identities:

$$
\begin{gathered}
\Delta(F G)=\Delta(F) G+F \Delta(G)+2 \nabla F \cdot \nabla G \\
\Delta\left(\frac{1}{G}\right)=2 \frac{\nabla G \cdot \nabla G-G \Delta G}{G^{3}} \\
\frac{G}{F} \Delta\left(\frac{F}{G}\right)=\frac{\Delta F}{F}-\frac{\Delta G}{G}+2\left(\frac{\nabla G}{G} \cdot \frac{\nabla G}{G}-\frac{\nabla F}{F} \cdot \frac{\nabla G}{G}\right)
\end{gathered}
$$

Now suppose $\Delta F=0$ and $G=r^{2}=X^{\prime} X$; then $\nabla G=2 X$ and $\Delta G=2 n$ (where $n=$ number of variables). Suppose F is homogeneous of degree k, so $\nabla G \cdot \nabla F=2 k F$; then $\Delta(F / G)=0$ if and only if $\operatorname{deg} F+\frac{1}{2} n=2$.

The lemma can be used to start an inductive construction by taking R_{i} as harmonic polynomials P_{i}. For instance we get

$$
R(X)=P_{1}\left(X_{1}\right) P_{2}\left(X_{2}\right) \ldots P_{k}\left(X_{k}\right) / r_{1}^{2}\left(r_{1}^{2}+r_{2}^{2}\right) \ldots\left(r_{1}^{2}+\cdots+r_{k-1}^{2}\right)
$$

where $r_{i}^{2}=X_{i}^{\prime} X_{i}$. Note that $R(X)$ is not continuous on the unit sphere $X^{\prime} X=1$.

Next we recall some formulas concerning iterated integrals of 1-forms α_{i} along paths l. If $\alpha_{i}=f_{i}(t) d t$ where l is parametrized by $0 \leq t \leq 1$, then we let

$$
\begin{equation*}
\int_{l}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\int_{0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1} f_{1}\left(t_{1}\right) \ldots f_{k}\left(t_{k}\right) d t_{1} \ldots d t_{k} \tag{3.2}
\end{equation*}
$$

If $l=l_{1} l_{2}$ (path l_{1} followed by path l_{2}, where the end of l_{1} is the beginning of l_{2}) then

$$
\begin{align*}
\int_{l_{1} l_{2}}\left(\alpha_{1}, \ldots, \alpha_{k}\right) & =\sum_{i=0}^{k} \int_{l_{1}}\left(\alpha_{1}, \ldots, a_{i}\right) \int_{l_{2}}\left(\alpha_{i+1}, \ldots, \alpha_{k}\right) \tag{3.3}\\
& =\int_{l_{1}}\left(\alpha_{1}, \ldots, \alpha_{k}\right)+\cdots+\int_{l_{2}}\left(a_{1}, \ldots, \alpha_{k}\right)
\end{align*}
$$

If l^{-1} is the path l run backwards, then $\int_{l^{-1}}=0$. Combining this with (3.3) we get a series of formulas: define

$$
\begin{gather*}
I\left(l ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\int_{l}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \tag{3.4}\\
\tilde{I}\left(l ; \alpha_{1}\right)=I\left(l ; \alpha_{1}\right) \\
\tilde{I}\left(l ; \alpha_{1}, \alpha_{2}\right)=I\left(l, \alpha_{1}, \alpha_{2}\right)-\frac{1}{2} \tilde{I}\left(l, \alpha_{1}\right) \tilde{I}\left(l, \alpha_{2}\right) \\
\tilde{I}\left(l ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=I\left(l ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)-\frac{1}{2} \tilde{I}\left(l ; \alpha_{1}\right) \tilde{I}\left(l ; \alpha_{2}, \alpha_{3}\right) \\
-\frac{1}{2} \tilde{I}\left(l ; \alpha_{1}, \alpha_{2}\right) \tilde{I}\left(l, \alpha_{3}\right)
\end{gather*}
$$

Then using (3.3) with $l_{1}=l, l_{2}=l^{-1}$ we find

$$
\begin{equation*}
\tilde{I}\left(l ; \alpha_{1}, \ldots, \alpha_{k}\right)=-\tilde{I}\left(l^{-1} ; \alpha_{1}, \ldots, \alpha_{k}\right) \quad \text { for } k=1,2,3 \tag{3.5}
\end{equation*}
$$

e.g., for $k=2$,

$$
\int_{l}\left(\alpha_{1}, \alpha_{2}\right)-\frac{1}{2} \int_{l} \alpha_{1} \int_{l} \alpha_{2}=-\left[\int_{l^{-1}}\left(\alpha_{1}, \alpha_{2}\right)-\frac{1}{2} \int_{l^{-1}} \alpha_{1} \int_{l^{-1}} \alpha_{2}\right]
$$

Let now

$$
\alpha_{i}=\boldsymbol{\theta}^{P_{i}, Q_{i}}\left[\begin{array}{l}
A_{i} \\
B_{i}
\end{array}\right](q) \frac{d q}{q}
$$

where $q=\exp (2 \pi i z)$ as before and $\alpha_{i}=0$ at $q=0$ and $q=1$. Then

$$
\left(\int_{0}^{q} \alpha_{1}\right) \alpha_{2}=\theta^{R, Q}\left[\begin{array}{l}
A \\
B
\end{array}\right](q) \frac{d q}{q}
$$

where $R=2 P_{1}\left(X_{1}\right) P_{2}\left(X_{2}\right) / r_{1}^{2}$.
Let $W(q)=\exp \left(-2 \pi i z^{-1}\right)$ and write

$$
W^{*}\left(\alpha_{i}\right)=\theta(W(q)) \frac{d W(q)}{W(q)}
$$

then (2.2) states $W^{*}\left(\alpha_{i}\right)=c_{i} \alpha_{i}^{*}$, where

$$
\begin{gathered}
\alpha_{i}^{*}=\theta^{P_{i}, Q_{i}^{-1}}\left[\begin{array}{c}
-B_{i} \\
A_{i}
\end{array}\right](q) \frac{d q}{q} \\
c_{i}=(-1)^{g_{i}+h_{i} / 2} i^{h_{i} / 2}\left(\operatorname{det} Q_{i}\right)^{-1 / 2} \exp \left(2 \pi i A_{i}^{\prime} B_{i}\right)
\end{gathered}
$$

To prove (2.11), we calculate

$$
\begin{aligned}
W^{*}\left(\left[\int_{0}^{q} a_{1}\right] \alpha_{2}\right) & =\left(\int_{0}^{W(q)} \alpha_{1}\right) W^{*}\left(\alpha_{2}\right) \\
& =\left[\int_{0}^{1} \alpha_{1}+\int_{1}^{W(q)} \alpha_{1}\right] W^{*}\left(\alpha_{2}\right)
\end{aligned}
$$

But $W(0)=1, W(1)=0$ and so

$$
\begin{aligned}
\int_{0}^{1} \alpha_{1} & =-\int_{0}^{1} W^{*} \alpha_{1}=-c_{1} \int_{0}^{1} \alpha_{1}^{*} \\
\int_{1}^{W(q)} \alpha_{1} & =\int_{W(0)}^{W(q)} \alpha_{1}=\int_{0}^{q} W^{*} \alpha_{1}=c_{1} \int_{0}^{q} \alpha_{1}^{*} .
\end{aligned}
$$

Then

$$
W^{*}\left(\left[\int_{0}^{q} \alpha_{1}\right] \alpha_{2}\right)=c_{1} c_{2}\left(\int_{0}^{q} \alpha_{1}^{*}\right) \alpha_{2}^{*}-c_{1} c_{2}\left(\int_{0}^{1} \alpha_{1}^{*}\right) \alpha_{2}^{*}
$$

and adding

$$
-\frac{1}{2}\left(\int_{0}^{1} \alpha_{1}\right)\left(W^{*} \alpha_{2}\right)=\frac{1}{2} c_{1} c_{2}\left(\int_{0}^{1} \alpha_{1}^{*}\right) \alpha_{2}^{*}
$$

we have

$$
W^{*}\left(\left[\int_{0}^{q} \alpha_{1}\right] \alpha_{2}-\frac{1}{2}\left(\int_{0}^{1} \alpha_{1}\right) \alpha_{2}\right)=c_{1} c_{2}\left(\left[\int_{0}^{q} \alpha_{1}^{*}\right] \alpha_{2}^{*}-\frac{1}{2}\left(\int_{0}^{1} \alpha_{1}^{*}\right) \alpha_{2}^{*}\right)
$$

which is just (2.11).

To prove (2.9), let

$$
\begin{gathered}
\alpha_{1}=\theta^{P_{1}, Q_{1}}\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right](q) \frac{d q}{q}, \quad \alpha_{2}=y^{s-1} \theta^{P_{2}, Q_{2}}\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right](q) \frac{d q}{q}, \\
q=e^{-2 \pi y}, \quad \frac{d q}{q}=-2 \pi d y, \quad W^{*} \alpha_{1}=c_{1} \alpha_{1}^{*}, \quad W^{*} \alpha_{2}=c_{2} y^{1-s} \alpha_{2}^{*} .
\end{gathered}
$$

Then

$$
\xi(s, A, B, Q, R)=\int_{y=0}^{\infty} \theta^{R, Q}\left[\begin{array}{c}
A \\
B
\end{array}\right](q) y^{s-1} d y=\frac{1}{2 \pi} \int_{q=0}^{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

Similarly

$$
\begin{gathered}
\xi\left(1, A_{1}, B_{1}, Q_{1}, P_{1}\right)=\frac{1}{2 \pi} \int_{0}^{1} \alpha_{1}, \\
\xi\left(s, A_{2}, B_{2}, Q_{2}, P_{2}\right)=\frac{1}{2 \pi} \int_{0}^{1} \alpha_{2} \\
\xi(s, A, B, Q, R)-\pi \xi\left(1, A_{1}, B_{1}, Q_{1}, P_{1}\right) \xi\left(s, A_{2}, B_{2}, Q_{2}, P_{2}\right) \\
=\frac{1}{2 \pi}\left[\int_{0}^{1}\left(\alpha_{1}, \alpha_{2}\right)-\frac{1}{2} \int_{0}^{1} \alpha_{1} \int_{0}^{1} \alpha_{2}\right] \\
=-\frac{1}{2 \pi}\left[\int_{0}^{1}\left(W^{*} \alpha_{1}, W^{*} \alpha_{2}\right)-\frac{1}{2} \int_{0}^{1} W^{*} \alpha_{1} \int_{0}^{1} W^{*} \alpha_{2}\right] \quad(\text { by } 3.5) \\
=-c_{1} c_{2}\left(\xi\left(2-s,-B, A, Q^{-1}, R\right)\right. \\
\quad-\pi \xi\left(1,-B_{1}, A_{1}, Q_{1}^{-1}, P_{1}\right) \xi\left(2-s,-B_{2}, A_{2}, Q_{2}^{-1}, P_{2}\right)
\end{gathered}
$$

since $W^{*} \alpha_{1}=c_{1} \alpha_{1}, W^{*} \alpha_{2}=c_{2} y^{1-s} \alpha_{2}^{*}$.
Now using $\xi(s)=\pi^{-s} \Gamma(s) Z(s)$, we get (2.9).
It is clear that one can get further formulas of this type using three (or more) differentials.

Section 4

Example. The degree four Fermat curve $X^{4}+Y^{4}=1$ and some related elliptic curves.

This Fermat curve has the classical uniformization by Jacobi's theta functions: in our previous notation, let the 1×1 matrix Q be 1 , and the polynomial P be 1 , and let

$$
\theta_{2}(z)=\theta\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right](z), \theta_{3}(z)=\theta\left[\begin{array}{l}
0 \\
0
\end{array}\right](z), \theta_{4}(z)=\theta\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right](z) .
$$

Then let

$$
X=\frac{\theta_{2}(8 z)}{\theta_{3}(8 z)}, \quad Y=\frac{\theta_{4}(8 z)}{\theta_{3}(8 z)}
$$

Then X, Y satisfy the Fermat curve equation and furthermore the subgroup $\Gamma_{0}(64)$ (all integral unimodular matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $c \equiv 0$ (64)) is their stabilizer in the full modular group. The map (X, Y) of the upper half plane to the Fermat curve F_{4} maps the positive y-axis oriented from $y=\infty$ to $y=0$ onto the segment $l: X=0$ to $1, Y$ real on F_{4}. The upper half plane modulo $\Gamma_{0}(64)$, denoted $X_{0}(64)$ (with cusps adjoined) is mapped 1-1 onto F_{4}.

A basis for the holomorphic 1 -forms on F_{4} is given by

$$
\alpha_{1}=\frac{1}{2} Y^{-2} d X, \quad \alpha_{2}=\frac{1}{2} Y^{-3} d X, \quad \alpha_{3}=\frac{1}{2} X Y^{-3} d X
$$

The corresponding 1 -forms on the upper half plane will be denoted by

$$
\alpha_{i}=f_{i}(q) \frac{d q}{q}
$$

(the $f_{i}(q)$ are cusp forms) where $q=\exp (2 \pi i z)$. In fact α_{1} is a pull back from a 1-form on $X_{0}(32)$ which uniformizes the elliptic curve $Y^{2}=1-X^{4}$ (this last is isogenous over Q to the elliptic curve $Y^{2}=X^{3}-X$). A good reference for these cusp forms $f_{i}(q)$ is Koblitz's book [6].

To express $f_{1}(q)$ as a theta function, let Q_{1} be the symmetric 2×2 matrix $16 I$ so $Q_{1}[N]=16\left(n_{1}^{2}+n_{1}^{2}\right)$, let $P_{1}(X)$ be the homogeneous linear polynomial

$$
P_{1}(X)=2 W X^{\prime} \quad \text { where } W=\left[\frac{1+i}{4}, \frac{-1+i}{4}\right] \in \mathbf{C}^{2}
$$

let $A_{1}=\operatorname{Re} W=\left[\frac{1}{4},-\frac{1}{4}\right], B_{1}=[0,0]$; then

$$
f_{1}(q)=\theta^{P_{1}, Q_{1}}\left[\begin{array}{l}
A_{1} \tag{4.1}\\
B_{1}
\end{array}\right]=q-2 q^{5}-3 q^{9}+6 q^{13} \cdots
$$

To obtain f_{2} we twist f_{1} by the Dirichlet character

$$
\chi(n)=\left(\frac{2}{n}\right)
$$

(quadratic residue symbol which is zero for n even and $(-1)^{\left(n^{2}-1\right) / 8}$ for n odd). f_{2} is the unique newform for $\Gamma_{0}(64)$ given by

$$
f_{2}=\sum_{n=1}^{\infty} \chi(n) c(n) q^{n}=q+2 q^{5}-3 q^{9}-6 q^{13}+\cdots \quad \text { if } f_{1}=\sum_{1}^{\infty} c(n) q^{n}
$$

(f_{2} corresponds to the elliptic curve $Y^{2}=X^{3}-4 X$ while f_{1} corresponds to $Y^{2}=X^{3}+4 X$ as well as to $\left.Y^{2}=X^{3}-X\right)$.

Let $W_{N}(z)=-N^{-1} z^{-1},\left(f \mid W_{N}\right)(z)=f\left(-N^{-1} z^{-1}\right) N^{-1} z^{-2}$. The action of W_{64} on $X_{0}(64)$ is the same thing as the interchange of X and Y on the Fermat curve. It follows that

$$
f_{2} \mid W_{64}=-f_{2} \quad \text { and } \quad f_{1} \mid W_{64}=-f_{3}
$$

Also,

$$
f_{1} \mid W_{32}=-f_{1} \text { so }\left(f_{1} \mid W_{64}\right)(z)=-2 f_{1}(2 z)
$$

Finally $f_{3}(z)=2 f_{1}(2 z)$, or $f_{3}(q)=2 f_{1}\left(q^{2}\right)$, (where we write $f_{i}(z)$ for $\left.f_{i}(\exp 2 \pi i z)\right)$.

To write f_{2} as a theta function, we rewrite f_{1} as the infinite series consisting of a summation over all Gaussian integers a congruent to 1 modulo $2+2 i$ (the conductor), i.e., over all $a=1+2\left(n_{1}-n_{2}\right)+2\left(n_{1}+n_{2}\right) i$ where n_{1}, n_{2} $\in \mathbf{Z}$. Then

$$
\begin{gathered}
f_{1}=\sum_{a \in \mathbf{Z}[i]} a q^{a \bar{a}}, \quad a \equiv 1(\bmod 2+2 i) \\
f_{2}=\sum \chi(a \bar{a}) a q^{a \bar{a}}
\end{gathered}
$$

Since $a \bar{a}=1+4\left(n_{1}-n_{2}\right)+8\left(n_{1}^{2}+n_{2}^{2}\right)$ we have

$$
\begin{gathered}
\chi(n)=(-1)^{\left(n^{2}-1\right) / 8} \\
\chi(a \bar{a})=(-1)^{n_{1}-n_{2}}=e^{i \pi\left(n_{1}-n_{2}\right)}=e^{2 i \pi N^{\prime} B_{2}}
\end{gathered}
$$

where $B_{2}=\left[\frac{1}{2},-\frac{1}{2}\right]$. Let $A_{2}=\left[\frac{1}{4},-\frac{1}{4}\right]$ and $Q_{2}=Q_{1}, P_{2}=P_{1}$ (as in (4.1) and the lines just before it). Then

$$
f_{2}=-i \theta^{P_{2}, Q_{2}}\left[\begin{array}{l}
A_{2} \tag{4.2}\\
B_{2}
\end{array}\right](z)
$$

(since $\left.\exp \left(2 \pi i A_{2}^{\prime} B_{2}\right)=i\right)$.
Finally, let $Q=Q_{1} \oplus Q_{2}=16 I_{4}$,

$$
\begin{aligned}
& R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P_{1}\left(x_{1}, x_{2}\right) P_{2}\left(x_{3}, x_{4}\right) /\left(x_{1}^{2}+x_{2}^{2}\right) \\
& A=A_{1} \oplus A_{2}=\left[\frac{1}{4},-\frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right], \quad B=\left[0,0, \frac{1}{2},-\frac{1}{2}\right] .
\end{aligned}
$$

Then we will find a geometric meaning for the Mellin transform evaluated at $s=1$, i.e., the "iterated period"

$$
\int_{y=0}^{\infty} \theta^{R, Q}\left[\begin{array}{c}
A \\
B
\end{array}\right] d y=\frac{1}{2 \pi} \int_{q=0}^{1} \theta^{R, Q}\left[\begin{array}{c}
A \\
B
\end{array}\right] \frac{d q}{q}=\frac{1}{\pi} \zeta(1, A, B, Q, R)
$$

We recall [1], [2] that for any compact Riemann surface S embedded in its Jacobian J, the cycles S and $\iota(S)$ (or S^{-}) are homologous, where ι is the inverse in the group J. Thus $S-\iota(S)$ is the boundary of a 3-chain C_{3}, C_{3} unique up to a 3 -cycle. Let now $\beta_{i}, i=1,2,3$ be real harmonic 1 -forms with periods in \mathbf{Z} and satisfying

$$
\int_{S} \beta_{i} \wedge \beta_{j}=0 \quad(i, j=1,2,3)
$$

$\int_{C} \beta_{1} \wedge \beta_{2} \wedge \beta_{3}$ is only defined $\bmod \mathbf{Z}$ and can be calculated as follows (see also [3] for the simplest proof).

First, suppose that β represents the cohomology class dual to the homology class of a simple closed curve l_{3}; let S_{3} be the surface with boundary obtained by cutting S along l_{3} and let $\beta_{3}=d B_{3}, B_{3}$ a differentiable function on S_{3}. If l_{3} has basepoint x_{0}, let $\int_{l_{3}}\left(\beta_{1}, \beta_{2}\right)$ be the iterated integral. Then

$$
\begin{equation*}
\int_{C} \beta_{1} \wedge \beta_{2} \wedge \beta_{3}=2\left(\int_{l_{3}}\left(\beta_{1}, \beta_{2}\right)+\int_{S_{3}} B_{3} \beta_{1} \wedge \beta_{2}\right) \quad \text { in } \mathbf{R} / \mathbf{Z} \tag{4.3}
\end{equation*}
$$

For general β_{i} (still satisfying the hypotheses on the β_{i}) (4.3) can be replaced by the corresponding \mathbf{Z}-linear combination.

Suppose now the β_{i} are holomorphic instead of real harmonic and have periods in $\mathbf{Z}(i)$ instead of \mathbf{Z} (this in fact is the case for F_{4}), then (4.3) remains valid in $\mathbf{C} / \mathbf{Z}(i)$ instead of \mathbf{R} / \mathbf{Z}, and furthermore the second term on the right hand side of (4.3) vanishes since $\beta_{i} \wedge \beta_{j}=0$.

Thus $\int_{C} \beta_{1} \wedge \beta_{2} \wedge \beta_{3}$ reduces to the iterated integral $\int_{l_{3}}\left(\beta_{1}, \beta_{2}\right)(\bmod \mathbf{Z}(i))$. For the Fermat curves it turns out that all these iterated integrals reduce to iterated integrals over a single non-closed path: $0 \leq X \leq 1, Y$ real. For F_{4}, of genus 3 , the $\mathbf{Z}(i)$ submodule of $\mathbf{C} / \mathbf{Z}(i)$ generated by $\int_{C} \beta_{1} \wedge \beta_{2} \wedge \beta_{3}$, where the β_{i} are any $\mathbf{Z}(i)$ basis of holomorphic 1 -forms with $\mathbf{Z}(i)$ periods, is generated by (the real number)

$$
\begin{equation*}
\frac{\left[\int_{0}^{1}\left(\alpha_{1}, \alpha_{2}\right)-\frac{1}{2} \int_{0}^{1} \alpha_{1} \int_{0}^{1} \alpha_{2}\right]}{\frac{1}{2} \int_{0}^{1} \alpha_{1} \int_{0}^{1} \alpha_{2}} \tag{4.4}
\end{equation*}
$$

where $\alpha_{1}=\frac{1}{2} Y^{-2} d X, \alpha_{2}=\frac{1}{2} Y^{-3} d X$ as before. Now replacing α_{1} by

$$
\theta^{P_{1}, Q_{1}}\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right] \frac{d q}{q}
$$

α_{2} by

$$
-i \theta^{P_{2}, Q_{2}}\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right] \frac{d q}{q}
$$

and $\left(\alpha_{1}, \alpha_{2}\right)$ by

$$
-i \theta^{R, Q}\left[\begin{array}{l}
A \\
B
\end{array}\right] \frac{d q}{q}
$$

and their integrals over $q=0$ to 1 by
$2 \zeta\left(1, A_{1}, B_{1}, Q_{1}, P_{1}\right), \quad-2 i \zeta\left(1, A_{2}, B_{2}, Q_{2}, P_{2}\right) \quad$ and $\quad-2 i \zeta(1, A, B, Q, R)$
respectively we can state our result as follows, using the notation (2.8) for

$$
\begin{aligned}
Z(s, A, B, Q, R)= & \zeta(s, A, B, Q, R) \\
& -\zeta\left(1, A_{1}, B_{1}, Q_{1}, P_{1}\right) \zeta\left(s, A_{2}, B_{2}, Q_{2}, P_{2}\right)
\end{aligned}
$$

(4.5) Theorem. Consider the three Dirichlet series

$$
\zeta\left(s, A_{i}, B_{i}, Q_{i}, R_{i}\right)=\sum_{N \in \mathbf{Z}^{n_{i}}} \frac{R_{i}\left(\sqrt{Q_{i}}\left(N+A_{i}\right)\right) \exp \left(2 \pi i\left(N+A_{i}\right)^{\prime} B_{i}\right)}{Q_{i}\left(N+A_{i}\right)^{s}}
$$

where

$$
\begin{gathered}
h_{1}=h_{2}=2, \quad R_{1}(X)=R_{2}(X)=2 X W^{\prime}, \\
W=\left[\frac{1+i}{4}, \frac{-1+i}{4}\right], \quad Q_{1}=Q_{2}=16 I_{2}, \\
A_{1}=A_{2}=\left[\frac{1}{4},-\frac{1}{4}\right], \quad B_{1}=[0,0], \quad B_{2}=\left[\frac{1}{2},-\frac{1}{2}\right], \\
h_{3}=4, \quad R_{3}\left(X_{1}, X_{2}\right)=\frac{2 R_{1}\left(X_{1}\right) R_{2}\left(X_{2}\right)}{X_{1}^{\prime} X_{1}}, \quad Q_{3}=16 I_{4} \\
A_{3}=\left[A_{1}, A_{2}\right], \quad B_{3}=\left[B_{1}, B_{2}\right] .
\end{gathered}
$$

Let

$$
\begin{aligned}
Z\left(s, A_{3}, B_{3}, Q_{3}, R_{3}\right)= & \zeta\left(s, A_{3}, B_{3}, Q_{3}, P_{3}\right) \\
& -\zeta\left(1, A_{1}, B_{1}, Q_{1}, R_{1}\right) \zeta\left(s, A_{2}, B_{2}, Q_{2}, P_{2}\right)
\end{aligned}
$$

Then Z is entire in s, satisfies (2.9), and

$$
\frac{Z\left(1, A_{3}, B_{3}, Q_{3}, R_{3}\right)}{\zeta\left(1, A_{1}, B_{1}, Q_{1}, R_{1}\right) \zeta\left(1, A_{2}, B_{2}, Q_{2}, R_{2}\right)}
$$

considered in $\mathbf{C} / \mathbf{Z}(i)$ generates the image of the cycle $\left[F_{4}\right]-\iota\left[F_{4}\right]$ (homologous to zero in the Jacobian $J\left(F_{4}\right)$), under the Abel-Jacobi map, in the 1-dimensional complex torus $H^{3,0}\left(J\left(F_{4}\right)\right)^{*} / H_{3}(J ; \mathbf{Z})$ (where * indicates the dual space).

References

1. B. Harris, Homological versus algebraic equivalence in a Jacobian, Proc. Nat. Acad. of Sciences USA, vol. 80, 1983, pp. 1157-1158.
2. \qquad , Harmonic volumes, Acta Math., vol. 150 (1983), pp. 91-123.
3. \qquad , "Differential characters and the Abel-Jacobi map" in Algebraic K-theory: connections with geometry and topology; J. F. Jardine and V. P. Snaith, Eds., Kluwer Academic Publishers, 1989, pp. 69-86.
4. D. Mumford, Tata Lectures on Theta, I, Chapter 2, Birkhauser; Boston, 1983.
5. C. L. Siegel, Lectures on advanced analytic number theory; Tata Institute, Bombay, 1961.
6. N. Koblitz, Elliptic Curves and modular functions, Springer-Verlag, New York.

Brown University

Providence, Rhode Island

[^0]: Received February 15, 1989.

