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1. Introduction

Theta functions (of one complex variable z in the upper half plane) with
harmonic polynomial coefficients are well known ([4], [5], see (2.1) below).
They satisfy a transformation formula (2.2) under z ---, -z-1 and their Mellin
transforms are Epstein zeta functions of s (see (2.3), (2.4)) which satisfy a
corresponding functional equation (2.5) under s k-s (k a constant).
Using Chen’s iterated integrals we find in this paper theta functions with
certain harmonic rational function coefficients which (when a polynomial
coefficient theta function is added) satisfy the same transformation formula
(but they are not modular forms). Corresponding Epstein zeta functions
satisfy the classical functional equation (2.9 below). We study a particular
example related to the Fermat quartic F4: X4+ Y4= 1 and its Jacobian
J(F4) [1]. Here the value at s 1 of the Epstein zeta function with rational
function coefficients divided by the product of the L-functions of two elliptic
curves (namely y2= X3 + 4X) generates the Abel Jacobi image, in C/Z(i),
of the 1-cycle in J(F4) given by [F4] [t(F4)]. (We consider only the Abel-
Jacobi image in

o ( j(F.) ( J( Z)).

Section 2

We recall now the formulas defining the theta and Epstein zeta functions
associated to a real symmetric positive definite h h matrix Q, two vectors
A,B Rh, and a (non-zero) homogeneous polynomial P(X) of degree g in h
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variables with complex coefficients, which is harmonic:

O2P(
O.

Xh)Xl,...,

Ox2,

The theta function of z x + iy, y > 0, is

(2.1

0"[](z).
E p(gt-(N + A))exp(irzQ[N + A] + 2ir(N + A)’B)
N_Z

where X’ is the transpose of X and Q[ x] X’QX. h will always be even.
Further we assume that as function of y, 0 decreases at least like e-ky as
y and like e-t/y as y 0 (k, > 0); in other words, the constant term
in 2.1 is zero and the same for the transformed series 0(-z -1) (see 2.2):
equivalently either P is non-constant or A and B are non-integral. This will
assure convergence of all integrals we will write. The transformation formula
(equivalent to [5], Prop. 8) is

A](
(_l)’+/=in/=z,+h/=(detQ)-/2exp(2riA,B)Oe, Q-[ 74B](z).

By taking the Mellin transform of (2.1) we obtain the Epstein zeta function
(s,A,B,Q,P):

(2.3) []y,-Xoe, Q A (iy)dy= rr-*F(s)’(s A B Q e)

which we denote as (s, A, B, Q, P). Thus

(2.4)

(s,A,B,Q,P) . P(V/-(N + A))exp(2ri(N + A)’B)
for Res > 1.

NZ Q[N+A]

(s) is an entire function of s and by (2.2) satisfies

(2.5)
I(s, A, B, Q, P)

i-g(det Q)-X/2exp(2riA’B)(g + 1/2h s,- B, A, Q-I, p).
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We can now state our generalization from polynomials P to certain rational
harmonic functions R. In the simplest case, R will be as follows" for 1, 2
let Pi(Xi) be harmonic polynomials in h variables, homogeneous of degree gi
and assume

(2.6) gi + 1/2hi 2

(so either h 2, gi 1 or h 4, gi 0). Let X (X1, X2), an h dimen-
sional variable where h h + h2 and let g gl + g: 2. Define R by

(2.7) R(X) 2Pl( X1)P2( X2)

R(X) and a whole series of similar rational functions will be shown to be
harmonic (3.1). R(X) has degree g gl + g2- 2 and g + 1/2h 2 again.
Given As, Bi, Qi, Pi for 1, 2, let

A (A1, A2), B (B1, B2), Q Q1 Q2 (block direct sum)

and define 0/’Q|| by (2.1)with P replaced by R and similarly
L.!

(s, A, B, Q, R) by (2.3), (2.4). Note that the denominator of R(V/-(N + A))
will only vanish when the numerator vanishes, by our earlier assumption on
the "vanishing of the constant term" so in the series (2.1) or (2.4) these terms
are to be taken as zero. Let now

(2.8)
Z(s,A,B,Q,R)

’(s, A, B, Q, R) ’(1, A1, B1, Q1, P1)( s, A2, B2, Q2, P2)-

Then this Dirichlet series satisfies the functional equation

(2.9) r-’r’(s) z(s, A, :, Q, )

i_S(det Q) -1/2 exp(2riA’B) r-:-’)I’(2 s)
Z(2-s,-B,A,Q-1, R).

(Recall the main assumptions: Pi are harmonic polynomials of degree gi in h
variables with gi + hi 2, R(X) 2PI(X1)P2(X2)/X(.X1, As, B are real
vectors, Qi are real symmetric positive definite h h matrices with h even,
in fact, h 2 or 4 and ’ are defined by (2.3) or (2.4) with P Pi or P R.)
We prove (2.9) in the next section where we also discuss more general rational
harmonic functions. Finally we have formulas corresponding to (2.8), (2.9) for
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the theta functions: with the same notation, define

(2.10)

a"e[a](z), A (z) az (B B B2

Then

(2.11)
1 ih/V-(det Q)-X/Zexp(2riA’B)zV-tS,Q- -AB (z).

Section 3

Examples of rational harmonic homogeneous functions of degree g in h
variables can be built up as follows:

(3.1) LEMMA. If Ri(Xi), i= 1,2 are harmonic functions of degree gi in h
variables ( h even) with gi + -h 2, then

R( X, X2) R(Xx) R2( X2)IXX

is harmonic of degree g gl + g2- 2 in h h + h 2 variables, with
g+ 1/2h=2.

Proof Since the two set of variables are disjoint and R 2 is harmonic, R
will be harmonic if and only if R1/r2 (where rx2 X{XI) is harmonic: we will
check that this holds (for harmonic Rx) if and only if g + hx/2 2.

Denoting by A the laplacian and X7 the gradient, we have the following
identities:

A(FG) A(F)G + FA(G) + 2vF" vG,

1) VG. VG- GAGA =2
G3

A F G -2 G G F G

Now suppose AF 0 and G r2 X’X’, then VG 2X and AG 2n
(where n number of variables). Suppose F is homogeneous of degree k, so
7G vF 2kF; then h(F/G) 0 if and only if deg F + n 2.
The lemma can be used to start an inductive construction by taking R as

harmonic polynomials Pi. For instance we get

R(X) P(XI)P2(X2)...Pk(Xk)/r2(r2 + r22)...(rx2 + +r_)
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where /’i2-- XitXi Note that R(X) is not continuous on the unit sphere
X’X 1.
Next we recall some formulas concerning iterated integrals of 1-forms a

along paths I. If a --f(t)dt where is parametrized by 0 _< < 1, then we
let

(3.2) f,( fo q) A(t ) dt .
<__tl < <_tk <_l

If 1 =IiI2 (path 11 followed by path/2, where the end of 11 is the beginning of
/2) then

k

[2 i-

f/l(l,..., k)d"’’’-t-f/2(al,.--, Otk).

If -x is the path run backwards, then ftt-x 0. Combining this with (3.3)
we get a series of formulas: define

(3.4)

Then using (3.3) with l l, 12 1-1 we find

(3.5) /(1; oq,..., ak) _/(l-X; a,..., ak) for k 1,2,3;

e.g., for k 2,

Let now

eti= Op,Q[Ai] dq

Bi (q)--
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where q exp(2riz) as before and a 0 at q 0 and q 1. Then

ax a2 0R,2 (q)B q

where R 2Px(X1)P2(X2)/r.
Let W(q) exp(-2wiz -x) and write

dW(q)=o(W(q))

then (2.2) states W*(ai) cia, where

a,= 0",’[-B,] dq
a,

To prove (2.11), we cNculate

But W(0) 1, (1) 0 and so

a
w(o)

Then

and adding

we have

2 O (W,o2) C C2 Ol Ol

which is just (2.11).
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To prove (2.9), let

al= Oel, QI[A1] dq

B1 (q)--q-,
q e_2,,y dq

2r dyq

012=" ys_lop2,Q2[A2] dq
Bg_ (q) q’

W*ot Cla, W*ot2 c2yl-sot.

Then

l(s A B Q R)= ,Q A (q)yS-ldy
O fl--0

Similarly

(1, A1, B1, Q1, P1) ’ fo G1,

(s, A2, B2, Q2, Pz) ag_,

(s, A, B, Q, R) rj(1, A1, B1, 01, P1)I( s, A2, B2, a2, P2)
1 [1 1 12 (at’a) at a2

2w (W*ax,W*aa) 1W*a W*az (by3.5)

-cc((: ,- , a, e-, )
-(1,- x, a, QCX, e)(: ,- :, a:, Q,

since W*a1 clal, W*a2 c2yl-Sa.
Now using !(s) =r-’F(s)Z(s), we get (2.9).
It is clear that one can get further formulas of this type using three (or

more) differentials.

Section 4

Example. The degree four Fermat curve X4+ y4= 1 and some related
elliptic curves.

This Fermat curve has the classical uniformization by Jacobi’s theta func-
tions" in our previous notation, let the 1 x 1 matrix Q be 1, and the
polynomial P be 1, and let

[1]02(Z) 0 (Z) 03(Z) 0
0

(z).
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Then let

X= Y=03(8Z ) 03(8Z )

Then X, Y satisfy the Fermat curve equation and furthermore the subgroup
F0(64) (all integral unimodular matrices [a ] with c 0 (64))is their
stabilizer in the full modular group. The map (X, Y) of the upper half plane to
the Fermat curve F4 maps the positive y-axis oriented from y o to y 0
onto the segment 1: X 0 to 1, Y real on F4. The upper half plane modulo
Fo(64), denoted X0(64) (with cusps adjoined) is mapped 1-1 onto F4.
A basis for the holomorphic 1-forms on F4 is given by

1 1
ot - y-2 dX, Ot2 - y-3 dX, a -XY- dX.

The corresponding 1-forms on the upper half plane will be denoted by

(the fi(q) are cusp forms) where q exp(2riz). In fact a is a pull back from
a 1-form on X0(32) which uniformizes the elliptic curve y2= 1 X4 (this
last is isogenous over Q to the elliptic curve y2 X3 X). A good reference
for these cusp forms f/(q) is Koblitz’s book [6].
To express fx(q) as a theta function, let Qt be the symmetric 2 2 matrix

161 so Qt[N] 16(n + nt), let Pt(X) be the homogeneous linear polyno-
mial

Pt(X) =2WX’ whereW= [1+i -1+i]4 4 CZ

let At ReW [,- ], B [0,0]; then

(4.1) fl(q) 0e’2x [At ]B q 2q5 3q9 + 6qt3

To obtain f2 we twist fx by the Dirichlet character

(2)x(n) "
(quadratic residue symbol which is zero for n even and (-1)(n2-t)/8 for n
odd). f2 is the unique newform for Fo(64) given by

f

_
x(n)c(n)q"= q + 2q5- 3q9- 6qt3 + if ft Ec(n)q".

n=l 1
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(rE corresponds to the elliptic curve y2= X3 4X while fl corresponds to
y2 X3 + 4X as well as to y2 X3 X).
Let W(z) -N-Iz -x, (fl Wv)(z) --f(-N-Xz-X)N-xz-2. The action of

W64 on Xo(64) is the same thing as the interchange of X and Y on the Fermat
curve. It follows that

AI -A and A IW64 -f3.
Also,

AIW3z -fx so (AIW64)(z) -2A(2z ).

Finally fa(z)= 2f(2z), or fa(q) 2fx(q2), (where we write f/(z) for
f/(exp 2r/z)).
To write f2 as a theta function, we rewrite fl as the infinite series consisting

of a summation over all Gaussian integers a congruent to 1 modulo 2 + 2i
(the conductor), i.e., over all a 1 + 2(nx n2) + 2(nx + n2)i where n, n 2

Z. Then

aqan, a 1 (mod2 + 2i)

f2 EX( a) aq’.

Since a 1 + 4(nt nz) + 8(n + n) we have

x(n) (-1) (n-1)/8,
x(aft) (-1) "’-"? ei’O’’-’2) e zi’m’n’-

where Bz [1/2,- i]. Let Az [,- ] and Qg_--Qx, Pz P (as in (4.1)
and the lines just before it). Then

(4.2) f2- -iOe’Q?[A2](z)B2
(since exp(2riAB2) i).

Finally, let Q Q 02 1614,

R(xt, x2, x3, x4) P(xl, x2)P2(xa, x4)/(x2 + x)
A=AxA2 [, ,,4,

Then we will find a geometric meaning for the Mellin transform evaluated at
s 1, i.e., the "iterated period"

B dY=- B - _1.(1 A B Q R).
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We recall [1], [2] that for any compact Riemann surface S embedded in its
Jacobian J, the cycles S and t(S) (or S-) are homologous, where is the
inverse in the group J. Thus S- t(S) is the boundary of a 3-chain Ca, Ca
unique up to a 3-cycle. Let now fli, 1, 2, 3 be real harmonic 1-forms with
periods in Z and satisfying

fsfliAflj=0 (i,j= 1,2,3).

fcfll A f12 A fla is only defined mod Z and can be calculated as follows (see
also [3] for the simplest proof).

First, suppose that fl represents the cohomology class dual to the homology
class of a simple dosed curve la; let Sa be the surface with boundary obtained
by cutting S along 13 and let fl3 dBa, B3 a differentiable function on Sa. If 13
has basepoint xo, let f6(flx, f12) be the iterated integral. Then

(4.3) fcfllAfl2Afla=2(fta(flt, fl2)+ fsaBaflAfl2) inR/Z.

For general fli (still satisfying the hypotheses on the fl) (4.3) can be replaced
by the corresponding Z-linear combination.

Suppose now the fli are holomorphic instead of real harmonic and have
periods in Z(i) instead of Z (this in fact is the case for F4), then (4.3) remains
valid in C/Z(i) instead of R/Z, and furthermore the second term on the right
hand side of (4.3) vanishes since fli A flj 0.
Thus fcflx A f12 A fl3 reduces to the iterated integral fla(fll, 2) (mod Z(i)).

For the Fermat curves it turns out that all these iterated integrals reduce to
iterated integrals over a single non-closed path: 0 X < 1, Y real. For F4, of
genus 3, the Z(i) submodule of C/Z(/) generated by fcfl A f12 A fla, where
the fli are any Z(i) basis of holomorphic 1-forms with Z(i) periods, is
generated by (the real number)

(4.4)
[f(a

1y-2where ax dX, a2

0/2 by

0/2) " 0/1 0/2

3Y- dX as before. Now replacing 0/ by

ioP2,Q2
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and (al, a2) by

and their integrals over q 0 to 1 by

2’(1, At, B1, Q1, P), -2i’(1, A2, B2, Q2, P2) and -2i’(1, A, B, Q, R)

respectively we can state our result as follows, using the notation (2.8) for

Z(s, A, B, Q, R) f(s, A, B, Q, R)
’(1, A1, BI, Q, P1)’(s, A2, B2, Q2, P2)-

(4.5) THEOREM. Consider the three Dirichlet series

(s, Ai, Bi, Qi, Ri) E
uz", Q,( N + Ai)

R,(/( N + A,))exp(2ri( N + Ai)’Bi)

where

hl=h2=2, RI(X) =R2(X) =2XW’,

W=
1+i -1+i]4 Q1 Q2 1612,

[0,ol, 1/2l,
2Rx( Xx) R2( X2)

ha=4, Ra(Xx,X2) X{Xx Q3= 16/4

[.41, A], B3 [B, B].

Let

Z(s, A3, B3, Q3, R3) (s, A3, B3, Q3, P3)
’(1, Ax, Bx, Qx, R)(s, A2, B2, Q2, P2)-

Then Z is entire in s, satisfies (2.9), and

Z(1, a3, B3, Q3, R3)
’(1, A1, Bx, Q1, R1)’(1, A2, B2, Q2, R2)

considered in C/Z(i) generates the image of the cycle [F4] t[F4] (homologous
to zero in the Jacobian J( F4)), under the Abel-Jacobi map, in the 1-dimensional
complex torus H3’(J(F4))*/H3(J; Z)(where * indicates the dual space).
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