
ILLINOIS JOURNAL OF MATHEMATICS
Volume 34, Number 2, Summer 1990

Ao-ALGEBRAS AND THE CYCLIC BAR COMPLEX

BY

EZRA GETZLER AND JOHN D. S. JONES

In memory of Kuo-Tsai Chen

This paper arose from our use of Chen’s theory of iterated integrals as a tool
in the study of the complex of SX-equivariant differential forms on the free
loop space LX of a manifold X (see [2]). In trying to understand the behaviour
of the iterated integral map with respect to products, we were led to a natural
product on the space of SX-equivariant differential forms f](Y)[u] of a
manifold Y with circle action, where u is a variable of degree 2. This product
is not associative but is homotopy associative in a precise way; indeed there is
whole infinite family of "higher homotopies". It turns out that this product
structure is an example of Stasheff’s A o-algebras, which are a generalization
of differential graded algebras (DGAs).

Using the iterated integral map, it is a straightforward matter to translate
this product structure on the space of SX-equivariant differential forms on LX
into formulas on the cyclic bar complex of f(X). Our main goal in this paper
is to show that in general, the cyclic bar complex of a commutative DGA A
has a natural A o-structure and we give explicit formulas for this structure. In
particular, this shows that the cyclic homology of A has a natural associative
product, but it is a much stronger result, since it holds at the chain level. Thus,
it considerably strengthens the results of Hood and Jones [3].
We also show how to construct the cyclic bar complex of an A o-algebra,

and in particular define its cyclic homology. As hinted at in [2], this construc-
tion may have applications to the problem of giving models for the S S1-

equivariant cohomology of double loop spaces LL(X) of a manifold and,
since the space of equivariant differential forms on a smooth SX-manifold Y is
an A o-algebra, to the problem of finding models for the space of S S-equivariant differential forms on LY. Although the methods that we use
were developed independently, they bear a strong resemblance with those of
Quillen [6].

Finally, we discuss in our general context the Chen normalization of the
cyclic bar complex of an Aoo-algebra. This is a quotient of the cyclic bar
complex by a complex of degenerate chains which is acyclic if A is connected,

Received February 8, 1989

lln the preprint of [2], the maps m and are exchanged, for which we beg the reader’s
forgiveness.

(C) 1990 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

256



Aoo-ALGEBRAS AND THE CYCLIC BAR COMPLEX 257

and which was shown by Chen to coincide with the kernel of the iterated
integral map in the case A 2(X). This normalization is an important tool
since it allows us to remove a large contractible subcomplex of the cyclic bar
complex.
The first two sections of this paper are devoted to generalities concerning

coalgebras and A-algebras; a good reference for further background on
coalgebras is the book of McCleary [5]. The cyclic bar complex of an
Aoo-algebra is constructed in Section 3, the A-structure on the cyclic bar
complex of a commutative DGA in Section 4, and we discuss Chen normaliza-
tion in Section 5.

All our algebra will be carded out over a fixed coefficient ring K; in fact
nothing will be lost by thinking of the case where K is the integers Z. In
particular, all tensor products are taken over K unless explicitly stated
otherwise. We will make use of the sign-convention in the category of
Z2-graded K-modules, which may be phrased as follows: the canonical map
S2x from Vx (R) V2 to V2 (R) V is defined by

Using the map S2x, we can associate to any permutation o S an isomor-
phism of K-modules

We use the convention that K[x] is a symmetric algebra over K if x has even
degree, an antisymmetric algebra if x has odd degree.
Many of the ideas of this paper arose during our collaboration with Scott

Petrack; our joint paper [2] is in many ways an introduction, and for the
moment the sole application, of this work. The completion of this paper has
been assisted by grants to the first author by the NSF and to the second
author by the SERC.

I. Differential coalgebras and Aoo-algebras

Recall the definition of a differential graded coalgebra (DGC):

DEFINITION 1.1. (1) A (graded) coalgebra over K is a (graded) K-module
C with a comultiplication A: C ---, C (R) C of degree 0, such that the following
diagram commutes (this is called co-associativity):

C C(R)C

C (R) C _La C (R) C (R) C
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(2) A coderivation on a coalgebra is a map L" C C satisfying co-Leib-
niz’s rule, that is, the diagram

LC C

C(R) C L(R)1+1(R)-- C(R) C

commutes.
(3) A differential graded coalgebra is a graded coalgebra with coderivation

b: C C of degree -1 such that b2 0.

The basic example of a graded coalgebra is the cotensor coalgebra of a
graded K-module"

T(V)= Y’.V
n==0

The comultiplication is defined by

,x(o (R) (R) o.’) (ox (R) (R) o,) (R) (o,+ (R) (R)

i=0

In fact, this is the universal example of a graded coalgebra; for every graded
coalgebra C and linear map C V, there is a unique extension to a coalgebra
map C T(V) such that the diagram

C ----* T(V)

V---- V

commutes. We would like to classify all of the differentials that may be
imposed on this coalgebra.
There is a simple characterization of coderivations on a contensor coalgebra,

which is the dualization of a corresponding result for derivations on tensor
algebras.

PROPOSITION 1.2. Composition of a coderivation L" T(V) T(V) with the
projection map T(V) V induces an isomorphism

Coder(T( V ) ) Horn(T( V), V ).
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The inverse of this map is given by the formula

259

n n--i

L , 1(R)y (R) L (R) 1(R)n-i-j,
i----0 j=0

where L denotes the image of L in Hom(V (R)i, V).

If b is a coderivation of degree -1 on T(V) with components b,: V (R)" --> V,
then its square is a coderivation of degree 2 with components

n-j

(b=), E E bi" (1(R)k (R) b (R) l(R)"-k-).
i+j=n+ l k=0

Obviously, the coderivation b will be a differential if and only if all of the
maps (b2)n vanish. In this way, we obtain a characterization of all differentials
compatible with the coalgebra structure on T(V).

Let us write out the first few of these relations:

b

bI

bI

bo= 0,

b + b2 (b0 (R) 1 + 1 (R) bo)= 0,

b2 d- b2 (b (R) 1 + 1 (R) bx) + b (b0 (R) 1 (R) 1 + 1 (R) b0 (R) 1 + 1 (R) 1 (R) bo) 0.

Before attempting to unravel these formulas, we need one more definition. If
A is a graded K-module, let sA be its suspension, that is, the graded K-module

( sh) Ai_ 1.

We would like to rewrite the formulas b2= 0 on the cotensor algebra of a
suspended graded K-module T(sA); this will introduce extra signs into the
formulas. We will denote the element sa (R) (R) sa n of T(sA) by Eilenberg
and MacLane’s notation [ax[
As a warm-up exercise, we have the following lemma, whose proof we leave

to the reader.

LEMMA 1.3. If bk: (sA) (R)k sA is a multilinear map of degree -1, let us

define ink: A (R)k -- A by mk s -1 bk s (R)k. Then the following formula is

satisfied:

bk[axl...lak]

( 1)(k-1)lall+(k-2)la21+ +21ak_2l+lak_ll+k(k--1)/2mk( al, ak).
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We will denote by rh k the multilinear map obtained from mk by multiplying
by the above sign, so that

Srhk(a,..., ak) bk[al ]ak].

PROPOSITION 1.4. If a A, 1 < < n, let e [all + +[ai[ i.
Then the boundary b on T(sA) is given in terms of the maps mk (Or equivalently,
rhk) by the formula

b[al...la,]
n n-k+1

kO =-1

Proof By definition, b[al.., la,] is

n-k+
k=O i=1

(1(R)u-l) (R) bk (R) l(R){"--’+x))[al

n-k+1

k--O i=1
(-1)"-’[axl [a,_xls-lbk[a,[ [a,+k_llla,+k[ la.],

where we use the fact that bk has degree -1 and hence is odd, and that
sal (R) (R) sa_ has degree e_x. Inserting the definition of rk, we see that

b[axl...la,]
n-k+1

k--O i=1
(-1)"-’[ax[... la,_xlfft(a, a,+k_l)la,+l...

which is precisely what we wished to prove.

The above formulas, which determine when b2 0, may be thought of as
generalizations of a DGA structure on A. We will use the notation u for the
element of A defined by m0. Let us write out the first few of these formulas in
full.

(1) The first formula says that rex(u) 0.
(2) The second formula,

m(m(a)) -m2(u, al) + m2(a., u),

says that mx is a differential up to a correction involving the operator ad u.
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(3) The third says that m is a derivation with respect to the product,
again up to certain correction terms involving u"

mt(m2(ax, a2)) m2(mt(at) a2) + (--1)ladm2(at, mr(a2) )
m3(u, at, a2) + m3(at, u, aE) m3(at, aE, u).

(4) The fourth says that the product on A, while not necessarily associa-
tive, is homotopy associative in a precise way, again up to terms involving u"

mE(m2(al, aE), a3) mE(a1, mE(aE, 03))
ml(m3(al, a2, a3))
+ m3(ml.(at), a2, a3) + (--1) latlm (at, mr(a2) a3)
+(--1) lall+la21m 3 (al, a2, rnt (a3))

m4(u, al, a2, a3) + m4(al, t/, a2, a3)
-m4(a ,a2,u,a3) +m4(a ,a2,a3,u).

The outcome of this discussion is that we are led to think of conditions like
d 2 0 or Leibniz’s rule as akin to associativity. Stasheff has defined a natural
generalization of a DGA, which he calls an A-algebra: this is a graded
K-module A along with a differential b on the coalgebra T(sA). (In fact
Stasheff assumes that b0 0 but it is just as convenient to allow non-zero b0,
which gives a preferred element u A-2-) We will call the differential graded
coalgebra B(A) T(sA) of an A-algebra the bar complex of A.

Before continuing, let us give some examples of A-algebras.

(1) If A is a graded algebra with an element D A_x, then we may set
m0 D2, m ad D and m2 equal to the product on A, with all higher m
equal to zero. In this case, the formulas express the fact that ad D is almost,
but not quite, a differential.

(2) If A is a graded complex, we may simply take m 0 except if n 1,
where we take the differential.

(3) If A is a DGA, then it satisfies the above formulas simply by letting
m,, equal zero unless n 1, where we take the differential d: A A, or
n 2, where we take the product A (R) A ---, A.

(4) The example of Stasheff which motivated the whole theory is the
graded abelian group of singular chains on the based loop space of a
topological space.

(5) Consider the complex f(M)[u] of differential forms on a manifold
with smooth circle-action, with a variable u of degree 2 adjoined. Define the
multilinear maps

Pk( tt,..., Wk) a{ M) (R)k a( M)
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by the formula

f,, ^ ^k

where Ak is the k-simplex ((tl,..., tk) Rkl0 <_ tl < < k <_ 1), and is
the vector field which generates the circle action. Then the following maps
define an A-structure on f(M)[u]:

dax + uP(ax),
mk(.,..., Ok) al /x a 2 + uP2(ax, a2)

UPk(al,...,ak),

k-l,

k=2,

otherwise.

Here, we have reversed the grading of fl(M)[u], because the differential of
f(M) raises degree. This is the example which motivated us to consider the
theory of Aoo-algebras (see [2]).

We say that e A0 is an identity in the Aoo-algebra A if for a, a A,

m2(a,e ) =m2(e,a ) =a,
mk( ax,..., ai, e, ai+2, ak) 0 ifk 2.

Just as for algebras, an identity, if it exists, must be unique; if e and f are
both identities, then mE(e, f)= e =f. If A is an Aoo-algebra, then its
augmention A + is the A-algebra with identity whose underlying space is
A K, and where, denoting the basis element of K by e, we extend the maps
mk using (1.5).
The collection of all A-algebras forms a category in a natural way: we

define a homomorphism A- A2 between two A-algebras as a map of
DGCs from B(Ax) to B(A2). The only disadvantage of considering such a
large class of homomorphisms is that it is difficult to write out explicitly what
it means in terms of the generalized products rh n on Ax and A2, since there
are so many different associativity laws that have to be verified. However, it is
at least possible to get some idea of what a homomorphism looks like by
means of the following lemma, which characterizes the coalgebra homomor-
phisms from a graded coalgebra C to T(V), and which reflects the universal
property of the cotensor algebra T(V) among coalgebras with projection
T(V) V.

LEMMA 1.6. Composition of a homomorphism f: C T(V) with the projec-
tion map T(V) --> V induces an isomorphism

Homcog( C, X(V)) --, Hom( C, V).
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The inuerse of this map is giuen by associating to a map f Hom(C, V) the map
with components

An f(R)n
C C (R)" V (R)’"

here, A,,: C C (R)n is the (n 1)-th iterate of the comultiplication map A.

Thus, we see that a homomorphism f: A
determined by a series of maps

between two A-algebras is

f,," A A2

of degree 1- n, and that f0 0, since otherwise f[]= E-o[f01 If0],
which being an infinite sum does not lie in the tensor coalgebra B(A2). In
order that f Hom(B(Ax),B(A2)) respects the differentials b on B(A) and
B(A2), the maps f must satisfy a series of identities, the first few of which
have the form

(1.7a)
(1.7b)
(1.7c)

fx( )
fx(ml(al)) ml(fl(al)),

fl(m2( al, a2)) m2(fl(al), fl(a2))
mx(f2 ( a1, a2) ) f2(ml(al), a2)

( 1)lollf2 (ax, m(a2)).

There is a more restrictive type of homomorphism between two A-alge-
bras: a strict homomorphism A - A2 is a linear map from A to A2 such that
the induced map B(A1) B(A2) is a map of DGCs. Thus, a homomorphism
f of A-algebras is a strict homomorphism if all of the maps fn vanish for n
not equal to 1.

2. Homology of A oo-algebras

If A is an A-algebra, we can associate to it its homology algebra H(A),
which is an ordinary graded algebra, if we impose the following hypotheses
on A"

mk(a,...,u,...,ak) =0 fork> 2,

m2(u, a) m2(a, u) for all a A.

Such an A-algebra will be called standard. This assumption simplifies the
formulas which define an A-algebra; in particular, m becomes a derivation
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with respect to the non-associative product m2, and m2 is homotopy associa-
tive"

m2(m2( at, a2), a3) m2(at, m2(a2, a3))
mt(m3(at, a2, a3)) m3(mt(at), a2, a3)
-(-1) ’’Ira 3 (ax, ml(a2) a3)--(-1) .’’+ll/t3(al, a2, /1(a3)).

The homology of a standard Aoo-algebra is defined as the homology of the
differential rn on A"

H(A) H(A,

The non-associative product on A descends to an associative product on
H(A) and H(A) becomes a graded algebra.

PROPOSITION 2.1. The operation of taking homology A H(A) is a functor
from the category of standard A o-algebras to the category of graded algebras.

Proof Let f: A --) A 2 be a homomorphism of standard Aoo-algebras, with
components

fn" ( sA1) (R)n

A2

of degree 1 n. The fact that f is a homomorphism implies, in particular,
that if at, a 2 At, mt(ft(at)) ft(mt(at)) and

at), ft( a)) ft(rn2( at, a_))

rnt(f(at, a2)) f_(rnt(at), a2) (-1)’a’if(at, rnt(a2)),

from which the result follows.

There is an important generalization of H(A), whose definition depends
upon the following result.

PROPOSITION 2.2. Let A be a standard A o-algebra and let u be the element
m o A_ 2. Then A is a module over the polynomial ring K[ u], where the action

of u is given by a m2(u, a).

Proof. To check that the algebra K[u] acts on A, we must verify that if
a A, then

m2(m2( u, u), a) m2(u rn2( u, a)).
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But the hypothesis that A is a standard A o-algebra gives the following
formula:

m2(m2(u, u), a) m2(u, m2(u, a))
-mx(ma(u,u,a))+ma(u,u, ml(a))=0.

Let W be a graded module over K[u]. Forming the graded K[u]-module
A (R)rt,lW with boundary map b, we define

The following result follows from standard homological algebra.

PROPOSITION 2.3. Suppose that K is a fieM and let

Jo- ww w3o

be a short exact sequence ofK[u]-modules. Then there is a long exact sequence of
homology groups

--, H.(A; Wx) -, n.(A; W) s_, H.(A; W) --, n.+(a; w) --,

Let A be the graded algebra K[e] generated by a single supercommuting
variable e of degree 1. A differential graded A-module (also called a mixed
complex by C. Kassel) is just a graded K-module V with two supercommuting
differentials b: V, V,_ and B: V, V,+ 1. The homology of a dg-A-mod-
ule V with coefficients in the K[u]-module W is defined to be

H( v; w) =/4( v[ u] (R)t.w, + u).

This may be reduced to the homology of an Aoo-algebra whose underlying
space is the graded K-module V[ u] K[u]; we set mo u, m b + uB on
Vl[u] and zero on K[u], m2 is given by the action of K[u] on V[[u], and all
other m, are zero. It follows easily that the homology of this Aoo-algebra with
coefficients in W is just

H(V (R) W, b + uB) K[u] H(V; W) K[u].

The next result expresses a basic invariance property of the homology of a
dg-A-module.

PROPOSITION 2.4. Let f: (V1, b1, Bx) -) (V2, b2, B2) be a map of dg-A-mod-
ules such that f induces an isomorphism H(V1, bl) - H(V2, bE). Then for any
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coefficients W of finite projective dimension
H(V2; W) is an isomorphism.

over K u ], f: H(V1; W)

Proof. The main step in the proof is contained in the following lemma.

LEMMA 2.5. If ( V, b, B) is a dg-A-module such that H(V, b) O, then
n(vu], b + uB ) O.

Proof If a(u) Zk_oaku
so that

k is a cycle in V u]l for the differential b + uB,

( b + uB ) ’ akuk= O,
k=0

then it must follow that bao 0. Since H(V, b)= 0, there is an element
co V such that bco ao. It follows that

(b + uB)( )ak+luk + (al- Bco)
k=l

By induction, we obtain a sequence of elements ca V such that

( b + uB) - Ckuk= akUk + un+lBCn
k=O k =0

Taking the limit as n ---) , we see that a(u) is exact.

We can now complete the proof of 2.4. By a standard use of the mapping
cone it is sufficient to show that if (V, b, B) satisfies H(V, b)= 0, then
H(V; W) 0 for all K[u]-modules W of finite homological dimension. This
follows if W is a free K[u]-module directly from 2.5. The general case follows
using induction on the homological dimension of W over K[u]. m

3. The Hochschild chain complex of an A oo-algebra

If A is a DGA, the cyclic bar complex of A is the graded K-module

C(A, A +) A+(R) B(A);

it is a dg-A-module with respect to the Hochschild differential b and Connes’s
coboundary operator B. If we denote the element a0 (R) [all lag] of
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C(A, A 4) by (a0, ax,..., at, ), then the operator b is given by the formula

k

b(a0,..., at,) E (-1)e’(a0,..., ai-x, aiai+x, a/+z,.-., at,)
i=0

-t- ( 1)(lat’l-1)et’-x( akao, al,... ak_l)
k

(-1)"-’(ao,..., a,_ x, da i, ai+x, ak),
i---0

where e aol + + ail i. The formula for B is

k

B(ao,..., at,) E (-1)(-’+x)(-’-’)(e, ai,..., at,, ao,..., ai_x),
i=0

where e is the identity adjoined to A /, and it is understood that
B(e, ax,..., ak)= 0. These sign conventions take into account that the ele-
ments a for > 0 occur with an implicit suspension which reduces their
degree to al 1. It is a standard calculation that the operators b and B are
well defined, and that (C(A, A /), b, B) is a dg-A-module. The homology of
(C(A, A/), b) is the Hochschild homology of A with coefficients in the
bimodule A 4.

There is a map from the dg-A-module (C(A, A /), b, B) to the dg-A-module
(K, 0, 0), given by sending (ze) to z for z K, and all other chains to zero. If
IV is a K[u]-module, this induces a map of cohomology groups

H(C(A, A+); W) --) W,

the kernel of which is called the cyclic homology of A with coefficients in W,
and denoted HC(A; W). Let us list some examples with respect to different
coefficients IV.

(1) W K[u] gives the negative cyclic homology HC-(A) of Goodwillie
and Jones, which is the most fundamental theory;

(2) IV= K[u, u-x] gives periodic cyclic homology HP(A), so called be-
cause

HP,(A) =- HP,+2(A),
the isomorphism being implemented by multiplication by u;

(3) W K[u, u-X]/uK[u] gives the cyclic homology theory HC(A) stud-
ied by Feigin and Tsygan, and Loday and Quillen;

(4) W K gives the Hochschild homology HH(A); if A has an identity
this is just the usual Hochschild homology of A with coefficients A considered
as a bimodule over itself H(A, A).



268 EZRA GETZLER AND JOHN D.S. JONES

If K is a field and we apply 2.3 to the short exact sequence

0 K[u, u-l/K[u] --, K[u, u-ll/uK[u] K--, O,

we obtain the fundamental exact sequence relating cyclic homology and
Hochschild homology,

---, HC.+2(A) HC.(A) HH.(A) HC.+I(A) ...,
while applying it to the short exact sequence

0 --* uK[u] K[u, u-ll K[u, u-ll/uK[u] O,

gives the sequence

HC-+2(A) HPn(A) HCn(A) HC-+I(A)

In this section, we will develop the analogue of the above homology theories
when A is an A o-algebra.

If A is an Ao-algebra, there is a natural notion of left and right modules,
and of bimodules, over A. In order to define these, we will need the definition
of left, right and bi-comodules over a DGC.

DEFINITION 3.1.
linear map

A left comodule for a DGC C is a complex P and a

AL" p->c(R)p

such that the diagram

aLP ---> C(R)P

C(R) p
(R)"

C(R)C(R)P

commutes and such that the coaction respects the differentials

aLP ---C(R)P

bI I b(R)l+l(R)b
P --’-)C(R)P.

A right comodule with coaction At: P ---, P (R) C is defined in a similar way.
Finally, a bi-comodule is a graded K-module P with both left and right
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coactions AL and AR such that the following diagram commutes"

P ---* C(R)P

p (R) c_el c (R) P (R) C.

269

If M is a graded K-module and C is a graded coalgebra, there is a canonical
left-coaction of C on the graded K-module C (R) M, a canonical right-coaction
of C on M(R) C, and a canonical bi-coaction of C on C(R)M(R) C. For
example, the left-coaction of C on C (R) M is defined by the equation

AL(c(R)m) (Ac) (R)m C(R) C(R)M.

If C is in addition a DGC, it is natural to ask what differentials may be
imposed on the comodules C(R)M, M(R) C and C(R)M(R) C which are
compatible with the differential on C. Motivated by the classical case in which
C is the bar coalgebra of a DGA A, we maker the following definition for an
arbitrary Aoo-algebra A.

DEFINITION 3.2. (1) If M is a graded K-module, a left-module structure
for M over an Aoo-algebra A is a differential b on the left-comodule B(A) (R) M
over the coalgebra B(A) compatible with the differential on B(A). The
definition of a right-module is similar, except that B(A) (R) M is replaced by
the right-comodule M (R) B(A).

(2) If M is a graded K-module, a bimodule structure for M over an
A o-algebra A is a differential b on the bi-comodule B(A) (R) M (R) B(A) over
the coalgebra B(A) compatible with the differential on B(A).

Obsee that if M is a left-module and N is a right-module for an
Aoo-algebra, then N (R) M is a bi-module; this follows from the fact that the
tensor product

(B(A) (R) N) (R) (M (R) B(A)),

which is a bi-comodule of B(A), is isomorphic to B(A) (R) (N (R) M) (R) B(A)
as a bi-comodule.

Suppose M is a left-module for an Aoo algebra A. It is easy to see that the
differential on B(A)(R) M is defined uniquely by a linear map bM from
B(A) (R) M to M, which decomposes into a series of maps

mk(ax,..., ak_l; X)" A(R)(k-l) (R) M - M, k > 0,

satisfying a series of equations analogous to those defining an A o-structure.
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For example, we see that mx: M M is a differential which satisfies Leibniz’s
rule in the form

ml(mx(x)) m2(u; x),

where u is the element of degree -2 in A defined by m0. As another example,
the left action of A on M in the usual sense is the map m2: A (R) M ---, M, of
total degree 0, which satisfies the Leibniz relation

ml(m2(a’, x)) m2(ml(a )’, x) + (-1)’alm2(a’, ml(x))
+ m3(u, a; x) + m3(a, u; x),

and the associativity relation

mz(al; m2(a2; x)) mz(mz(a1, a2); x)
ml(m3(al, a2; x)) + m3(ml(al), a2; x)
+(-1)lallm3(al, ml(a2); x) + (-1) lal+la21m3(al, a2; ml(x))
m4( u, al, a2; x) + m4( a1, u, a2; x) m4( al, a2, u; x).

Similarly, a bimodule structure on a graded K-module M is determined by a
series of maps

mij (al,..., ai_l; x; 5,..., 5j_l)" A (R)(i-1) (R) M (R) A (R)(1-1) --) M,

satisfying certain equations.
One of the most important examples of a left-module for A is the graded

K-module A itself, with b, defined by the formula

(3.3) mij(al,..., ai_l; a; 51,..., 5j-l)
m,+j_l(al,..., a,_l, a, 1,..., 5j-l)-

It is an easy task to check that this is compatible with the differential b on
B(A). As a generalization of this construction, we have the following result.

PROPOSITION 3.4.
a bimodule over Ax.

1ff: A A2 is an Aoo-homomorphism, then A: becomes

Proof This is true simply because B(A) is made into a bi-comodule of
B(A1) by the homomorphism of coalgebras f: B(A1) B(A). I

An example, which we will need later in the construction of the cyclic bar
complex, is the bimodule associated to the augmentation A + of the Aoo-alge-



A o-ALGEBRAS AND THE CYCLIC BAR COMPLEX 271

bra A; here, we use the fact that the inclusion A A + is an Aoo-homomor-
phism, and is even strict.

If M is a left-module over the A o-algebra A and N is a right-module, then
we can form the two-sided bar-complex B(M, A, N), which is a graded
complex, by taking the cotensor product of B(A)-comodules:

B(M, A, N) (M (R) B(A)) (R).(a)(B(A) (R) N).

The differential on B(M, A, N) is determined by the differentials on
M (R) B(A) and B(A)(R) N which define the left-module and right-module
structures. As a K-module, the bar complex B(M, A, N) is isomorphic to
M (R) B(A) (R) N. Denoting a typical element as a sum of terms of the form
x (R) [al la] (R) y, the differential may be written as follows:

b(x (R) [axl lak] (R)y)
k

E -t- mi+l(X; ax,... ai) (R) [ai+x[ la] (R) y
i--0

k k-i

+ 2 E +/- x (R) [axl lajlmi(aj+l,..., aj+i)laj+i-ll lak] (R) y
i--0 j----0

k

+ , +_ x (R) [all lak_i] (R) mi+l(ak_i+ 1 ak’, y).
i=O

Here, the signs may be determined precisely if so desired, by means of the
standard sign conditions. We will now generalize this construction by defining
the bar complex for a bimodule over an Aoo-algebra, in such away that it will
reduce to B(M, A, N) when applied to the bimodule N (R) M.

If P is a differential graded bi-comodule over the DGC C, then the two
coactions AL and AR of C on P give two maps AR and S21 AL from P to
P (R) C, which respect the differentials on these two spaces; here, S2x is the
natural map $2: C (R) P -) P (R) C which implements the sign convention for
ZE-graded objects. Thus, if we denote by (I)(P) the graded K-module obtained
from P by taking the kernel of AR $2 AL: P P (R) C, we see that (I)(P)
inherits a differential from those of C and P. It is not hard to check that (I) is
a functor from the category of C-bimodules to the category of complexes.

DEFINITION 3.5. The Hochschild complex of an A o-algebra A with coef-
ficients in the bimodule M, denoted by C(A, M), is the complex (I)(B(A) (R) M
(R) B(A)). The homology of this complex, called the Hochschild homology of
A with coefficients in M, is denoted by H(A, M).

We would now like to identify the complex (B(A) (R) M (R) B(A)) more
explicitly. In fact, as a K-module, it may be identified with M (R) B(A), by
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means of the projection from B(A) (R) M (R) B(A) to M (R) B(A) given by the
counit 1" B(A) K:

(I)(B(A) (R) M (R) B(A)) ’--> B(A) (R) M (R) B(A)
,1(R)1(R)1

M(R) B(A).
To show that this is an isomorphism of K-modules, we have only to construct
an inverse; we will use the map

s3" (R) u(a) (R) u() - u(a) (R) (R) u(a)
which swaps the right-hand graded K-module B(A) past the left-hand one
M (R) B(A).

PROPOSITION 3.6. The map S3x2 (1 (R) A) obtained by composing the arrows

identifies M (R) B(A) with d#(B(A) (R) M (R) B(A)).

Proof We will use the notation (x, al,..., ak) for the element obtained by
applying the above map S3x2 o(1 (R) A) to x (R) [axl... lak] M (R) B(A); in
other words,

k

(x, ax,..., ak) E (-1)(e’+lxl)(k-e’)[ai+il lal (R) x (R) [all lai].
i-0

From this formula, it is clear that the composition

M (R) B(a) ’( B(a) (R) M (R) B(A)
(R)I(R)1

is the identity. Furthermore, from the formula for (x, ax,..., a k), it is clear
that it lies in tI)(B(A)(R) M (R) B(A)); more abstractly, this follows from the
co-associativity of the comultiplication A. Finally, we must show that the
composition

(B(A) (R) M (R) B(A)) .1(R)1(R)1) M (R) B(A)
o(

(B() (R) (R) B())
is the identity; this is true because rl is a counit, m

It follows easily from the formula for (x, al,..., ak) that the differential on
C(A, M) is given by the formula

b( x, a,..., an)
E + (mij( an-j+2,’’ an; X; al,..., ai_l) ai,..., an_j+1)

i+j<n

n n-k

+ E E +--- (X, al,... ak, mi(ak+l,... ak+i) ak+i+l,... an).
=o k--O
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Connes, in his theory of cyclic homology, has underlined the importance of
the Hochschild complex with coefficients in the augmented comodule A +,
which we defined at the end of Section 1. The reason for the importance of
this case is that there is a natural boundary B on C(A, A 4), which raises
degree by one and supercommutes with b, so that C(A, A 4) is actually a
dg-A-module. The operator B is defined by the formula

Bao, ax,..., an)

(- 1)(ei-t+l)(ek-e-l)(e, ai,..., an, ao, al,... ai_l)
io

Co(A, A+),

where the signs are determined, as usual, by the sign convention. Here,
Co(A, A 4) is the subspace of C(A, A 4) consisting of chains of the form
(e, ax,..., an); in other words,

Co(, A /) B(A) (R) C (R) a() ,(a() (R) /(R) B(A))

In particular, if the elements a are all even (this was the case originally
considered by Connes), we have

n

B(ao,at,...,an) E(-1)’n(e,a,,-..,an,ao,at,...,ai_t).
iO

It is obvious that B2 O, since B maps into C0(A, A +), but vanishes when
applied to an element of this space. To show that [b, B] bB + Bb O, we
will use a different formula for the B-operator, which uses the fact that we
have identified C(A, A 4) with

(B(A) (R) A /(R) B(A)).

We will introduce the maps (p" B(A) (R) A + (R) B(A) ---) B(A), defined by the
formulas

[at[ la,] (R) a (R) [btl Ibj] [all la,lalbtl Ibj],
(p[axl la,] (R) e (R) [bl Ib] O,

and o: B(A) --) B(A) (R) A 4 (R) B(A), which is defined by

k

o[atl la] ] [all [a,] (R) e (R) [a,+tl
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It is evident from these formulas that both q0 and o are maps of B(A)-bi-com-
odules, so that on applying the functor to them, we obtain maps

(): C(,A /) ,(U().(R) A/(R) U()) -,

,(o): (B(A)) -, Co(, A /) (B(A) (R) A/(R)

The operator B: C(A, A /) C0(A, A /) is equal to the composition

(o)
C(A,A +) (B(A)) Co(A,A+);

indeed, this might have served as our definition of B.
To show that [B, b] 0, we must check that both and o are maps of

complexes. In the case of 9, this follows immediately from the definition (3.3)
of the Aoo-module A /.
We now rewrite o as the composition

B(A) +/- B(A) (R) B(A) _-- B(A) (R) K (R) B(A) - B(A) (R) A/(R) B(A).

Of course, since B(A) is a DGC, A is a map of complexes. It remains to show
that the inclusion

B(A) (R) K (R) U(a) B(A) (R) A /(R) B(A)

is a map of complexes. This is the same thing as showing that the inclusion
K A / is a homomorphism of A-bimodules, where K is given the trivial
A-bimodule structure for which all maps mij vanish. Let us denote the
differential on B(A) (R) K (R) B(A) by bK, and that on B(A) (R) A + (R) B(A) by
b +. Applying the difference b/- br to a chain

[atl lai] (R) e[a,+tl la],

we obtain

k min(i+l,k-j)

j----O /----1

( 1) et-t[ al[

(R) rhj(a a i, e, ai+l,..., atj_) (R) [at+jl lak].
However, all of the terms in this sum vanish except those with j 2,

(-1)’-[atl la,_x] (R) rhz(ai, e) (R) [a,+l la]
-(-1)’-[atl la,] (R) rhz(e, ai+l) (R) [a,+2l la],

and these two terms cancel.
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To summarize, we have proved the following theorem.

THEOREM 3.7. lfA is an Aoo-algebra, the Hochschild complex (C(A, A /), b)
may be made into a dg-A-module, by means of the operator B.

4. The cyclic bar complex of a commutative dga

In this section, we will discuss the cyclic bar complex in the special case
where A is graded commutative; the example that motivates us is the DGA of
differential forms on a smooth manifold, but we will not use any special
features of this DGA. Our goal is to prove that underlying the dg-A-structure
on C(A, A /) described above, there is a rich Aoo-algebra structure on the
K[u]-module C(A,A+)[u]I, which comes from a sequence of multilinear
operators that generalize Connes’s B-operator. The formulas that we give
should be thought of as a more precise version of the results of Hood and
Jones [3], who only construct the product structure on the cyclic homology
spaces HC(A; W).
What makes the case of a commutative DGA special is that its bar complex

B(A) has a commutative product (the shuffle product) compatible with the
coproduct and the differential; in other words, B(A) is a differential graded
Hopf algebra. Let us recall the definition of the shuffle product.

If (at,..., a,) and (bt,..., bq) are two ordered sets, then a shuffle X of
(at,..., ap) and (bt,..., bq) is a permutation of the ordered set
(at,..., ap, bt,..., bq) with the property that x(ai) occurs before x(aj), and
X(bi) occurs before x(bj), if < j. The shuffle product on B(A) is defined as

the sum over all shuffles on the ordered sets

(a,..., ai),(aX2,..., a) Esx(sa (R) (R) sai (R) sa2 (R)... (R) sa),

where Sx" sA (R)I+ --. sA (R)i+y is the transposition operator which inserts the
correct signs. The following proposition summarizes the properties of this
product.

PROPOSITION 4.1. The shuffle product on B(A) is associative and commuta-
tive with identity and it defines a Hopf algebra structure on B(A). If A is a
commutative DGA, the boundary b on B(A) satisfies Leibniz’s rule with respect
to the shuffle product, so that B(A) is made into a commutative DGA.

If M is a differential graded module over the commutative DGA A, then
the space

B(A) (R) U (R)
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may be made into a differential graded Hopf module over B(A); since we
already know the comodule structure and the differential, we have only to
define the module structure, which is done by using the diagram

(R) (B(A) (R) (R)

*(R)1(R)*
B(A) (R) (R) B(A)

Similarly, if M and N are differential graded modules over the commutative
DGA A, there is a pairing

(B(A) (R) M (R) B(A)) (R) (B(A) (R) N (R) B(A))
B(A) (R) (M (R) N) (R) B(A)

defined by

(a1 (R) x (R)/3x)*(a2 (R) y (R)/32)

( 1)Ixll-,_l+lOlll-21+lO=lD’l(ax * a2) (R) (x (R) y) (R) ( B */32)-

If we restrict this pairing to (B(A) (R) M (R) B(A)) (R) (B(A) (R) N (R) B(A)),
we see that it maps into (B(A)(R) (M (R) N)(R) B(A)), and so defines a
pairing

C(A,M) (R) C(A,N) C(A,M(R)N),

(x, ai,...,ai)*(Y,a2,...,a)
E(x (R) y) (R) Sx(saI (R)... (R) saix (R) sa2 (R) (R) sa).
x

As before, the Hochschild boundary b satifies Leibniz’s rule with respect to
this pairing.

Finally, the space B(A) (R) A +(R) B(A) is made into a comrnutative DGA by
the shuffte product, by composing the pairing

(B(A) (R) A+(R) B(A)) (R) (B(A) (R) A+(R) B(A))
B(A) (R) (A+(R) A +) (R) B(A)

with the commutative product A +(R) A+ A +. This product restricts to a
product on C(A, A +) (B(A) (R) A +(R) B(A)), with the following properties.
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PROPOSITION 4.2. (1) The shuffle product on C(A, A +) is associative with
identity (e). If A is a commutative DGA, the product is commutative and the
HochschiM boundary b on C(A, A +) satisfies Leibniz’s rule with respect to the
shuffle product, so that C(A, A +) is a commutative DGA.

(2) If M is a bimodule for the DGA A, the shuffle product action of
C(A, A +) on C(A, M) is associative. If A is a commutative DGA, the action

satisfies Leibniz’s rule with respect to the HochschiM boundaries b on C(A, A +)
and C(A, M).

It follows from this proposition that the Hochschild homology HH(A, A +)
of a commutative DGA is a graded commutative algebra, and that HH(A, M)
is always a module for this algebra.

If A is the algebra of smooth functions on manifold M, it was proved by
Hochschild, Kostant and Rosenberg that its Hochschild homology
HH(C(M)) is isomorphic to the space of differential forms on M; this
isomorphism is realized by the map which sends the chain

(f0, f,) C(C=(M), C=(M) + )
to

1

and the chain

to

(e, fl,..., f.) C(C(M), C(M) + )

1

It is fairly easy to see that the product induced HH(C(M)) by the shuffle
product is the exterior product. It is important to observe that the B-operator
on C(C(M), C(M)+) induces a coboundary on HHn(C(M)) equal to the
exterior differential, as can be seen from the diagram

,--o(- 1) e, f/, f. f0, f-l)

lfodfx .df,,
d 1

(n + 1)! dfdf’’’dfn

This simple fact is one of the most important reasons for introducing the
B-operator.
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The differential b + uB is not a derivation with respect to the shuffle
product; if we wish to induce a product on the cyclic homology spaces
HC(A; W), we must find a product on C(A, A +)[ u]] for which it is. Later in
this section, we will define a sequence on maps Bk, k > 0, with the following
properties.

LEMMA 4.3. The operator Bk is a multifinear map C(A, A+)(R)k-->

Co(A, A +) of degree k such that B is the operator B of Connes, such that
Bk(Otl,..., Otk) vanishes if a Co(A, A +) for any 1 <_ <_ k, and satisfying
the cocycle property

k

--bBk(aX,’",ak) E (--1)"-lBk(aX,...,bai,...,ak)
i--1

+ O * Bk_l(O2,..., Ok)
k-1

+E(1) e’

i==1

Using the maps Bk, we define a sequence of multilinear products k,
k > 0, on C(A, A +)[ u] as follows"

ba + uBa1,

//k( IT1’ Ok) ( 1)[al[lT * O2 + uB2( 01, 02)
UBk(a,...,a),

k.l,

k=2,

otherwise.

From these, we define maps mk(aX,..., ak) as in Section 1 by a sign change

( 1)(k-1)la11+(k-2)la21+ +2[ak_2l+lak_ll+k(k--1)/21k( O1,..., Ok).

THEOREM 4.4. The graded K-module C(A, A +)[ u] with the above multilin-
ear maps mk is a standard A o-algebra.

Proof. The definition of an Aoo-structure in Section 1 amounts to the
following collection of formulas"

k

E E(1) ’-1"mk(Otl,’’ "i-l, l,(Oti,... 0i+/_1),... Otn) O.
k+l=n+l i--1

This formula may be decomposed into three pieces which must vanish sepa-
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rately, corresponding to terms accompanied by no power of u, by the
coefficient u, and by the coefficient u 2. The first of these vanishes simply
because b satisfies Leibniz’s rule with respect to the shuffle product, while the
third vanishes because Bk equals zero if any of its arguments lies in C0(A, A /),
or in particular is B of something. Bearing this in mind, we have only to show
that the coefficient of u vanishes; this turns out to be the cocycle formula
of 4.3. m

In order to define the higher maps B,, we need a little combinatorial
machinery. Given numbers/t(i), 1 < < k, let C((1) ,/(k)) be the set

ordered lexicographically, that is

( J ) < ( ) if and only if < k or k and j <!
k

A cyclic shuffle o is a permutation of the set C(#(1),...,/(k)) which satisfies
the following two conditions:

(1)

(2)

1.01 t0)o < o if < i2, and
\111 i2

for each I _< _< k, there is a number 0 _< Ji -</(i) such that

We will denote the set of cyclic shuffles by S(/(1),..., #(k)).
If we imagine the set C(/t(1),...,/.t(k)) arranged as a grid in the plane, so

the /-th column is made up of the points (,o.), ..(t) "..((’)), then a cyclic
shuffle is given by first applying a cyclic permutation to each column and then

shuffling the columns together in such a way that (
i <i2.

To each cyclic shuffle o, there is a corresponding isomorphism of graded
K-modules

If ai= (a,..., aO)), 1 < < k, is a set of elements of C(A, A +), we define
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Bk by the formula

0 a a(k)))Bk((a01, alx,..., a(X)),...,(ak,
0. e (R) So(sa (R) sa (R) (R) sa(t) (R) (R) sa k

o( 2(/(1) (k))

(R) Sak (R) (R) sa(k) )

From this formula, it is immediately clear that nk(al,... OCk) C0(A, A +),
and that it vanishes if any of the a lie in C0(A, A /). Let us now prove the
cocycle formula contained in 4.3, which will complete the construction of the
A-structure on C(A, A /).

Consider the result of applying -b to a typical term C of the chain
Bk(aX,..., ak). First of all, note that those terms in bC where the differential
d on A hits an entry a/ correspond precisely to those terms in
Y"i(-1)e’-lBk(aX, bai,..., Otk) in which the differential d occurs. The re-
maining terms involve the product a/atk of two consecutive entries; it is easiest

understand the result by classifying these according to the indices () andto

(1) The first possibility is that we are forming the product of e and a and
C (e, a,... ). The collection of terms coming from this possibility conspire
to produce the chain a Bk_x(a2,..., ak).

(2) Similarly, we may have the product of a and e in C (e,..., ak).
The terms coming from this situation give the chain

( 1) k-lBk_x( a2,..., ak_X) * ak.

(3) The remaining terms involving e also involve an entry a[, 1 < j </(i),
and these terms cancel pairwise, since the entry a[ can occur in either the left
or the right, and one may check that the signs in these two cases are opposing.

(4) We now come to the products that are "internal" to the chain bC, that
o 0 thenis, do not involve its zeroth entry e. If such a product is of the form aaj,

the nature of a cyclic shuffle shows that j + 1. This collection of terms
produces the sum

k-1

E ( 1) ’Bk_x(ax,..., a, * ai+x,..., ak).
i-1

j(5) Next, we may consider the terms in which we have a product ai.
P,()Since the cyclic shuffle has the effect of cycling the indices ((i)’"" ( i 1)’ it

is clear that either --j + 1 or 0 and j --/(i), and we find precisely those



Aoo-ALGEBRAS AND THE CYCLIC BAR COMPLEX 281

terms in (--1)et-lBk(al,..., bai,..., ak) which come from products of ele-
ments in ai, as against differentials.

(6) Finally, we have the products a[atk in which k and j + > 0.
These terms cancel from the sum, since ( 1)la/llatklaiak occurs with the
opposite sign, and the algebra A is (graded) commutative. (This is the only
point at which we use the hypothesis that A is graded commutative.)

5. The Chen normalization of the cydic bar complex

In this section, it will be convenient to change the grading of the complexes
of the preceding sections. Our A-algebras will now have a grading for which
the multilinear products mn have degree 2- n, and the differential b will
raise degree on B(A) by one, while B lowers it. We will assume that our
Aoo-algebras A and bimodules M are concentrated in positive degrees, which
under the old grading would have corresponded to negative degrees. The
original example which motivated the following results is that in which
A fl(X) is the DGA of differential forms on a manifold.

Let us introduce a normalization of the cyclic bar complex due to Chen [1];
its purpose is to get rid of chains of negative degree in the cyclic bar complex
C(A, M). If f is an dement of A0, we define operators Si(f) on C(A, M) by
the formula

S(f)(x, al,..., an) (x, ax,..., a_, f, ai,...,

We now define D(A, M) to be the subspace of C(A, M) generated by the
images of the operators Si(f) and Ri(f)= [b, Si(f)], and the Chen nor-
malised chain complex to be the quotient complex N(A, M)=
C(A, M)/D(A, M). The following result shows that the Chen normalization
leaves many of the structures that we have considered on C(A, M) in place.

PROPOSITION 5.1. (1) The differential b maps D(A, M) to itself.
(2) If M A /, the shuffle product and the multilinear maps Bk take values

in D(A, A /) if any of their arguments are in D(A, A /).
It follows that:

(3) (D(A, M), b) is a sub-complex of (C(A, M), b).
(4) (D(A, A +), b, B) is a sub-dg-A-module of (C(A, A +), b, B).
(5) If A is graded commutatioe, D(A, A+)[u] is an A-ideal of

C(A, A +)[ u], so that N(A, A +) inherits an A-structure from C(A, A +).

Proof. The first part is true by construction. To prove the second part,
observe that if in taking the shuffle product of two dements of C(A, A /), one
of them lies in USi(f)C(A, A/), then the shuffle product also lies in
US(f)C(A, A/). Using the fact that b is a derivation with respect to the
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shuffle product, it follows that D(A, A +) is an ideal with respect to the shuffle
product:

+
+

and we have already shown that all three of these terms belong to D(A, A +).
The case of Bk(aX,..., ak) is similar: if a UjSj(f)C(A, A +), then so is

Bk(aX,..., ak), SO that

Using the cocycle property of the maps Bk and induction in k, it is easily
shown that Bk(ai,..., bSj(f)ai,..., ak) lies in D(A, A+), and hence that
Bk(al,..., Ri(f)ai,..., tk) does too. m

The following theorem is our transcription to the above setting of a result of
Chen [1 ].

THEOREM 5.2. If A is connected, that is, H(A)= 0, then the complex
(D(A, M), b) is acyclic.

Proof. Let V be a complement of d[A] c A1, and define a subalgebra
A c A as follows"

{0, k=O,
A k= V, k=l,

Ak, k>l.

By construction, A is a subalgebra of A having the same cohomology. We will
compare the cyclic bar complexes of A and A with coefficients in the
bimodule M, under the inclusion

c(Z C(A,

Note that D( M) is the intersection of C( M) and D(A, M); however,
since A- vanishes, it follows that D( M) 0. Thus, it suffices to prove that
the above inclusion C( M) in C(A, M) induces an isomorphism in coho-
mology. To do this, we apply the following lemma, which is the generalization
to our context of a fundamental lemma of Moore. m

LEMMA 5.3. Let Mi be a bimodule over the standard A o-algebra A for
(1, 2}, and let A A2 be a homomorphism, such that M (R)Ax A2 M2 is
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a homomorphism of bimodules over A 2" If these homomorphisms induce isomor-
phisms in cohomology, then the induced homomorphism

induces an isomorphism in cohomology.

Proof If A is a standard Aoo-algebra with M is a bimodule over A,
consider the bar filtration on C(A, M)

F-kC( A, M) span( ( m, al,.. ai)li < k }.
The Ex-term of the spectral sequence associated to this filtration is easily seen
to be isomorphic to C(H(A), H(M)); more precisely, Ep’q is equal to the
span of the collection of chains in C(H(A), H(M)) of the form

([x],ta],...,ta,])
where

[x] H(M),[ai] H(A) and Ixl + _lail q.

From this, it is easy to see that the spectral sequence converges, from which
the lemma follows easily by a comparison theorem, m

Note that the definition of a connected A-algebra which we use in this
theorem, that is H(A) 0, is the correct one in the category of A-algebras
without identity. If we were to state the corresponding result for A-algebras
with identity (which we leave it for the reader to do), we would demand that
H(A) K.
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