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THE LIFE AND WORK OF KUO-TSAI CHEN

Kuo-Tsai Chen was born on July 15, 1923 in Chekiang, China. He earned a
Bachelor of Science degree in mathematics from Southwest Associated Univer-
sity in Kungming in 1946. He then moved to Shanghai, where he became an
Assistant at the Mathematics Institute of the Academia Sinica in 1946-47. On
the recommendation of its director, Shing-Shen Chern, he went to work with
Samuel Eilenberg at Indiana University. After one year there, he followed
Eilenberg to Columbia University. in New York, where he received his doctor-
ate in 1950. During his graduate studies, he was a mathematics instructor at
the National Bible Institute in New York from 1948 to 1950, and an Assistant
at Columbia University in 1949-50. After being awarded his Ph.D. degree, he
went first to Princeton University as an instructor in 1950-51, and then to the
University of Illinois as a Research Associate in 1951-52.

His next position was that of a Lecturer at the University of Hong Kong
where he stayed from 1952 to 1958. His parents were then living in Taipeh,
Taiwan. In the first course he gave in Hong Kong, Chester Chen, as he had
become known, met a charming sophomore, Julia Tse-Yee Fong, who became
his bride in 1953. His very strict sense of duty did not allow him to give his
preferred student special help, which occasionally made her very mad at him.
Their happy marriage brought forth three children: Matthew in 1955, who
earned a Doctorate in mathematics at the University of California at Berkeley
and who is currently an electrical engineer with AT & T; Lydia in 1956, who
graduated from Sarah Lawrence College, and is now a painter and editor;
Lucia in 1960, who graduated from MIT and is now a graduate student in
material science at the University of Illinois.

Chen’s next position was at the Instituto Tecnologico de Aeronautica in Sao
Jose dos Campos, Brazil, first as an Associate Professor in 1958-59, and then
as a Professor in 1959-60. He became a member of the Institute for Advanced
Study in Princeton in the winter of 1960-61, and again later in the spring of
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1962, the fall of 1971, and finally in the spring of 1979. He was appointed
Associate Professor at Rutgers University in 1962-63, and became a Full
Professor there from 1963 to 1965. From there he went to the State University
of New York in Buffalo where he stayed from 1965 to 1967. In 1967 he once
again joined the faculty of the University of Illinois at Urbana, this time as a
Professor. He remained there until his death in August, 1987 which followed a
long illness. He was a devout Christian throughout his life.
Chen was an outstanding and original mathematician. His work falls

naturally into three periods: his early work on group theory and links in the
three sphere; his subsequent work on formal differential equations, which
gradually developed into his most powerful and important work; his work on
iterated integrals and homotopy theory, which occupied him for the last
twenty years of his life. The goal of Chen’s iterated integrals program, which is
a de Rham theory for path spaces, was to study the interaction of topology
and analysis through path integration.

Chen’s early work contains significant contributions to the theory of links in
the three sphere. Two smooth links are said to be isotopic if the associated
imbeddings of Sx into S3 can be deformed, one into the other, through smooth
imbeddings. In [3] Chen showed that the quotients

,//.1/,/. +

of the lower central series

rl(S3-L) =r1Dr2Dr3

of the link group depend only on the isotopy class of the link. Since all knots
are isotopic to the trivial knot, one obtains as a special case the well known
result that the lower central series of a knot group stabilizes at r2:

for all s > 2.

This led to Milnor’s work on isotopy invariants of links, notably his definition
of -invariants, which are numerical invariants of the lower central series of a
link group and are generalized linking numbers [M].
Even though Chen, in collaboration with Fox and Lyndon, did give an

algorithm for computing the quotients of the lower central series of a finitely
presented group [10], the problem of computing its quotients remains ex-
tremely difficult. In his thesis [1], Chen showed that for any finitely presented
group r, the quotients of the lower central series of r/r" are computable,
where r" denotes the second derived subgroup [r 9-, r z] of r. When r is a link
group, these groups are now known as the Chen groups of the link and are
isotopy invariants.

Chen’s subsequent work is clearly united by the dual threads of formal Lie
theory and the theory of connections on bundles whose structure group is a
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"Lie group" of formal power series. The germ of these ideas first appears in
his very first paper on group theory [1], although it becomes clearer through
the papers [5], [7]--[9], Ill]E[21], while from [22] on, iterated integrals
become the main theme of his work. To illustrate Chen’s original ideas, we
present a somewhat revisionist view of his approach to de Rham homotopy
theory through formal Lie theory which he developed at about the same time
as Dennis Sullivan developed his theory of minimal models [S1], [$2].
Formal Lie theory takes place in a formal power series ring: Denote the ring

of formal power series in the non-commuting indeterminates X1,..., Xn over
R by

A lXx,..., X,) )

This is a complete topological ring. The neighborhoods of 0 are the powers of
the maximal ideal

J (power series with trivial constant term }.

It can be viewed as a Lie algebra with bracket

Iv, vl vv- w.

Let L(X1,..., Xn) denote the Lie sub-algebra of A generated by X,..., X,
and its closure in A by

x,) ^.

The exponential and logarithm maps

exp:Jl+J, log:l +JJ,

defined using the usual power series, are continuous and mutually inverse. The
prototypical example of a "Lie group" of formal power series, called a Malcev
group in the literature (cf. [Q]), is

,(a) (x a: x

This is an infinite dimensional Lie group with Lie algebra (A). All other
Malcev groups are obtained by replacing A by All, where I is a closed ideal
of A generated by dements of I(A). One then defines (A/I) to be the
image of t] (A) in A/I and (A/I) to be the image of @(A). Again, the
exponential map (All) ---, 63 (All) is an isomorphism, so that gb (A/1)
behaves like a simply connected nilpotent Lie group3

lit is in fact the inverse limit of the nilpotent Lie group gb(A/l)/gb(A/l) n (1 + J"). These
are simply connected as they are diffeomorphic to their Lie algebras g (A/I)/g (All) jn via
the exponential map.
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Chen’s basic tool is the transport map of a trivialized bundle. Let M be a
manifold, assumed to be smooth as throughout this article. A trivialized
principal G-bundle over M is a trivial bundle M G M together with a
distinguished trivialization, unique up to the right action of G. Here G may be
a subgroup of GL(n) or a Malcev group. A connection on a trivialized bundle
corresponds to a g-valued 1-form o on M via the rule

Vs ds- so, (1)

where s" M - G is a section. Denote the space of piecewise smooth paths
[0, 1] M by PM. Given a connection o on a tivialized bundle, we obtain a
transport map

T,o: PM G

which takes the path ,/ to the result of parallel transporting the identity along
-/. Equivalently, T(3,)= X(1), where X(t) is the solution of the initial value
problem

x’(t) x t)a(t), x(o) (2)

Here A: [0,1] g is the function defined by

From elementary differential geometry, we know that whenever a and fl are
composable paths, T(a)T(/3) T(a/3).
When G is a Malcev group, equation (2) is what Chen called a formal

differential equation; cf. [12]-[20]. These were a key ingredient in his earlier
work on normal forms of germs of diffeomorphisms (R", 0) (R", 0) and their
infinitesimal analogue, germs of vector fields at 0 in R". In [15], [17], [18], [19],
[21], [24] Chen studied the behaviour of the integral curves of a vector field
near a singular point, and the behaviour of a local diffeomorphism near a fixed
point building on a line of thought that had originated with Sternberg. One of
the main results is a nonlinear decomposition theorem for germs of diffeo-
morphisms analogous to the semi-simple times unipotent decomposition of
matrices [17]. For vector fields he established the infinitesimal analogue in [18],
where he showed that the germ of a vector field with an elementary citical
point at 0 has a Jordan canonical form; that is, it can be written as the sum of
commuting semi-simple and nilpotent vector fields. He used this to show that
two vector fields, each with an elementary critical point at the origin, are
equivalent if and only if they are formally equivalent. The corresponding result
for diffeomorphisms is proved in [19].
The cornerstone of Chen’s work in homotopy theory is a "well known" but

elegant formula for T0. To express it, we need to introduce Chen’s iterated
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integrals which he introduced in [5] in a special case, in [7] for 1-forms, and in
[32] for higher dimensional forms. Suppose that wl,..., w are smooth forms
on M taking values in an associative algebra A (e.g., g(n), Ug or a power
series ring), each of degree at least 1, then

is an A-valued differential form on PM of degree

Representing the standard r-simplex as

At= ((q,...,L) Rn’O <tx < <tr<l),

define a smooth function " A PM M by

}(( tx,..., tr), ") (’( tx),..., "(tr)).

The iterated integral is then defined by

fwxw2 w r,c*( wi x w2 x x w),

where r denotes the projection of A PM onto PM and r, denotes integra-
tion over the fiber of r with respect to the volume form dt A A dtr.
When each wj is a 1-form, fwxw2.., w is a function

fww2.., wr" PM A

which is a very natural generalization of the usual line integral. It takes the
path 7 to

0</1< <tr<l

where g*wj f( ) dt.
The transport formula is obtained by solving (2) by Picard iteration. It is

analogous to the Dyson exponential of physics.

LEMMA (Chen [41], [12], [7]). Suppose that G is a Lie or Malcev group with
Lie algebra g. If the g-valued 1-form to defines a connection on the bundle
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M G M via(l), then the transport is given by the convergent power series

T,(7)--1+ f ,o + f ,,o + f ,o,o,o + (3)

A connection to on a trivialized bundle is flat if and only if its curvature
vanishes:

dto + 1/2[to, to] 0.

In this case the value of the transport on a path depends only on its homotopy
class. It induces a holonomy (or monodromy) homomorphism

19: q(M, x) G, (v) --, r(v).

To see what one can do with this, consider a manifold M which possesses
closed 1-forms wx,..., wr, linearly independent in cohomology, satisfying
w A wj 0 on the level of forms for each and j. Let

o, rwX E( M) (R) l((xx,..., x)).

The curvature vanishes so that we get a holonomy homomorphism

O: rq(M, x) R((X,..., Xr)).

Choosing, as we may, loops "/1,.--, "/ at x such that the matrix

is non singular yields r elements 1 + U1,...,1 + U of
where U1,..., U I are linearly independent modulo 12. It is now easy to see
that these generate a free subgroup of R((X1,..., X)) of rank r. (This is
essentially a theorem of Magnus.) It follows that 71,..., 7 generate a free
subgroup of q(M, x) of rank r. Using this Chen gave the first example of
how the Hodge numbers h p,q dim HP’q(M) of a compact Kihler manifold
M affect its fundamental group:

THEOREM (Chen [31], [32]). Suppose that M is a compact Kiihler manifoM.

hi’> h2’+ 1,

then q(M, x) contains a free subgroup of rank > 2 (and hence one of countable
rank).
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In fact, Chen went a lot further and developed the theory of power series
connections [41], [42], a procedure for computing, from the de Rham complex
of M, a presentation of the J-adic completion of the real group ring of the
fundamental group of a manifold as a quotient of the power series ring
R((HI(M))) by an ideal generated by Lie elements. To understand what this
means, recall that the augmentation ideal J of the real group ring of a group r
is the kernel of the augmentation e: Rr R which takes each element of r to
1. Its powers define a topology on Rr whose completion is

Rr^= lim Rr/Jn.

The group @(Rr^) is a Malcev group and is called the Malcev completion of
q(M, x) and its Lie algebra g(Rr^), the Malcev Lie algebra associated to
rt(M, x) (cf. [Q]).
To see why one should be able to compute Rq(M, x) using formal Lie

theory, consider the fiat 6(Rrx(M, x)^)-bundle whose monodromy represen-
tation

p" q(M, x) --* Aut(( (Rq(M, x)^))
is the right regular representation g (X Xg). This bundle is trivial
essentially because (Rq(M, x)^), being the inverse limit of simply con-
nected nilpotent Lie groups, is contractible. Choosing a trivialization then
yields a g(Rrx(M, x) )-valued 1-form w on M whose associated transport
induces the monodromy representation p and the canonical homomorphism

q( M, x) { (1//’1( M, x) ^)
obtained by evaluating p at 1.

In [41], Chen gives a direct algorithm for finding an R((H(M)))-valued
1-form w and relations R,..., R, g(R((HI(M)))) such that w is fiat
modulo the dosed ideal generated by the Ri’s and such that the homomor-
phism

O Rcq( M, x)^ R((H(M) ))/( R Rm)

induced by the transport is an isomorphism. The method is a variant of
standard deformation theory. One begins with the trivial connection (w 0)
on the bundle

M R((H(M))) ---* M (4)

whose monodromy representation is the augmentation

po:Rq(M, x) R.
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One proceeds to deform this connection through a sequence of connections
(%)n 0 and simultaneously find a sequence of Lie dements ( Rl(n ),..., Rl(n))
such that the connection on (4) is fiat modulo the ideal

(Rx(n),..., Rx(n)) + jn+X

and such that T,, the transport of 0., induces an isomorphism

R.x(M, x)/Jn+ R((H(M)))/(R(n),..., R(n)) + jn+.

One can interpret Chen’s construction [41] of the connection form lim 0, as
the construction of the dual of the versal deformation of the trivial connection
on the bundle M R M.

This method is dual to, and equivalent to, Dennis Sullivan’s method of
computing g(Rrx(M, x)^) using the 1-minimal model of M [$1], [$2]. How-
ever, Chen’s method is often considerably simpler to apply, such as in the case
when M is a finite cell complex; the complement of a union of hyperplanes in
C" being a good example where Chen’s methods work well (cf. [K]).
One of Chen’s revolutionary ideas was to extend the method of power series

connections to higher homotopy groups which he did in [32], [35], [38], [42].
Suppose that M is a manifold which, for simplicity, we shall assume to be
simply connected. Fix a point x of M. Recall the standard isomorphism

rk+( M, x) rk(a.M, n.),

where fxM denotes the space of piecewise smooth loops in M based at x and
r/, the constant loop at x. By a well known theorem of Borel and Serre, the
Hurewicz homomorphism induces an injection

rk ( f,,M, fix) (R) R Hk ( fxM, R).

Multiplication of loops induces an associative product on the loop space
homology. Regarding H.(f]M, R) as a graded Lie algebra with the standard
bracket

[U, V] UV ( -1)’aesu’egVvu,

rk(fxM, rb) (R) R inherits the structure of a graded Lie algebra. From the
point of view of Chen’s work, the relation between r.(fM, r,)(R) R and
H.(f],M,R) is analogous to the relation between (Rq(M, x)) and
Rq(M, x). (The latter is naturally isomorphic to H0(f,M,R).) Chen’s bold
step was to apply formal Lie theory to compute the Lie algebra r.(f,M,
(R) R in a way analogous to his power series method for computing the Lie

algebra (Rrx(M, x) ) in the non-simply connected case. The analogue of the
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completed group ring being the completion of H.(fxM, R) with respect to
its augmentation ideal:

I-In(

The analogue of N(Rrq(M, x)^) being the generalized "group"

( X 91: log X r.(a,M, rl,) (R) R},

which has a (generally non-associative) multiplication defined using the
Baker-Campbell-Hausdorff formula.

Abstractly, one can consider the tensor algebra A R(H) of a graded
vector space H. (In the sequel H will be concentrated in degrees < 1.) This
is a graded algebra Y’.An, where

An Ar, n-r,

and Ar’s consists of those elements of (R) 91 of degree s. (Thus, for example,
the element al (R) (R) a has degree s + the sum of the degrees of the aj.)
The dements of finite degree A^= R((H)) in the completion of A with
respect to the augmentation ideal (H) can be viewed as a Lie algebra with
bracket

U, V] UV ( -1)’u’g Vvu.

Denote by L(H) the Lie sub algebra of A generated by H and its closure in
A by g (A^). As in the ungraded case, we can define a complete graded Lie
algebra g(A^/I)= A^/I whenever I is. a closed ideal of A generated by
elements of (A^). We shall call such a Lie algebra a generalized Malcev Lie
algebra.
The analogue of a connection on a trivialized bundle M (A^/I)
(A^/1) is a connection form, an element 0 of degree 1 in

E’(M) g(A"/I)= timE’(M)(R) [g(A^/I)/(J"C’I g(A^/I))].

Such a connection form is defined to be integrable if it satisfies the usual
integrability condition

d + 1/2[o, 0] 0.

Associated to each connection form is its transport map

T: C.( PM) A^/I,

a graded R-linear map from the smooth chains on the path space into A^/I. It
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is defined by evaluating the A^/I-valued interated integral of degree 0

on each chain. When 0 is integrable, its transport induces a chain map

T: C.(fM) A^/I,

and holonomy maps

O: H.(12xM ) -.-) a^/I, LogO" r.t( fxM ) g ( A^/I )

The latter map, being the composition of the logarithm of O with the
Hurewicz homomorphism, is the analogue of the composite

q( M, x) ---, ( (Rq( M, x) ^) ---) g (Rrx( M, x) ^)
of the natural map with the logarithm.
As in the case of the fundamental group, Chen [32], [34] used these ideas to

detect large subalgebras of rk(fxM, r/x): Suppose that w1, w, are closed
differential forms on a manifold M, each of degree > 2, linearly independent
in cohomology, satisfying w ^ wi 0 on the level of forms for each and j.
Consider the graded algebra

A a<xx,..., x.>,

where X1 has degree 1 deg %. (This is isomorphic to the tensor algebra on
the graded vector space spanned by indeterminates X of degree -deg %. As
each X has degree < -2, A is complete.) The form

o EwiXj E’(M) @ R<X1,..., X,)

has degree 1 and is integrable. It thus defines a holonomy homomorphism

LogO: r.(2xM ) -.-) o(R<X1,..., X,,>) L(X1,..., X,).

If there are elements al,..., a, rt,(fxM, fix) such that the matrix

is non-singular, then the dements log O(al),...,log O(a,) generate a free
Z-Lie subalgebra of L(X1,..., X,) by the graded analogue of Magnus’s
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Theorem. It then follows that at,..., ar generate a free Lie sub algebra of

Chen developed this idea into the method of formal power series connec-
tions, a method for computing the Lie algebra r.(M, ) (R) R and the Hopf
algebra H.(M, R) directly from the de Rham complex of M. As in the case
of the fundamental group, this approach to de Rham homotopy theory is dual
to and equivalent to Sullivan’s method of minimal models.
Apart from generalizing connections by allowing the connection form to

take values in a graded Lie algebra, Chen also allowed the graded Lie algebra
to have a differential. A formal power series connection on M is a 1-form o on
M taking values in a generalized Malcev Lie algebra with a continuous
differential 6: of degree 1. The connection (t, ) is integrable if

Do + 1/2[o, o] 0,

where D is the differential d (R) 1 + 1 (R) of the differential graded Lie
algebra E’(M) (R) . The transport

of a formal power series connection is then the chain map

T: C.(fxM ) U{]

obtained by integrating T over chains. This induces a Hopf algebra homomor-
phism

O" H.( fxM ) H.( Ui] )

Chen’s fundamental theorem is:

THEOREM [41], [42]. For each connected manifold M, there exists a continu-
ous differential on (R((H.(M)))) of degree 1 and a (R((H.(M))))-
valued 1-form o such that (to, ) is integrable. Moreover, if M is simply
connected, then the holonomy map

O" H.(f]xM ) H.(Uig(R((H.(M)))), 8)

is a graded Hopf algebra isomorphism. If M is not simply connected, then the
homomorphism

Rvr(M, x) =- Ho(xM) --* Ho( Ug(R((H.( M)))), 8 )

is the J-adic completion of the group ring of the fundamental group as a Hopf
algebra.
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Applying standard algebra and topology, one obtains the following conse-
quence.

COROLLARY. If (0, 8) is an integrable connection as in the theorem, then,
when M is simply connected, the logarithm of the transport of to induces a Lie
algebra isomorphism

LogO" r.(fxM ) --, H.( (R((H.(M))>), 8).

When M is not simply connected, the logarithm of T induces an isomorphism of
Malcev Lie algebras

LogO" g(Rrr(M, x)) -, H0(g(R<(H.(M))>), ).

One could not develop such ideas without pondering the relationship
between iterated integrals and the cohomology of the loop space of M. This
Chen did in a series of papers [35], [39], [42] interwoven with those in which he
developed formal power series connections. Regarding iterated integrals as a
subspace ag’(PM) of the de Rham complex E’(PM) of the path space of M,
Chen showed that ag’(PM) is a differential graded algebra with product and
differential induced from those of E’(PM), and gave a completely algebraic
description of ag’(PM) as the reduced bar construction on the de Rham
complex of M, a useful variant of the classical bar construction [40]. Denote
the complex of iterated integrals restricted to the loop space fxM by ag’(flxM).
He also showed that the homomorphism

induced by multiplication of paths induces a coproduct

A. ,,’(aM) --,]’(a,M) (R)o’(aM)

With this coproduct, a’(fxM) becomes a d.g. Hopf algebra. Integration
induces a graded Hopf algebra homomorphism

I" H’(a’(aM)) H’(aM, R).

Naively one may expect that I is always an isomorphism. However, if we filter
iterated integrals by length"



187

then standard properties of iterated integrals imply that, as a q(M, x)
module, H’(ag’(fxM)) is a union of the unipotent submodules

im(H’(9) H’(oC’(2xM))}.
So I cannot be an isomorphism in general. However, in the absence of the
fundamental group, Chen proved the following result which is a de Rham
analogue of Adams fundamental theorem A].

THEOREM [35], [38], [42]. If M is simply connected, then the integration
map I is a graded Hopf algebra isomorphism.

In the non-simply connected case, he proved the following result which is
related to work of Stallings [S]. An elementary proof of it may be found in [H].

THEOREM [39]. For all s >_ 0, the homomorphism

H(,,) Hom(Zcq(M, x)/J+X,R)

induced by integration, is an isomorphism. Consequently, if rx(M, x) is finitely
generated, then the adjoint of the integration map

Rcr ( M, x)^--* Hom(H(’(2xM ) ), R)

is an isomorphism of complete Hopf algebras.

In his later papers [42], [43], [47], [54], Chen studied the de Rham theory of
spaces Pf obtained by pulling back the fibration PM M M along a
function f: N M M:

PM

N-- MM.

Chen considered the subcomplex ’(P/) of E’(P,) generated by pullbacks of
iterated integrals along F and pullbacks of forms on N along the projection.
This complex can be described as the circular bar construction [45] on the de
Rham complexes of N and M M. Chen proved that the cohomology of

’(P,,) is isomorphic to H’(P/) when, for example, M is simply connected.
Taking N M and f to be the diagonal, Chen obtained a complex for
computing the cohomology of the free loop space of M, anticipating the recent
work on cyclic homology and the cohomology of the free loop space.



188

REFERENCES

[Sl]

[S2]

[A] J.F. ADAMS, On the cobar construction, Colloque de topologie alg6brique (Louvain, 1956),
George Thone, Li6ge, Masson, Pads, 1957, pp. 81-87.

[H] R. HAIN, The geometry of the mixed Hodge structure on the fundamental group, Algebraic
Geometry, 1985, Proc. Symp. Pure Math., vol. 46 (1987), pp. 247-282.

[K] T. KOHNO, On the holonomy Lie algebra and the nilpotent completion of the fundamental
group of the complement of hypersurfaces, Nagoya J. Math., vol. 92 (1983), pp. 21-37.

[M] J. MILNOt, Isotopy of links, A Symposium in Honor of S. Lefschetz 1954, Princeton
University Press, 1957, pp. 280-305.

[Q] D. QUILLEN, Rational homotopy theory, Ann. of Math., vol. 90 (1969), pp. 205-295.
[S] J. STALLINGS, Quotients of the powers of the augmentation ideal in a group ring. In: L.

Neuwirth (ed.), Knots, Groups and 3-manifolds, Papers dedicated to the memory of
R.H. Fox, Annals of Math. Studies 84, Princeton, 1975.

D. SULLIVAN, Topology of manifolds and differential forms, Proceedings of a conference on
manifolds, Tokyo, 1973.

Infinitesimal computations in topology, Publ. Math. IHES., vol. 47 (1977), pp.
269-331.

Richard Hain
Philippe Tondeur
April 1989



Students of Kuo-Tsai Chen

Gerald John Ciaccai, 1970
Tryggve Fossum, 1972
Salma Shukrallah Wanna, 1976
Larry James Williams, 1976
John Lawrence Cuadrado, 1977
Richard Hain, 1980

189

Publications of Kuo-Tsai Chen

1. Integration in free groups, Ann. of Math., vol. 54 (1951), pp. 147-162.
2. Commutator calculus and link inoariants, Proc. Amer. Math. Soc., vol. 3 (1952), pp. 44-55.
3. lsotopy inoariants of links, Ann. of Math., vol. 56 (1952), pp. 343-353.
4. A group ring method for infinitely generated groups, Trans. Amer. Math. Soc., vol. 76 (1954),

pp. 275-287.
5. lnterated integrals and exponential homomorphisms, Proc. London Math. Soc., vol. 4 (1954),

pp. 502-512.
6 On the composition functions of nilpotent Lie groups, Proc. Amer. Math. Soc., vol. 8 (1957), pp.

1158-1159.
7. Integration of paths, geometric inoariants and generalized Baker-Hausdorff formula, Ann. of

Math., vol. 65 (1957), pp. 163-178.
8. Integration of paths, a faithful representation of paths by noncommutatioe formal power series,

Trans, Amer. Math. Soc., vol. 89 (1958), pp. 395-407.
9. Exponential isomorphism for oector spaces and its connection with Lie groups, J. London Math.

Soc., vol. 33 (1958), pp. 170-177.
10. Free differential calculus IV (With R.H. Fox and R.C. Lyndon), Ann. of Math., vol. 68 (1958),

pp. 81-97.
11. Linear independence of exponentials of Lie elements, An. Acad. Brasil. Cienc., vol. 31 (1959),

pp. 507-509.
12. Formal differential equations, Ann. of Math., vol. 73 (1961), pp. 110-133.
13. Decomposition of differential equations, Math. Ann., vol. 146 (1962), pp. 263-278.
14. An expansion formula for differential equations, Bull. Amer. Math. Soc., vol. 68 (1962), pp.

341-344.
15. Decomposition and equioalence of local oector fields, Proc. Nat. Acad. Sci., vol. 49 (1963), pp.

740-741.
16. Expansion of solutions of differential systems, Arch. Rational Mech. Anal., vol. 13 (1963), pp.

348-363.
17. On local diffeomorphisms about an elementary fixed point, Bull. Amer. Math. Soc., vol. 69

(1963), pp. 838-840.
18. Equivalence and decomposition of oector fields about an elementary critical point, Amer. J.

Math., vol. 85 (1963), pp. 693-722.
19. Local diffeomorphisms --C realization offorma! properties, Amer. J. Math., vol. 87 (1965),

pp. 140-157.
20. On a generalization of Picard’s approximation, J. Differential Equations, vol. 2 (1966), pp.

438-448.
21. On nonelementary hyperbolic fixed points of diffeomorphisms, Proceedings of International

Symposium on Differential Equations and Dynamic Systems, Academic Press, San
Diego, 1967, pp. 525-530.

22. Iterated path integrals and generalized paths, Bull. Amer. Math. Soc., vol. 73 (1967), pp.
935-938.



190

23. Algebraization of iterated integration along paths, Bull. Amer. Math. Soc., vol. 73 (1967), pp.
975-978.

24. Normal Jbrms of local diffeomorphism on the real line, Duke. Math. J., vol. 35 (1968), pp.
549-556.

25. Algebraic paths, J. Algebra, vol. 10 (1968), pp. 8-36.
26. Homotopy of algebras, J. Algebra, vol. 10 (1968), pp. 183-193.
27. Convering-space-like algebras, J. Algebra, vol. 13 (1969), pp. 308-326.
28. An algebraic dualization of fundamental groups, Bull. Arner. Math. Soc., vol. 75 (1969), pp.

1020-1024.
29. An exact dynamical system is tree-like and vice versa, Trans. Amer. Math. Soc., vol. 149 (1970),

pp. 561-567.
30. A sufficient condition for nonabelianness of fundamental groups of differential manifolds, Proc.

Amer. Math. Soc., vol. 26 (1970), pp. 196-198.
31. Algebras of iterated path integrals and fundamental groups, Trans. Amer. Math. Soc., vol. 156

(1971), pp. 359-379.
32. Differential forms and homotopy groups, J. Differential Geom., vol. 6 (1971), pp. 231-246.
33. On Whitehead products, Proc. Amer. Math. Soc., vol. 34 (1972), pp. 257-259.
34. Free subalgebras of loop space homology and Massey products, Topology, vol. 11 (1972), pp.

237-243.
35. Iterated integrals of differential forms and loop space homology, Ann. of Math., vol. 97 (1973),

pp. 217-246.
36. Fundamental groups, nilmanifolds and iterated integrals, Bull. Amer. Math. Soc., vol. 79 (1973),

pp. 1033-1035.
37. Solvability on manifolds by quadratures, Bull. Amer. Math. Soc., vol. 80 (1974), pp. 1210-1212.
38. Connection, holonomy and path space homology, Proceedings of Symposia in Pure Mathemat-

ics, vol. 27, pp. 39-52, American Mathematical Society, Providence, R.I., 1975.
39. Iterated integrals, fundamental groups and covering spaces, Trans. Amer. Math. Soc., vol. 206

(1975), pp. 83-98.
40. "Reduced bar construction on de Rham complex" in A Collection ofpapers in honor of Samuel

Eilenberg, Academic Press, San Diego, 1976, pp. 19-32.
41. Extension of C function algebra by integrals and Malcev completion of r1, Adv. in Math., vol.

23 (1977), pp. 181-210.
42. Iterated path integrals, Bull. Amer. Math. Soc., vol. 83 (1977), pp. 831-879.
43. Pullback de Rham cohomology of the free path fibration, Trans. Amer. Math. Soc., vol. 242

(1978), pp. 307-318.
44. Path space differentialforms and transports of connections, Bull. Inst. Math. Acad. Sinica, vol. 6

(1978), pp. 457-477.
45. Circular bar constructions, J. Algebra, vol. 57 (1979), pp. 466-483.
46. Poles of maps into Pn(C) and Whitehead integrals, South Asian Bull. Math. vol. 3 (1979), pp.

116-124.
47. Pullback path fibration, homotopies and iterated integrals, Bull. Inst. Math. Acad. Sinica, vol. 8

(1980), pp. 263-275.
48. The Euler operator, Arch. Rational mech. Anal., vol. 75 (1981), pp. 175-191.
49. On the Hopf Index theorem and the Hopf invariant, Bull. Amer. Math. Soc., vol. 5 (1981), pp.

57-69.
50. "Pairs of maps into complex projective space" in Contribution to analysis and geometry, Johns

Hopkins Press, Baltimore, Maryland, 1980, pp. 51-62.
51. Degeneracy indices and Chern Classes, Adv. in Math., vol. 45 (1982), pp. 73-91.
52. On the Bezout theorem, Amer. J. Math., vol. 106 (1984), pp. 725-744.
53. "Loop spaces and differential forms" in Homotopie Algbrique et Alg,bre Locale, Ast6risque,

vols. 113-114, 1984, pp. 725-744.
54. Smooth maps, pullback path spaces, connections and torsions, Trans. Amer. Math. Soc., vol.

297 (1986), pp. 617-627.


