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GENERALIZATION OF MYERS’ THEOREM ON A
CONTACT MANIFOLD

BY

D.E. BLAIR AND R. SHARMA

1. Introduction

In 1941, Myers [4] proved that a complete Riemannian manifold for which
Ric > 8 > 0, is compact. In 1981, Hasegawa and Seino [3] generalized Myers’
theorem for a Sasakian manifold by proving that a complete Sasakian
(normal contact metric) manifold for which Ric > —& > —2, is compact.
Actually their proof uses only that the structure is K-contact and not the full
strength of the Sasakian condition. A K-contact structure is a contact metric
structure such that the characteristic vector field of the contact structure is
Killing.

Now a contact metric structure is K-contact if and only if all sectional
curvatures of plane sections containing the characteristic vector field are
equal to 1 (see e.g. [1], p. 65) and hence there is a lot of positive curvature
involved in the problem from the outset. The question then arises for a
general contact metric structure: Can we relax the condition that the sec-
tional curvature K(¢, X) of any plane section containing the characteristic
vector field £ be equal to 1; even if we must increase —é from near —2 to
near 0 to compensate? In general, the notion of a contact metric structure is
quite weak; in fact, the set of all such structures associated to a given contact
structure is infinite dimensional. So we seemingly must assume some condi-
tion generalizing the K-contact structure, then we can study K(X,£) > & >
6’ > 0 and Ric > —8 > —2 where &' is a function of §.

Let M denote a (2n + 1)-dimensional contact metric manifold with struc-
ture tensors (¢, £, 7, g); i.e., n is a globally defined contact form

(n A (dm)" #0),

£ its characteristic vector field (dn(¢, X) = 0, n(¢) = 1), g a Riemannian
metric, and ¢ a skew-symmetric field of endomorphisms satisfying

‘P2= —-I+n®¢, n(X)=g(Xa§)’ (dﬂ)(X,Y)=g(X,<PY)-
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Following [1] we denote the operator %,j;cp by h where .# denotes Lie

differentiation. It is well known [1] that M is K-contact (i.e., ¢ is Killing) if
and only if 2 = 0. We also define the strain tensor = of M along £ by

g(1X,Y) = (L£&)(X.Y).
Then using the relation ([1], p. 66)
Ve = —pX — ohX, (1.1)

one obtains 7 = 2h¢e. As a generalization of the K-contact condition we
suppose that div 7 = on. Recall that for a contact metric structure

Viof = —2n7;, (12)
Rig" = V'V.¢l + 4ng/. (1.3)

The first identity can be found in Olszak [5] and the second one in Tanno [7].
Thus, using equations (1.1) and (1.2) in (1.3) we obtain

Ri¢" = V,(hl,e™) + 2n¢!

and hence if div T = o, £ is an eigenvector of the Ricci operator.
We also note the following example. Consider R* with the contact struc-
ture

= %(cos x3 dx! + sin x3 dx?)

and the associated metric g;; = 38,;. Since 7 is invariant by the translations
in the coordinate directions by 21, the torus T is a compact manifold also
carrying this structure. For this contact metric structure, divr = 2%. Thus
there are both compact and non-compact contact metric manifolds satisfying
divr = on.

We present two theorems generalizing Myers’ theorem for contact metric
manifolds as follows:

THEOREM 1. Let M be a (2n + 1)-dimensional complete contact metric
manifold with divt = om. If Ric > —8 > —2 and the sectional curvatures of
plane sections containing ¢ are > ¢ > &' > 0 where

8 =2/n(8 — 225 +n+2) — (5226 +1+2n)

then M is compact.
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In dimension 3 we can obtain a better estimate for 6’ and have the
following result.

THEOREM 2. Let M be a 3-dimensional complete contact metric manifold
with divt = on. If Ric > —8 > —2 and the sectional curvatures of plane
sections containing & are > & > 8' > 0 where

2
& = —% +v26%2% - 36 + 22612,

then M is compact.

Before turning to the proofs let us review a few properties of the tensor
field 4 on a contact metric manifold M:

(1) A is a symmetric and trace-free field of endomorphisms such that
he + oh =0 and h¢=0.

If A is an eigenvalue of A, so is —A and hence in dimension 3(n = 1) the
eigenvalues of 4 are 0,A, — A and we adopt the convention that A will
denote the non-negative eigenvalue.

(2) Ric(¢) = 2n — tr h? (see [1], p. 67), and therefore in dimension 3 (i.e.,
n = 1) we have

Ric(£) = 2(1 — A2)

(3) In dimension 3, A% acts on the contact subbundle {n = 0} as A%l, thus
for a unit vector X orthogonal to £,

|hX|? = A2,
Also for any such X we have
g(hX, X) <A,

where, again by our convention, A denotes the non-negative eigenvalue of A.

The main idea of the proofs of our theorems is to use a D-homothetic
deformation of the structure. This technique was introduced by Tanno [6]
and used by Goldberg and Toth [2] as well as by Hasegawa and Seino [3].
Given a contact metric structure (o, &, 1, g) let

Qm

m=an, E=—¢( p=¢ and g=ag+ala-1)n®n

for some positive constant a. Then (&, £,7, ) is again a contact metric



840 D.E. BLAIR AND R. SHARMA

structure. Such a change of structure is called a D-homothetic deformation. A
D-homothetic deformation preserves many basic properties like being K-con-
tact or Sasakian, but most notably completeness for our purpose [3], [6].

Computing the Ricci tensor R;, of g; on a contact metric manifold M we
have

_ Qa-1)(a-1)

o

— 20 — 1)(a—1
Ry =Ry 8k t [2’1(“2 -1) + ( 3‘( ) ury

a—1

a (Zhik - hjmh? - leikflfi)

+

2. Proof of Theorem 1

We now turn to the proof of Theorem 1, which is to seek a number «
(0 < a < 1) such that for the structure obtained by the D-homothetic defor-
mation, the new associated metric tensor has its Ricci curvature bounded
below by a positive constant and hence by Myers’ theorem M must be
compact.

Let (o, ¢, 7, g) denote the contact metric structure satisfying the hypothe-
sis. Let X be a unit vector and decompose X into the form aX,, + b¢ where
X, is a unit vector orthogonal to ¢ and, of course, a’ + b = 1. We now
expand Ric(X) in terms of this decomposition. Since divr = om, £ is an
eigenvector of the Ricci operator as noted in section 1 and hence the
coefficient of ab is 0.

From property (2), we have

Ric(¢) = 2(n - ‘:: A = 2ne (2.1)

i=1

where the A’s are the non-negative eigenvalues of 4, and hence for the
coefficient of b2,

Ric(¢) + 2n(a? — 1) 2 2n(a® - (1 — ¢)).
Thus, one of the requirements on the number a that we seek is

a>Vl—¢.

It follows immediately from (2.1) that £7_,A% < n(1 — &) and hence

A <VnVl—¢ <Vna. (2.2)
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Finally, the coefficient of a?:

Ric(X,) + 2 — 2a + 1=

[-1 - 26(hXp, Xp) + X, 1" + K(£, Xp)]

1 -

2 -8 +2-2a+ ——(-1-2A+¢)

where A stands for the maximum of the A;’s over i = 1,2,..., n. As per our
requirements we must seek « such that

o
l1—-«a

2-86-2a)+8-21-1>0
where 6’ < e. Hence

o
1l—-a

)\<%(8'—1+ (2—5—2a)). (2.3)

Consider the following curve in the xy-plane, thinking of x as corresponding
to a and y to A:

x
1—x

y=3( -1+ 5@ -5-20)

for 0 <x < 1. y has a positive maximum at x = 1 — /§/2, viz,,
y(1-+68/2) = %(1 —2/26 +6+8).

Thus, since A < VnV1 —& < Vn V1 — &' (from (2.2)), a = 1 — /6/2 gives
(2.3) i

/_1 ' «Q
\/;l-VI—ﬁ —7(5 —1+—1—:—&(2—3—2a)),

that is, if

8 =2y/n(8 — 225 +n+2) — (5 —2V25 + 1+ 2n)

for then
%(1 —2V26 +6+8)<1-+6/2.

This completes the proof of Theorem 1.
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3. Proof of Theorem 2

Here n = 1 and A has only 3 eigenvalues 0, A and —A each of multiplicity
1. For the coefficient of b2, we have

a>VI—¢ (3.1)

as before.
For the coefficient of a* we have by property (3) that

1-—

Ric(Xp) +2 - 2a + p

2 [~1 - 2g(hXp, Xp) + IXp)* + K (£, Xp)]

l-«

>-8+2-2a+ (-1 =21 + A% +¢)
and we seek a (0 < a < 1) such that, in addition to (3.1), we have this last

expression bounded below by a positive constant. In particular, we study the
inequality

@
l1-a

2-86-2a)+8 -2+(1—-1%*>0

where 8’ < ¢. Solving for A, the non-negative eigenvalue of 4, we observe

A<1—\/2—5'—1fa(2—5—2a). (32)

Now consider the following curve in the xy-plane taking x as @ and y as A:

y=1—\/2—6'— ——(2-5-2x)

on 0 <x < 1. y has a positive maximum at x = 1 — /6/2, viz,,

y(l— %)=1— 225 -8 - 6.

Thus, since 1 —A> >¢esothat A <Vl —g<V1—-8,a=1—8/2 gives
3.2)if

VI—-8 =1-2V26 - & -6,

that is, if

2
8 = —87 +V28%?% - 35 + 2/28'2,
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Fig. 1
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for then

1—- Y226 -8 -6 <1-5/2.
This completes the proof of Theorem 2.

Remark. In Theorem 2 (n = 1) we observe that when 6 = 0, 8’ = 0 and
when 6 =2, 8 = 1. In Theorem 1 (n > 1) we observe that when 8 = 0,
8" = 2y/n(n +2) — (2n + 1) which approaches 1 as n tends to », and when
& = 2, 8 = 1. Thus we have a better estimate for 8’ in Theorem 2 (for n = 1)
than that provided by Theorem 1 (for n = 1). Figure 1 below shows the graph
of &' in Theorem 1 for » = 1 and the graph of §' in Theorem 2. Figure 2
shows the graphs of ' in Theorem 1 for n = 1,2,3, 4.
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