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GENERALIZATION OF MYERS’ THEOREM ON A
CONTACT MANIFOLD

BY

D.E. BLAIR AND R. SHARMA

1. Introduction

In 1941, Myers [4] proved that a complete Riemannian manifold for which
Ric > 8 > 0, is compact. In 1981, Hasegawa and Seino [3] generalized Myers’
theorem for a Sasakian manifold by proving that a complete Sasakian
(normal contact metric) manifold for which Ric > -3 > -2, is compact.
Actually their proof uses only that the structure is K-contact and not the full
strength of the Sasakian condition. A K-contact structure is a contact metric
structure such that the characteristic vector field of the contact structure is
Killing.
Now a contact metric structure is K-contact if and only if all sectional

curvatures of plane sections containing the characteristic vector field are
equal to 1 (see e.g. [1], p. 65) and hence there is a lot of positive curvature
involved in the problem from the outset. The question then arises for a
general contact metric structure: Can we relax the condition that the sec-
tional curvature K(sc, X) of any plane section containing the characteristic
vector field be equal to 1; even if we must increase -6 from near -2 to
near 0 to compensate? In general, the notion of a contact metric structure is
quite weak; in fact, the set of all such structures associated to a given contact
structure is infinite dimensional. So we seemingly must assume some condi-
tion generalizing the K-contact structure, then we can study K(X, ) > e >

’ > 0 and Ric > -6 > -2 where ’ is a function of 6.
Let M denote a (2n + 1)-dimensional contact metric manifold with struc-

ture tensors (q, sc, r/, g); i.e., r/is a globally defined contact form

(’r /k ( d’rl )
n 0),

: its characteristic vector field (dr/(:, X)= 0, 7(:)= 1), g a Riemannian
metric, and q a skew-symmetric field of endomorphisms satisfying

q2= -I+ n (R) :, n(x) g( x, ), (d7)(X,Y) g(X, qY).
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1
Following [1] we denote the operator -.W by h where .W denotes Lie
differentiation. It is well known [1] that M is K-contact (i.e., s is Killing) if
and only if h 0. We also define the strain tensor z of M along s by

g(,rX, Y) (.g)(X, Y).

Then using the relation ([1], p. 66)

Vx qX qhX, (1.1)

one obtains -= 2hp. As a generalization of the K-contact condition we
suppose that div z trr/. Recall that for a contact metric structure

Vtq -2nr5, (1.2)

RJr.r= Vrr "4- 4nj. (1.3)

The first identity can be found in Olszak [5] and the second one in Tanno [7].
Thus, using equations (1.1) and (1.2) in (1.3)we obtain

Rr= Vr(hrmqmj) + 2n

and hence if div z trr/, : is an eigenvector of the Ricci operator.
We also note the following example. Consider R3 with the contact struc-

ture

3 3 2cosx dr +sinx dx )

and the associated metric gij ij. Since r/ is invariant by the translations
in the coordinate directions by 27r, the torus T3 is a compact manifold also
carrying this structure. For this contact metric structure, div 2r/. Thus
there are both compact and non-compact contact metric manifolds satisfying
div- trr/.
We present two theorems generalizing Myers’ theorem for contact metric

manifolds as follows:

THEOREM 1. Let M be a (2n + 1)-dimensional complete contact metric

manifold with div ,r o-r/./f Ric >_ -6 > -2 and the sectional curvatures of
plane sections containing are >_ e > ’ >_ 0 where

6’=2n(6-2V6 +n+2) -(8-22 + 1+2n)

then M is compact.
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In dimension 3 we can obtain a better estimate for 6’ and have the
following result.

THEOREM 2. Let M be a 3-dimensional complete contact metric manifold
with div -= trr/. If Ric >_ -6 > -2 and the sectional curvatures of plane
sections containing are >_ e > 6’ >_ 0 where

+ V-t3/2- 36 + 27r-1/2

then M is compact.

Before turning to the proofs let us review a few properties of the tensor
field h on a contact metric manifold M:

(1) h is a symmetric and trace-free field of endomorphisms such that

hq+qh=0 and h=0.

If A is an eigenvalue of h, so is -A and hence in dimension 3(n 1) the
eigenvalues of h are 0, A,- A and we adopt the convention that A will
denote the non-negative eigenvalue.

(2) Ric(:) 2n tr h2 (see [1], p. 67), and therefore in dimension 3 (i.e.,
n 1) we have

Ric() 2(1 A2)

(3) In dimension 3, h2 acts on the contact subbundle {rt 0} as A2I, thus
for a unit vector X orthogonal to :,

Also for any such X we have

lhX[2 /2.

g(hX, X) < A,

where, again by our convention, A denotes the non-negative eigenvalue of h.
The main idea of the proofs of our theorems is to use a D-homothetic

deformation of the structure. This technique was introduced by Tanno [6]
and used by Goldberg and Toth [2] as well as by Hasegawa and Seino [3].
Given a contact metric structure (q, , r/, g) let

=q and g=ag+a(a- 1)n Or/

for some positive constant a. Then (, , , ) is again a contact metric
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structure. Such a change of structure is called a D-homothetic deformation. A
D-homothetic deformation preserves many basic properties like being K-con-
tact or Sasakian, but most n_otably completeness for our purpose [3], [6].
Computing the Ricci tensor Rjk of jk on a contact metric manifold M we
have

(2a- 1)(a- 1)
gk + [2n( a2- 1) +Rjk Rjk a

a 1 (2hik hjmh Rjlikli)

(2a- 1)(a- 1)]

2. Proof of Theorem 1

We now turn to the proof of Theorem 1, which is to seek a number a
(0 < a < 1) such that for the structure obtained by the D-homothetic defor-
mation, the new associated metric tensor has its Ricci curvature bounded
below by a positive constant and hence by Myers’ theorem M must be
compact.

Let (q, , /, g) denote the contact metric structure satisfying the hypothe-
sis. Let X be a unit vector and decompose X into the form aXz + b where
Xz is a unit vector orthogonal to and, of course, a 2 + b2 1. We now
expand Ric(X) in terms of this decomposition. Since div r try/, is an
eigenvector of the Ricci operator as noted in section 1 and hence the
coefficient of ab is 0.
From property (2), we have

Ric(:) =2 n- EA >2ne (2.1)
i=1

where the /i’S are the non-negative eigenvalues of h, and hence for the
coefficient of b 2,

Ric() + 2n(a2 1) > 2n(a2 -(1 e)).

Thus, one of the requirements on the number a that we seek is

a> v/1-e.

It follows immediately from (2.1) that E’=lh2/_< n(1 e) and hence

(2.2)
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Finally, the coefficient of a 2"

1 mO
RiC(XD) + 2- 2a + [-1 2g(hXo Xo) + ]hXol 2

> -6+2-2a+ 1-a(-1-2A +e)

where A stands for the maximum of the Ai’s over 1, 2,..., n. As per our
requirements we must seek a such that

a (2-6-2a) +’-2A- 1>0

where ’ < e. Hence

1( o )A < ’- 1+ 1-a (2- (-2a) (2.3)

Consider the following curve in the xy-plane, thinking of x as corresponding
to aand y toA"

1( x )1+ 1 x(2-6-2x)

for 0 < x < 1. y has a positive maximum at x 1 X/-/2, viz.,

y(1- 81/- ) 1(1 2V3 + 3 + 3’)-Thus, since )t < V’l e < 7rff 41 6’ (from (2.2)), a 1 V/-/2 gives
(2.3) if

l(a,v%-v/1- 6 =- -1
a (2-8-2a)),+ 1-a

that is, if

6’=21/n(6-2/6 +n +2) (8-2v/-8 + 1+2n)

for then

1(1-2/6 +a+6’) < 1- V/-/22

This completes the proof of Theorem 1.
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3. Proof of Theorem 2

Here n 1 and h has only 3 eigenvalues 0, A and -A each of multiplicity
1. For the coefficient of bE we have

a > v/i e (3.1)

as before.
For the coefficient of a2 we have by property (3) that

Ric(Xo) + 2- 2a + [-1 2g(hXo Xo) + IhXDI 2

> -6+2-2a+
1 a

(-1 2A + /2 + 8)

x,))]

and we seek a (0 < a < 1) such that, in addition to (3.1), we have this last
expression bounded below by a positive constant. In particular, we study the
inequality

1-a(2-a-2a) +6’-2+ (a- 1)2>0

where 3’ < e. Solving for A, the non-negative eigenvalue of h, we observe

/

< 1 /2 6’ (2 6 2a) (3.2)1 0

Now consider the following curve in the xy-plane taking x as a and y as A"

y= 1- V/2-a’ x
l_x(2-a-2x)

on 0 < x < 1. y has a positive maximum at x 1 V//2, viz.,

Thus, since 1 a2
_

8 SO that h _< x/1 e < x/1 6’
(3.2) if

a= 1- 6X gives

9’1 ’ 1 1/’2v/6 6’- 6,

that is, if

--’- + V/-t3/2- 36 + 21/a1/2
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for then

1- V/22V--6’-6 < 1- 1//2.
This completes the proof of Theorem 2.

Remark. In Theorem 2 (n 1) we observe that when 6 0, 6’ 0 and
when 3 2, 6’= 1. In Theorem 1 (n > 1) we observe that when 6 0,
6’ 2/n(n + 2) (2n + 1) which approaches 1 as n tends to , and when
6 2, 3’ 1. Thus we have a better estimate for 6’ in Theorem 2 (for n 1)
than that provided by Theorem 1 (for n 1). Figure 1 below shows the graph
of 6’ in Theorem 1 for n 1 and the graph of ;’ in Theorem 2. Figure 2
shows the graphs of ;’ in Theorem 1 for n 1, 2, 3, 4.
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