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O. Conventions

All spaces are completely regular, and Hausdorff of course. We use X* to
denote /3X- X, and N, Q and R to denote the nonnegative integers, the
rationals and the reals.
A map is a continuous function. The Stone extension of a map f: X Y is

the function/3X /3Y which extends f; it will be denoted by/3f. We use f*,
the remainder map, to denote the restriction/3f X*. Recall from [G1] that
f* maps X* into Y* if (and only if) f is perfect (= closed + compact fibers);
hence f* maps X* onto Y* if f is a perfect map from X onto Y.
The closure operators in X,/3X and X* are denoted by cl, C1 and CI*. We

use a similar convention for the interior operators int, Int and Int*.
We remind the reader that a space X is realcompact if for each x X*

there is a G-subset G of/3X with x G __C_ X*. (This is equivalent to the
original definition). Clearly Lindel6f spaces are realcompact.

1. Introduction

N* is one of the most intensely studied spaces; so it is worthwhile to have
tools available to transfer information about N* to information about other
(ech-Stone remainders. Two such tools, which are available already, are:
T1. C-embedded copies of N. Assume N can be embedded in X as a

C-embedded subspace (this happens iff X is nonpseudocompact). Then N is
closed in X, and C1N=/3N, so X*NC1N=N*. The fact that N is
C-embedded in X gives information about the way N* fits inside X*; cf. JR,
4.5(d)], [I], [GJ, 9M], [F]. (An example in [vD2, 3] shows that it is not
sufficient to know that N is closed and C*-embedded in X.) Rudin’s proof of
the implication (a) (b) in Theorem 4.1 is an early example.
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T2. Generalizations of proofs. A proof that N* has a certain property
often can be generalized so as to show that X* has that property for
noncompact locally compact X which is tr-compact or at least real-compact.
The result of Fine and Gillman, quoted as Corollary 6.3, is an early example.
Most of 6 is an example of this technique.

These two tools pass the information directly from N* to other remainders.
The purpose of this paper is to give an essentially different tool, in which the
information is passed indirectly from N* to other remainders since most of
the time it "really" goes the other way. (Theorem 9.3 is an exception.)

1.1. OPEN RETRACTION LEMMA. Let X be a noncompact locally compact

IfX is tr-compact, then X* has regularly closed subspaces Fo and El,
and there are homeomorphs Ho and H of N* in X*, such that"
(1) H c_ Int*F/for 0, 1;
(2) there is an open retraction F - H for 0, 1; and
(3) Int* Fo U Int* F X*.

(B) IfX is realcompact, then for each x X* there are a regularly closed F
in X* and a homeomorph H of N* in X* such that"
(1) H c_ Int*F;
(2) there is an open retraction r" H - F; and
(3) xF.

(Given any neighborhood U ofx in X* one may require F c_ U.)
(C) IfX is not pseudocompact, then there are a regularly closed F in X and a

homeomorph H of N* in X* such that (1) and (2) of (B) hold.

space.
(A)

For nonlocally compact spaces we also have information; the following is
an obvious corollary to the proof of 1.1.

1.2. OPEN MAPPING LEMMA. IfX is noncompact and realcompact, then for
each x X* there is a compact subspace of X* which contains x and which
admits an open map onto N*. El

We use these two lemmas to obtain results which on the one hand are
simple, if not trivial corollaries, but on the other hand give significant new
information about Cech-Stone remainders not otherwise available. Most of
our results use the fact that we give open maps onto N*. (In some cases it is
useful to remember that a map f: X Y is open iff f ’-B f ’-B for each
B

___
Y [E, 1.4C].) Only one result uses the fact that we give retractions (see

Theorem 4.3) and none uses the fact that we give open retractions. However,
all our results use the fact that we have open maps onto N* in an essential
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way. In this context we record one simple result which only uses the fact that
we give a map onto N*"

( ) IfX is nonpseudocompact and locally compact, then X* has a pairwise
disjoint open family of cardinality c.
Indeed, some open subspace can be mapped onto N* by 1.1C, and it is
known that (.) holds for X N. ((.) was first proved in [CG, 3.2], as an
application of T2.)
We conclude this introduction by mentioning the analogue of the Open

Retraction Lemma for (ech-Stone compactifications, which is a trivial corol-
lary to the proof of 1.1A.

1.3. LEMMA. IfX is not pseudocompact, then [3X has closed subspaces Go
and G1, and there are homeomorphs Bo and B of [3N in fiX, such that:

(1) B
_

Int G for 0, 1;
(2) there is an open retraction G --) B for 0, 1; and
(3) Int Go w Int G fiX.

2. A Lemma

2.1. LEMMA.
open surjection.

fir: X - N is a perfect surjection, then f*: X* - N* is an

This is an immediate consequence of the implication (a) = (b) of our next
result, which is of some independent interest since it is an antipode (but not
the dual) of the theorem, essentially due to Gleason, [G1] that a space is
projective for perfect maps iff it is extremally disconnected.

2.2. THEOREM. The following conditions on a space E are equivalent:
(a) E is extremally disconnected;
(b) ifX is any space and f: X E is any open map, then fir: fiX E is

open; and
(c) if X is any space and f: X- E is any open surjection, then f:

fix - fie is open.

Proof (a) (b). Let U be open in /3X, and let x U be arbitrary.
There is an open V in/3X with x V and C1 V

_
U. Since/3f is closed, and

since C1 V CI(X V), we have

f(x) Clf-"(X V) and CIf--’(Xf3 V) f--’ClV_f--’U

Now E is extremally disconnected, and f-’ (X n V) is open in E, hence

C1 f (X V) Clcl f-’ (X V)
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is open in fiE. Consequently f--’U is a neighborhood of f(x). Since
x U was arbitrary, it follows that/3f-’ U is open in fiE.

(b) (c). Trivial.
(c) - (a). Let U be open in E, and let X be the subspace E {0} tA U
{1} of E {0, 1}, and let f: X E be the (restriction of the) projection.

Then f is open, hence flf: fiX E is open. Since /3f also is closed, it
follows that U has open closure in fiE. Then U also has open closure in E.
(The idea of the proof of (c) (a) is due to Gleason, [G, 1.2].) [3

3. Proof of the open retraction and mapping iemmas

We begin with proving an easy special case of 1.1A.

3.1. LEMMA. Let X be a noncompact tr-compact locally compact zero-
dimensional space. Then there is a homeomorph H of N* in X* such that X*
admits an open retraction onto H.

(There is an analogous version of 1.3.)

Proof The conditions on X imply that there is a sequence (Xn)n of
compact open subsets of X such that

S0--- Sn C gn+ forn, and S--- UnSn

We may assume that n Xn+l Sn for each n. Then

r U n(gn+l gn) X {n}

is a retraction from X onto N which is perfect. It easily follows that r*:
X* N* is a retraction. This retraction is open by Lemma 2.1. [2

The proof of Lemma 1.1 is very similar, but is made more complicated
since we have less information about X. We will prove the following
extended version of part (A):

3.2. LEMMA. Let X be a (noncompact) tr-compact locally compact space,
and let U be a nonempty open subset of X*. Then for O, 1 there are a
regularly closed subspace F ofX* and a homeomorph H of N* such that:

(1) Hi_UNIntFfori=0,1;
(2) F admits an open retraction r onto H for 0, 1; and
(3)_ Int Fo t2 Int F X.
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For the proof that this implies parts (B) and (C) of the Open Retraction
Lemma; we need the following lemma, the proof of which is implicit in the
proof of [FGI, 3.1], as pointed out in [vD4, 20.3].

3.3. LEMMA. IfX is locally compact, and if G is a closed G-subset of 13X
with G c_ X*, then G C1 Int* G.

3.4. Proof of (B) and (C) of Lemma 1.1. First, let Y be noncompact,
locally compact and realcompact, and let y *. Since Y is realcompact
there is a closed G-subset G of fly with y G

_
*. Let U Int* G,

(interior in Y*), let X =/3Y G. As Y c_ X c_/3Y we have/3X =/3Y, hence
X* G. Clearly U is open in X*, and U #: by Lemma 3.3. Let Fi, Hi, and
rg, for 0, 1, be as in Lemma 3.2. We may assume that y Int*F0 (interior
in X*). Clearly U c3 Int*F0 is open in *. It follows that r (Int* F0) H0
(interior in Y*), and, since y C1 U by Lemma 3.3, also that y C1 Int*F0
(interior in Y*).

This proves .(B). The proof of (C) is entirely similar since a space is
nonpseudocompact (if and) only if some nonempty closed G-subset of/3Y is
included in Y*. r

3.5. Proof ofLemma 3.2. We proceed in four steps. Our first step would
be trivial if U X*.

Step 1. We embed N as a closed subspace in X so that N*

_
U.

Since X* is a G in/3X, so is U. We therefore can find a sequence (an)
of nonempty open sets in /3X such that f’l ,G

___
U and C1G,/ _c G, for

each n. We may assume that N is a subset of X with the property that
n Gn for each n. Then each cluster point of N must be in (’n C1 a
[’nGn C_ U.
Now, let NO and N be the even and the odd integers.
Step 2. For O, 1 we find closed subspaces Pi and Q ofX and a perfect

retraction Pi: Qi---> Ni such that:
(1) Po U PI=X; and
(2) Pz int Qi fori 0,1.

Since X is r-compact and locally compact, and since N is closed in X, we
can find a sequence (Sn)n of compact subsets of X such that X0 X ;
and

X
_

int Sn+ and n tE S3n+4 S3n+3 for n N.
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For 0, 1 define

ei,n "-S6n+3i+4- int S6n+3i+ for n N; and ei [-Jnei,n;

and

Qi, S6n+3i+5 int S6n+3 for n N; and ai [,.JnQi,n’,

and

Pi-- UnQi, n X {2n + i}.

We omit the straightforward verification that this works.
Step 3. We complete the proof, almost.

For 0, 1 we have F C1 Fi, since X is normal, hence we can define

F Q[’, r p, and H N’.
The only thing to be checked is that Int*F0 u Int* F X*. Since P0* A PI*

X*, by (1), it suffices to prove that Pi* --- Int* Q* for 0,1, to which end
we show that C1 Pi c_ IntC1 Qi for i= 0,1: Pi and X-Qi have disjoint
closures in X, by (2), hence in/3X since X is normal; so that

C1 Pi -fiX- Cl(X- Qi).

But /3X- CI(X- Qi) - Int C1 Qi since Cl(X- ai) I0 C1 Qi
Step 4. We take care of the Fi’s being regularly closed.

Our construction does not necessarily produce regularly closed (in X*)
F/’s, but this is easily taken care of. Since Qi, c_ int Pi, n, for 0, 1 and
n N we can replace each Pi, n by cl int Pi, n, this makes Pi regularly closed,
for 0, 1. But if A is regularly closed in X, then A*= X c3 C1 A is
regularly closed in X* since X is g-compact and locally compact, [Wo 1, 2.8],
see also [Wo2, 2.9]. D

4. P-Points

A point p of a space X is called a (weak) P-point of X if for every
F-subset (or: countable subset) A of X, if p A then p cl A. Note that
not every point in an infinite compact space is a weak P-point.

It is known that the statement that N* has a P-point is consistent with ZFC
[R, 4.2], but independent from ZFC, see [M] or [W] for proofs of this result
of Shelah. (By contrast, it is true in ZFC that N* has a weak P-point, [Ku 2].)
It also is known that if X is locally compact and nonpseudocompact, then if



TRANSFER OF INFORMATION ABOUT fin N 775

N* has a P-point, then so has X*, [R, 4.5]. (The argument also works for
weak P-points, so it is true in ZFC that X* has a weak P-point.) The P-point
found lies in X’, defined by

X’ X* N (u C1 N: N is a discrete C-embedded

(hence closed) countable subset of X});

clearly the converse of this also is true, i.e., the statement that X# contains a
P-point of X* (or of X) implies the statement that N* has a P-point. It is
not immediately clear, however, that the weaker statement that X* has a
P-point, possibly not in X#, should tell us anything about N*. Put differently,
one can ask if for sufficiently nice X we can construct a P-point in X* using
what we know about X, but without using the hypothesis that N* has a
P-point. This question was motivated by the facts that there is a simple
argument, involving Lebesgue measure, that R: R* [FG, 1.3] and that
there is a more complicated argument, involving connectedness properties of
R, that R* has a point that is topologically different (within R*) from all
points of R’ [vD3]. The following result answers this question in the negative.

4.1. THEOREM.
(a)
(b)

(c)
(d)

(e)

The following statements are equivalent:
N* has a P-point;

fix is any nonpseudocompact locally compact space, then X* has a
P-point;
R* has a P-point;
There is a noncompact g-compact locally compact space X such that X*
has a P-point;
There is a noncompact realcompact (not necessarily locally compact)
space X such that X* has a P-point.

Proof (a) (b). See [R, 4.5, p. 633].
(b) (c) (d). Obvious.
(d) = (e). tr-compact spaces are realcompact.
(e) (a). Let p be a P-point of X*. By the Open Mapping Lemma there

is a closed F
___
X* with p F which admits an open map onto N*. Clearly

p is a P-point of F, hence f(p) is a P-point of N* since f is open. 2

The analogous statement about weak P-points is true, but vacuously so,
since N* has a weak P-point, as mentioned above. In this context it is
amusing that the above proof that (e) = (a) does not work for weak P-points.

4.2. Example. There is a compact space X which admits an open map f
onto/3N such that f ’-N* contains a weak P-point of X.
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Proof N* has a weak P-point p that is not a P-point [Ku2]. There is a
pairwise disjoint sequence (Y)n of nonempty clopen subsets of N* such that
if Y U nYn and X C1 Y then p X- Y. Clearly p is a weak P-point of
X. Now fly X, e.g., since /3N is extremally disconnected and since every
g-compact subspace of an extremally disconnected space is C*-embedded; cf.
[GJ, 9H.1]. Hence the map r UYn {n} from Y onto N admits a
continuous extrension/3r: X /3N. This extension is open by Theorem 2.2,
and f(p) N* since r is perfect. []

Another analogue of Theorem 4.1 is false, too: Call a point p of a space X
a P-point if f)" is a neighborhood of p whenever @ is a family of
neighborhoods of p with 1 < [’l < K. It is consistent with ZFC that N*
have a Po,2-point, for N* has a Pc-point under MA. But the analogue of
Theorem 4.1 is false for Pofpoints by Example 10.4.

Points of X* are c-points

A point of a space X is called a y-point of X if there is a pairwise disjoint
open family ff in X with Iffl=y such that p C1 U for each U @.
Note that X is extremally disconnected iff it has no 2-points. The following
result of Balcar and Vojtis is the latest in a long chain of results [BV].

5.1. THEOREM. Every point of N* is a c-point.

We use this theorem to generalize itself.

5.2. THEOREM. IfX is noncompact, realcompact and locally compact, then
every point ofX* is a c-point.

Let x X* be arbitrary. By the Open Retraction Lemma there is a
regularly closed F

_
X* with x F which admits an open map f onto N*.

By Theorem 5.1, f(x) is a c-point of N*; let ff witness this. Then

7V= {(Int* F) tq f- U: U ’}
witnesses that x is a c-point in X*" Clearly 7v is a disjoint open family in
X*. For U ’ we have f ’-CI* U-- C1 f U since f: F CI* F N* is
open, hence x Cl*f U; since f U is open in F and Int* F is dense in F
it follows that x Cl*((Int* F) f U). t3

6. When nonempty G-subsets of X* have nonempty interior

We call a subset of a space Y a GK-subset of Y if it is the intersection of a
(nonempty) family consisting of less than r open sets (so G G). Recall
that a zr-base for a space X is a family of nonempty open sets such that
each nonempty open set in X includes a member of .
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6.1. THEOREM. Let X be any noncompact locally compact realcompact
space which has a countable 7r-base. Then for each infinite K the following are
equivalent:

(A) every nonempty GK-subset of N* has nonempty interior in N*;
(B) X* has a base d such that Int* (q 7//4: for each centered ff/_ d

with 1 _< I;/I ; and
(C) every nonempty GK-subset ofX* has nonempty interior in X*.

6.2. COROLLARY TO PROOF. If X is any noncompact locally compact
realcompact space, then X* has a base d such that Int* N if/q: for each
nonempty centered countable ff/_ d).

6.3. COROLLARY TO COROLLARY [FG1, Lemma 3.1]. IfX is any noncom-
pact locally compact realcompact space, then nonempty G’s in X* have
nonempty interior.

The implication (A) (B) in 6.1 was proved in [vD1], which will not be
published; we find this paper a natural place to publish the proof since the
Open Retraction Lemma is the tool for proving the implication (C) (A),
and the remaining implication is trivial.
Before we proceed to the proof we point out that the conditions on X are

essential: By 6.3, (A) holds in ZFC with K tOl, but Examples 9.1 and 9.2
show that (C) fails if X is not assumed to be locally compact or realcompact.
Also, it is consistent with ZFC that (A) holds for r to2 (see Remark 6.8)
and Example 9.4 shows that (C) is false for r to 2 for a suitable X which
has no countable 7r-base. (By 6.3 this cannot happen if r to1.)

Condition (B) in Theorem 6.1, and Corollaries 6.2 and 6.3 suggest the
following question.

6.4. Question. Does there exist a compact space in which nonempty G’s
have nonempty interior, but which does not have a base d such that
N 7"//4: for each nonempty countable centered ;/__. d?

An easy noncompact example would be any P-space (= each G is open)
which is not Baire, e.g., [CR, 3.2].

For the proof of Theorem 6.1 we need, for a fixed space X, information
about the function

Ex: {open sets of X} - {open sets of fiX}

defined by

Ex(U) fiX- Cl(X- U).
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6.5. LEMMA. Let U, V be open in X. Then
(A) XC3ExU=U;
(a) C1Ex(U) C1 U;
(C) Ex(U N V) Ex(U) N Ex(V);
(D) ifK c_ X is compact, then Ex(U) K Ex(U- K);
(E) if C1 U is not compact and X is realcompact, then X* (3 Ex(U) 4: O.

Proof. (A) is obvious, (B) follows from (A), and (C) and (D) require only a
straightforward computation. This is essentially known. We now prove (E).
Consider any p X* c C1 U. Since X is realcompact there is a sequence
(Vn: n < to) of open sets in/3X such that

P 0 nVn C_ X* and C1Vn+l c Vn for each n

Without loss of generality, U (Vn C1 Vn+ ) for each n, so pick

PnUCl(Wn-ClWn+l) for n < to.

It is easily checked that {Pn" n < to} is discrete and C-embedded in X, hence

Cl{pn’n < to} O CI(X- U) #;

cf. [GJ, 9M.1]. It follows that

X* Ex(U)
___
X* N Cl{pn n <to} 5#. D

6.6. Proof of Theorem 6.1.
additional conditions:

(A’)

(B’)

It is convenient to consider the following

For every ’cc_ .@(N), /f Il < , and ill N -I to for each finite
nonempty

for each A
For every collection g of open sets in X, if l@l < and if cl - is
noncompact for each finite nonempty -c_ g, then there is an open
V c_ X with cl V noncompact such that cl(V U) is compact for each
U@.

We will prove

(A) = (A’) = (B’) = (C) = (B) = (A).

Since (1) trivially holds for K to we assume K >_ to1.
(A) (A’). It is well known, and easy to see, that (A’) is a translation of

(A).
(A’) (B’). Let @ be as in (B’), and assume ’ #: . Define

" ’u X W: W is open and cl W is compact}.
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The condition on " implies that ’ is centered. Also, ’ is free since X is
locally compact. It follows that we can pick

pX* withp fqvC1U.

Since X is realcompact there is a sequence (U) of open sets in /3X such
that

(1) p [’ nUn X*, and C1 U +1 C Un for each n.

Since > (.01 we may assume that X U for each n. Note that this
does not affect the information that

(2) C1 - is noncompact for each finite nonempty -___ ’.

Since X is locally compact and has a countable 7r-base, X has a countable
rr-base M such that

(3) cl B is compact for each B .
For U ff define

,,v= B , B U}.

From (2) we see that If)-MvI to for each finite nonempty -___ ft.
Since I1 INI, it now follows from (A’) that there is an infinite 7v___ M
such that TV- ul < to for each U M. Let V 7V. Then

(4) VU4: for eachU "since 7V is infinite, and cl(V U) is compact for each U ’, because of (3).
Clearly (1) and (2) imply that cl V is noncompact, since by assumption
X Un for eachn.

(B’) (C). We will show that

oo= {X* n Ex(U):U is open in X}

is as required. First perform an easy calculation and use Lemma 6.5A to see
that U

_
Ex(X U)

_
C1 U for each open U in/3X. Hence d is a base for

S*.
Next, let " be a family of open sets in X* with I@1 < such that

Y/= {X* Ex(U): U @}

is centered. Lemmas 6.5C and 6.5B imply that cl is noncompact for
each nonempty finite -___ @. Let V be as in (B’). Then X* Ex(V) 4: by
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Lemma 6.2E. For each U ’ the set K cl(V-U) is compact. As
V- K c U we see from Lemma 6.5C.D that

Ex(V) K Ex(V- K)
_
Ex(U),

hence X* Ex(V) c_ X* Ex(V) since K
___
X. It follows that

Int* ;/ X* Ex(V) 4: .
(C) (B) Obvious.
(B) (A) Immediately clear from the Open Retraction Lemma, which

implies that X* has an open subspace which admits an open map onto N*.

6.7. Proof of 6.2. In the proof of (A’) (B’), if I1 o then we can find
without having a countable rr-base available.

6.8. Remark. Condition (A’) in 6.4 is known under the name P(K). It is
well known that MA (= Martin’s Axiom) implies P(c), [MS, p. 154], hence
that P(c) is consistent with -] CH.

7. The Baire number of X*

Define the Baire number b(Y) of a space Y by

b(Y) min{l I" consists of dense open sets in Y,

but f’l is not dense}.

So Y is a Baire space iff b(Y)> to. An immediate consequence of the
Fine-Gillman result 6.3 is the next proposition.

7.1. PROPOSITION.
then b(X*) > tox.

IfX is a noncompact locally compact realcompact space,

The conditions on X are essential by Examples 9.1 and 9.5.
We now consider upper bounds for b(X*).

7.2. THEOREM.
b(X*) < b(N*).

If X is a nonpseudocompact locally compact space, then

It is easy to see that if U is a nonempty open subspace of a space Y, then
b(Y) < b(U). Also, the proof that open maps preserve the property of being
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a Baire space shows that b(Z)> b(Y)whenever Z is an open continuous
image of Y. The result now follows from the Open Retraction Lemma.

7.3. COROLLARY TO PROOF. If X is a noncompact locally compact real-
compact space, then b(U) < b(N*) for each nonempty open subspace U ofX*.

Proof Use the parenthetical remark in 1.lB. (The corollary holds already
if CI*(X* vX) X*.) E3

It is known that the size of b(N*) depends on your set theory: By Remark
6.8, MA implies that b(N*) > c, and, more generally, that b(X*) > c if X is
noncompact, locally compact and realcompact, and has countable zr-weight.
On the other hand, Hechler has shown that it is consistent with ZFC that
b(N*) c or that b(N*)= (02 and (02 < c, [He].
Example 9.4 has b(T*) < 2’1, hence shows that equality need not hold in

Theorem 7.2, for MA implies b(N*)> c, as just noted, and MA + -]CH
implies that 2’1 c. In view of Theorem 6.1 this suggest the following
question.

7.4. Question. If X is noncompact, (r-compact and locally compact, and if
X has a countable 7r-base, is b(X*) b(N*)?

(It is no gain of generality to replace "(r-compact" by "realcompact.)

We conclude this section with pointing out that trivially b(N*)< 2
since N*I 2 [GJ, 9.2 or 90.2], hence that MA + 2 c / implies that
b(N*) 2. But it is consistent with 2c> c + that b(N*)= 2c: BACH
(= Baumgartner’s Axiom + CH), which is consistent with 2 > c, implies
that b(Y) > 2 whenever Y is a compact space with d(Y) < c (d density)
in which nonempty G’s have nonempty interior [T, 4.1]. Since d(X*)<
d(X) for any realcompact X, as one can easily verify (cf. [C1, 4.1]) it
now follows from Theorem 7.2 and Corollary 6.3 that BACH implies that
b(X*) 2 whenever X is a noncompact locally compact realcompact space
with d(X) < c, in particular BACH implies that b(N*) 2 [T], and in fact
that b(X*) 2c if X is as in Question 7.4.

8. Minimum character

For a space X define the character of F
_
X, or of x X by

x(F, X) min{ K: F has a neighborhood base of cardinality K}

x(x,X) x({x},X).
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Also, define the character and the minimum character of X by

X(x) sup{x(x, X)’x X};
mx(x) min{x(x, X)" x X}.

We begin with reminding the reader that x(N*) c (In fact there is p N*
with X(p,N*)= c [P]; cf. [Ku 1, remark on p. 303].), and that trivially
rex(N*) > to. Also, it is consistent with -]CH that rex(N*) c, by Remark
6.8, but it also is consistent with ZFC that mx(N*) < c [Kul, remark on p.
303].
As a trivial application of the Open Mapping Lemma we have:

8.1. THEOREM.
mx(N*).

If X is noncompact and realcompact, then rnx(X*) >

This result would not be available without the Open Mapping Lemma, for
then we would only know that X(x, X*)> rex(N*) for those x X* for
which there is a closed discrete C*-embedded D

___
X with x C1 D, but

there may be other points in X*; e.g., if X R [FG, 1.3], or X Q [vD4]
[vDs].
Example 10.4 shows that there is for each K >_ to a noncompact g-compact

locally compact X with mx(X*) x(X*) Ko,, hence equality need not
hold in Theorem 8.1. This suggests the question if equality holds for suffi-
ciently nice X. Since trivially rex(X*) < rex(N*) if X has an infinite closed
set of isolated points, we are interested in spaces without isolated points.

8.2. Example. There is a noncompact tr-compact locally compact space X
without isolated points such that mx(X*) rex(N*).

Proof Let L be the long line, i.e. the space one gets from the ordinals
[0, to1] by inserting a copy of the real interval (0, 1) between a and a + 1 for
each a < to1. Then X N L is a noncompact tr-compact locally compact
space without isolated points in which N N {to} is a countable C-em-
bedded discrete subset with x(N, X) to1. Now apply the lemma below to
see that mx(X*) < rex(N*).
The reverse inequality follows from Theorem 8.1. rq

8.3. LEMMA. If X has a countable discrete C-embedded subset N with
x(N, X) , then reX(X*) < rex(N*).

Proof N will be closed discrete, and for p X* N C1 N we have

X(p,X*) < X(p,X) < X(p,X* C1 N)
x(X* C1 N, C1 N) "x(C1 N,/3X).
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Since X* N C1 N and N* are homeomorphic and x(X* t C1 N, C1 N) to,
it follows that

rex(X*) < x(C1 N, fiX) mx(N*).

Since N is discrete and C-embedded in X we have C1 N C1 F t for
each closed F in X with N F [GJ, 9 M.1], hence

x(C1 N, fiX) x( N, X)

This gives no information about rnx(X*) for more interesting spaces like
Q and R. These spaces are first countable, and have a countable 7r-base,
hence we are led to the following question, especially in view of 6.

8.4. Question. If X is noncompact and realcompact, and is first countable
or has a countable r-base, is mx(X*) mX(N*)?

We only can show that it is not true in ZFC that mx(Q*)= c
rnx(R*) c.

or

8.5. THEOREM. It is consistent with
nonpseudocompact first countable space X.

ZFC that rnx(X*) < c for each

X will have a countable discrete C-embedded subset N. Let "to be the set
of functions from to to to, and define < on "to by

f < g if f(n) < g(n) foralln eto.

Let

d min{lFl" F _c "to is dominant; i.e., g "to ::If F (g < f)}.

Then clearly x(N, X) _< d. (We have equality iff infinitely many points of N
are nonisolated.) So it suffices to know that it is consistent with -] CH that
d mx(N*) to1; this is follows from the Simple Definable Forcing Axiom
[vDF].

8.6. Remark and question. Define < * on "to by

f < * g if f(n) < g(n) for all but finitely many n.

Clearly d also is min{lFl" F dominates in (’to, < *)}. Define b by

b min{IFl" F
___

"to is unBounded under <*}.
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Then tol -< b _< d < c, and nothing more can be said in ZFC [He]. Solomon
has shown that rex(N*) > b [S], and Ketonen has (essentially) shown that

min{x(p, N*)" p N* is not a P-point} >_ a [K].

I don’t know if these results can be improved to read rex(N*) > d. (If so
then the answer to Question 8.4 is affirmative for first countable X.) If not
then it might be difficult to calculate mx(Q*) or mx(R*): if N is a countable
discrete C-embedded subset of a first countable space X and if N contains
no isolated points, then X(P, X*) > d for each p X* n C1 N.

9. Hausdorff gaps

If K0 and K are cardinals, we define a (to, Il)’gap for a space X to be a
pair ((U/, : : < ri): < 2) such that:

(1) U/,, is open in X for : < ri, for < 2;
(2) cl U/,,

_
U/,, whenever : < r/ < Ki, for < 2;

(3) Ni<2U<KiU/,s 0 [")i<2cl Ug<KiU/,.
The following is a classical result of Hausdorff [H, 1].

9.1. THEOREM. (A). N* has an (to1, tol)’gap
(B) N* has no (to, to)-gap.

Part (B) has been generalized by Gillman and Henriksen [GH, 2.7]:

9.2. THEOREM. If Y is tr-compact and locally compact, then every two
disjoint open F-subsets of Y* have disjoint closures.

See [N, 3.1] for a short proof. We generalize part (A); our proof uses the
retraction rather than the open map provided by the Open Retraction
Lemma.

9.3. THEOREM. If X is nonpseudocompact and locally compact, then X*
has an (tol, to )-gap

Proof By the Open Retraction Lemma there are a closed G-set F of/3X
with F

___
X* and a homeomorph H of N* such that

(1) H
___
Int*F and

(2) F admits a retraction onto H.



TRANSFER OF INFORMATION ABOUT fiN N 785

By Theorem 9.1 H has an (091,091)-gap ((U/,: : < 091)." < 2). We prove
our theorem by finding a pair ((V, : : < 09 1)." < 2) such that:

(3) V,e is open in X* for < o and < 2;
(4) CI* V, e

_
V, whenever < < 1, for < 2;

(5) 0 < 2 U < tolV/, ; and
(6) U/,e c_ V/,e for : < 091 and < 2.

We construct V,., with transfinite recursion on : < to a, separately for < 2;
this causes no difficulties provided we impose the additional condition

(7) V/, e r U/, , for : < 091 and < 2;
this we can do if we are able to ensure that

(8) CI* U < nV/, e c_ Int* F for r < 091 and < 2.
To this end we note that F (/X- F)*, hence every two disjoint open
F-subsets of the subspace F have disjoint closures by Theorem 9.2. So if W
is an open F-subset of X* such that

X*-Int*F_W and CI*Wc3F=,

(there is such a W by (1)) then we ascertain (8) by demanding
(9) W c CI* V/,e t for sc < 091 and < 2. D

This argument also shows that if N* has an (09,091)-gap (this statement is
consistent with ZFC (since it follows from CHbut not conversely) and
independent from ZFC (since it is false under MA + -] CH)), then so has X*
if X is nonpseudocompact and locally compact. However, the argument does
not allow us to transfer a (K, h)-gap if K > 091. (It is consistent with ZFC that
N* have an (092,092)-gap; (Kunenmsee [Ba].) I have not seriously investi-
gated this, but point out that if X is a strongly zero-dimensional nonpseudo-
compact locally compact space, which implies that some clopen subspace of
X* admits an open retraction onto a homeomorph of N*, then there is no
difficulty whatsoever because of the following simple result.

9.4. PROPOSITION. If X admits an open map onto Y, or has a retract
homeomorphic to Y, then X has a (K, A)-gap if Y has one.

It is not generally true that if X is r-compact and locally compact, then
X* has a (, A)-gap iff N* has one: This follows from Example 10.5 and the
fact that N* has no (K, )-gaps if > c, or from the fact that it is consistent
with c 092 that N* has no (092,092)-gap [Ku3]. Again this leaves open the
following question.

9.5. Question. If X is noncompact, r-compact and locally compact, and
has a countable r-base, does X* have a (x, A)-gap iff N* has one?

We return to Hausdorff gaps in 12.
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10. Examples

Since one of our results, 6.1, uses the assumption that the space considered
has a countable 7r-base, we give our examples, when possible, a countable
zr-base.

10.1. Example. A realcompact space P with a countable base such that
P* is separable and is not Baire.

Let P be the irrationals. P is realcompact, being Lindel6f. Also,
(1) P* is dense in/3P

since no point of P has a compact neighborhood in P. Since a regular space
has a countable 7r-base iff each dense subspace does, and P has a countable
base, we see that /3P, hence P* too, has a countable 7r-base. Hence P* is
separable. Next, P is a G in /3P, being completely metrizable, hence P* is
not Baire because of (1).

10.2. Example. A noncompact locally compact space L with countable
7r-weight such that rex(L*) to and b(L*) to1.

By Theorem 11.1 it suffices to find a compact space X with weight to1 such
that rex(X)--to and b(X)= to1. An easy example is the product of to

copies of the one-point compactification ato tol (’j {} of tol: the family

{{X -- X: xn - ol I0 {oo} for each n}: a < tol}

witnesses that b(X) _< to1, and b(X) > to1 since X is compact. Clearly
mx(X) to (but x(X) tox). Another example, even with x(X) to, would
be an Aronszajn line.

10.3. Remark. The above example L is pseudocompact. A nonpseudo-
compact example is the topological sum to + L.

10.4. Example. For each K > to with Ko,= r there is a noncompact
g-compact locally compact space T such that

(1) T* is covered by a collection of 2’1 nowhere dense sets, each of which
is an intersection of to1 open sets; and

(2) X(x, T*) .
In the space T of [vDvM] replace c by r.

10.5. Example. For each regular r > to there is a zero-dimensional tr-

compact locally compact space X such that X* has (K /, r /)-gap.
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By 12.2 there is a compact zero-dimensional space Y which has a (K +, K+)-
gap ((Ai, " < to+): < 2). We may assume the Ai,’s are clopen. Let
X Y N, and define

.U/e, =X* nCl(Ai,exN) for:<+,i<2,

V/= Ue<K+U/,e for/ <2.

It is easy to see that U/,e
___

U/,n whenever : < r/ < x+, that the U/,e’s are
clopen in X*, and that V0 n V . Suppose C1 V0 c C1 V . Then there
are disjoint clopen sets W0, W1 in/3X such that C1 V/c_ W/ for < 2, hence
such that

V < + =In e N Ik e N (k >_ n Ai, X {k} _W/) fori< 2.

It follows that there is n N and a cofinal K c K+ such that

Vi < 2 Vs K(Ai,xtn c_ Wi).

This, in turn, implies that

[") < 2 cl U rAi, : =: (closure in Y),

which contradicts < <A i, " : < r + >" < 2> being a (+, r +)-gap in Y.

11. Appendix. A compactification of N

11.1. THEOREM. For every space X with weight at most c there is a space Y
which has a countable dense subset of isolated points (hence has a countable
r-base) such that Y* is homeomorphic to X.

Let K denote the Tychonoff cube of weight c, i.e., the product of c copies
of [0, 1]. Then a space has weight at most c iff it can be embedded in K
[E, 2.3.23]. Since/3T =/3S whenever S and T are spaces such that S c_ T c_
/3S, Theorem 11.1 follows from our next result.

11.2. THEOREM. N has a compactification bN which has a homeomorph H
of K, (necessarily) with H

_
bN N, such that fl(bN H) bN.

Proof K is separable, so let {xn: n N} be a countable dense subset with
x xn whenever m < n. Topologize bN N U K as follows: points of N
are isolated, and a basic neighborhood of x K in bN has the form

U m {n e N" n > k and Xn --. U),
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where U is a neighborhood of x in K and k N; clearly bN is compact
Hausdorff and N is dense in bN. (bN is a subspace of the Alexandroff
double of K.) Since K K is homeomorphic to K, there is a pairwise disjoint
family of homeomorphs of K in K with I1 IKI 2 > c I(N)
(N)I. The following claim therefore implies that there is H with
fl(bN H) bN.

Claim. For each H ’, if fl(bN- H)q bN then there are disjoint
A, B c_ N with

closure in bN).

Indeed, if/3(bN H) : bN there must be a continuous f: bN H --, I
[0, 1] and x H such that f has positive oscillation at f. Then there are

a, b I with a < b such that x (f [0, a])-N (f [b, 1])-. Consider any
a’, lwith a <a <b <b, thenA and B can be defined by

A =Nf’-[0, a’) and B=NNf’-(b,1].

12. Appendix 2. Spaces of uniform ultrafilters

For an infinite cardinal K we denote as usual the space of uniform
ultrafilters on K by U() [CN]. Consider the following statements, where
cf cofinality:

(1) ff cf(r) : cf(h) then U(r) and U(A) are nonhomeomorphic.
(1’) If > h > to but cf(K) cf(h), then U(r) and U(A) are nonhomeo-

morphic.

It is known, and easy to prove, that (1) holds in ZFC, but it is unknown if (1’)
holds in ZFC [C, 4], [vDMR, 9]. Clearly the following are stronger
statements of the special case h to:

(2) /f cf(K) > to and ifX is r-compact then U(K) is not homeomorphic to
X*.

(2’) If cf() to < K and ifX is r-compact, then U() is not homeomor-
phic to X*.

Since U(r) is zero-dimensional, and since each nonempty clopen subspace
of U(r) is homeomorphic to U(), the special case h to of the following
statements are again stronger, by the Open Retraction Lemma.
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(3) /f cf(r) > cf(h), then U(K) does not admit an open map onto U(A) and
has no retract homeomorphic to U(A).

(3’) If r > h > to and cf(r)= cf(h), then U(r) does not admit an open
map onto U(A).

Now the proof of (1) also establishes (3), see below, so it is natural to ask if
(3’) is true in ZFC, perhaps with the additional condition that the open map
be a retraction (on a homeomorph of U(A)). While (1’) is consistent with ZFC
since it trivially follows from the GCH, I do not know if (3’) is consistent with
ZFC. However, we will see below that the special case A to of (3’) is
consistent with ZFC, hence (2’) is consistent with ZFC, too. We will also
show that while (1) and (1’), or (2) and (2’) only differ in their hypotheses, it is
essential that the conclusion of (3’) is weaker than that of (3):

(4) U(r) has a retract homeomorphi.c to U(cf(r)).
(I did not seriously investigate the case cf(r) cf(A) and r > h > cf(r).)

12.1. First proof of (3). Call a space X K-basically disconnected if it is
zero-dimensional and if cl U is open whenever U is the union of a family of
less than r clopen sets. (So ISl +-basically disconnected extremally discon-
nected.) It is known that U(r) is cf(r)-basically disconnected but not cf(r) /-
basically disconnected [CN, 14.7(a) and 14.11]. It is easy to show that the
property of being K-basically disconnected is preserved by retractions and by
open maps onto zero-dimensional spaces. (This is known for extremally
disconnected spaces [E, 6.2.H(b)].)

12.2. Second proof of (3). By Proposition 9.4 it suffices to prove that
has no (h, h)-gap if h < cf(r), which is easy, but has a (cf(r) +, cf(r)+)-gap.
By Proposition 9.4 and (4) it suffices to show that U(r) has a (r +, r+)-gap for
regular K. This is similar to the proof of the case r to, due to Hausdorff [H,
2], but requires an additional idea if K > to since one wants to avoid that
one has to take A0,, AI,: such that

Ao, A1, g U(r)

for some < r with cf(sc) < r. The additional idea is to take each Ai, of
the form U(r) c C1Bi,, with Bi,i a nonstationary subset of r. (Kunen has
informed me that this sort of argument was used earlier by Herink.)

12.3. Proof that the special case ,k to is consistent with ZFC. From the
proof of the Shelah P-point Independence Theorem one deduces that it is
consistent with ZFC to have

N* has no P-points, and 2 max{ r +, to2} for r > to
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[M], [W]. Since if a space has a P-point, then so has every open continuous
image of it, it now suffices to observe that
() if 2K= K

/ and cf(K)- to, then U(r) has a P-point. We leave the
proof as an exercise to the reader.

12.4. Remark. Comfort and Vaughan, independently, have shown that
U(r) has no P-point if cf(r) > to and if r is not Ulam-measurable [C2, 7.3b].
Observation () above answers a natural question not asked in [C2].

12.5. Proof of (4). We may assume that K > cf(r). Let (D: : < cf())
be a decomposition of r such that

(e) o <_ IOel < IOn whenever : < r/ < cf().
Define a map f: K --, cf(r) by

t= U
:< cf(K)

By the Axiom of Choice there is a map g: cf(r) /3r such that
() U Oel IDol for each neighborhood U of g(:).

(In other words, g(:) is uniform on D.) It is easy to check that

u(,,)

and (fig)-" U(cf()) c_ U(K), and fig embeds flcf() into/3; and (flg)o(flf)
is a retraction.

It follows that ((g)o(flf)) U(r) is a retraction onto a homeomorph of
U(cf()).

12.6. Remark.
be a P-set.

If cf(r) to then the retract found in 12.5 is easily seen to

12.7. Remark. (2) and (2’) are equivalent to the formally stronger state-
ments one gets by substituting "nonpseudocompact" for "tr-compact": if X is
nonpseudocompact, and X* is compact and zero-dimensional, then X* has a
nonempty clopen subset K which is a Ga in /3X. Then Y =/3X- K is
tr-compact with Y* K. Now recall that every nonempty clopen set in U(K)
is homeomorphic to U(r), for each r > to.

[AT]

[BV]

REFERENCES

A.V. ARHANGEL’SKII and A.D. TAIMANOV, On a theorem of I. Ponomarev, Dokl. Akad.
Nauk SSSR, vol. 135 (1960) Sov. Math. Dokl., vol. (1961), pp. 1942-1943.

I. BALCAR and P. VOJT,S, Almost disjoint refinement offamilies of subsets of N, Proc.
Amer. Math. Soc., vol. 79 (1980), pp. 465-470.



TRANSFER OF INFORMATION ABOUT flN N 791

[Ba]

[C1]

[C2]

[CG]

[CR]

[CN]
[vD1]

[vD2

[vD

J. BAUMGARTNEN, Applications of the Proper Forcing Axiom, Handbook of Set-Theoretic
Topology, K. Kunen & J. Vaughan, eds., North-Holland, 1984, pp. 913-959.

W.W. COMFORT, Retractions and other continuous maps from fix onto fix X, Trans.
Amer. Math. Soc., vol. 114 (1965), pp. 1-9.

Ultrafilters; Some old and some new results, Bull. Amer. Math. Soc., vol. 83
(1977), pp. 417-455.

W.W. COMFORT and H. GORDON, Disjoint open subsets of fix X, Trans. Amer. Math.
Soc., vol. 111 (1964), pp. 513-520.

W.W. COMFORT and K.A. Ross, Pseudocompactness and uniform continuity in topologi-
cal groups, Pacific J. Math., vol. 16 (1966), pp. 483-496.

W.W. COMFORT and S. NEGREPONTIS, The theory of ultrafilters, Springer, Berlin, 1974.
E.K. VAN DOUWEN, Martin’s Axiom and pathological points in fix X, Topology Appl.,

vol. 34 (1990), to appear.
Retractions from 13X onto fiX-X, Gen. Top. Appl., vol. 4 (1978), pp.

169-173.
Subcontinua and nonhomogeneity of/3R+- R+, Notices Amer. Math. Soc., vol.

24 (1977), pp. A-559.
[vD4] Why certain (ech-Stone remainders are not homogeneous, Coll. Math., vol. 41

(1979), pp. 45-52.
[vD5] Remote points, Dissertat. Math. (Rozprawy Mat.), vol. 188 (1981), pp. 1-45.
[vDF] E.K. VAN DOUWEN and W.G. FLEISSNER, The Definable forcing axiom, Top. Appl., to

appear
[vDvM] E.K. VAN DOUWEN and J. vAN MILL, Parovienko’s characterization of 13to to implies

CH, Proc. Amer. Math. Soc., vol. 72 (1978), pp. 539-541".
[E] R. ENGELKING, General topology, Revised and completed edition, Heldermann

Verlag, Berlin, 1989.
[FG N.J. FINE and L. GILLMAN, Extension of continuous functions in fiN, Bull. Amer. Math.

Soc., vol. 66 (1960), pp. 376-381.
[FG2 Remote points in fiR, Proc. Amer. Math. Soc., vol. 13 (1962), pp. 29-36.
[F] Z. FROLfK, Nonhomogeneity of tiP- P, Comm. Math. Univ. Carol., vol. 8 (1967), pp.

705-709.
[GJ] L. GILLMAN and M. JERISON, Rings of continuous functions, Van Nostrand, Princeton,

N.J., 1960.
[H] F. HAUSDORFF, Summen yon l Mengen, Fund. Math., vol. 26 (1936), pp. 241-255.
[He] S.H. HECHLER, On the existence of certain cofinal subsets of’to, Proc. Symposia in Pure

Math., vol. 13, part 2, 1974, Amer. Math. Soc., Providence, R.I., pp. 155-173.
[G1] A.M. GLEASON, Projective topological spaces, Illinois J. Math., vol. 2 (1958), pp.

482-489.
[I 1] T. ISIWATA, A generalization of Rudin’s theorem for the nonhomogeneity problem, Sci.

Rep. Tokyo Kyoiku Daigaku., Sect. A 5 (1957), pp. 300-303.
[I 2 Mappings and spaces, Pacific J. Math., vol. 20 (1967), pp. 455-480.
[K] J. KETONEN, On the existence of P-points in the Stone-ech compactification of the

integers, Fund. Math., vol. 82 (1976), pp. 91-94.
[Ku 1] K. KUNEN, Ultrafilters and independent sets, Trans. Amer. Math. Soc., vol. 172 (1972),

pp. 299-306.
[Ku 2] Weak P-points in N*, Colloquia Mathematica Societatis Jnos Bolyai, vol. 23

(1978), pp. 741-749.
[MS] D.A. MARTIN and R.M. SOLOVAY, Internal Cohen extensions, Ann. Math. Logic, vol. 2

(1970), pp.143-178.
[M] C.F. MILLS, An easier proof of the Shelah P-point independence theorem, (accepted for

publication in Tran. Amer. Math. Soc., 1982, but never published.)
[N] S. NEGREPONa’IS, Absolute Baire sets, Proc. Amer. Math. Soc., vol. 18 (1967), pp.

691-694.



792 ERIC K. VAN DOUWEN

[P]

[R]

is]

[TI

[W]

[Wo]

[Wo2

B. POSPfIL, On bicompact spaces, Publ. Fac. Sci. Univ. Masaryk, vol. 270 (1939), pp.
3-16.

W. RUDIN, Homogeneity problems in the theory of ech compactifications, Duke Math. J.,
vol. 23 (1956), pp. 409-414, 633.

R.C. SOLOMOn, Families of sets and functions, Czech. Math. J., vol. 27 (102) (1977), pp.
556-559.

F.D. TALL, Applications of a generalized Martin’s Axiom, C.R. Math. Rep. Acad. Sci.
Canada, vol. 1 (1978/79), pp. 103-106.

E.L. WIMMERS, The Shelah P-point independence theorem, Israel J. Math., vol. 43 (1982),
p. 28-48.

R.G. WOODS, A Boolean algebra of regularly closed subsets of fiX- X, Trans. Amer.
Math. Soc., vol. 154 (1971), pp. 23-36.

Co-absolutes ofremainders ofStone-ech compactifications, Pacific J. Math., vol.
37 (1971), pp. 545-560.


