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Introduction

Let E, F be BK-spaces containing q and having F c E. Then F < E
means that whenever G is a BK-space containing and satisfying E
F + G, then E G holds. It is known for instance that co < , (cf. [10]),
and that p < q for 1 < p < q < oo (cf. [9]). Also l < E is known to be valid
for every BK-space E into which is weakly compactly included (cf. [9]). In a
certain sense F < E indicates that F is a small subspace of E.

In [11], Snyder has shown that F < E is valid if and only if the inclusion
operator F E is strictly cosingular in the sense of Pelczynski (also called a
Pelczynski operator). This clearly throws new light on the above examples
and, moreover, provides various other situations F < E (see [11]). Strict
cosingularity of an operator has a dual description. In our situation it tells
that the inclusion operator i: F E is strictly cosingular if and only if its
adjoint, the restriction operator i’: E’ F’ is strictly singular in the weak
star sense. In [11], Snyder proved that the latter is equivalent to strict
singularity of i’ with respect to the dual norms in the case where F is a
separable space.
From the point of view of sequence space theory it seems desirable to

express the relation F < E in terms of/3- or ,-duality rather than abstract
topological duality. In [9], Snyder has pursued this program, discussing a
property of the inclusion operator E F, called the Meyer-K6nig Zeller
property (MKZ property for short), which in many cases gives rise to a dual
version of F < E. Closing the circle in [11], Snyder introduced an abstract
version of the MKZ property in Banach spaces and proved that the restric-
tion operator i’: E’ F’ has this abstract MKZ property precisely when it is
strictly singular.
The abstract dual description of F < E being complete in the case where

F is separable, this is far from being true in the case of concrete duality. The
result in [9] expressing F < E in terms of MKZ for E F requires that
both E, F are BK-AD-spaces andJthat, in addition, the closure E6 of in E’
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has finite codimension in E’. In the present paper we keep to the concrete
approach in the spirit of [9]. Using a different technique allows us to avoid
the AD condition on the space F and to relax the assumption on E.
Our investigation shows that it is useful to discuss another property of the

inclusion E --. F, also introduced in [9], which is called the gliding humps
property. We clarify the interrelation of the two properties, proving that they
are equivalent in many cases. Also we prove that E o F has MKZ if and
only if the inclusion is strictly singular with respect to the norm topologies.
This is a parallel to the result of Snyder in [11]. However, strict cosingularity
of F o E and strict singularity of E F are no longer related by means
of natural duality, so that a direct proof for the mentioned equivalence has to
be given.

1. Definitions and preliminaries

In general our terminology follows the monograph [12]. We use two
notations different from [12]. Firstly, the sections of a sequence x are noted
P,,x, n 1, 2,... Secondly, given a BK-space X containing , we denote by

XAB the sectionally bounded part of X, i.e., the linear subspace of X
consisting of all sequences x X for which {Pnx: n N} is bounded in X.
Notice that XAB is a BK-space when endowed with the norm

IIXIIAB Ilxll + sup Itenxll,
nN

where II II denotes the norm on X.
In the following we recall some notions of particular interest in our present

investigation. A sequence (z n) of vectors z n , z o, is called a block
sequence if there exists a strictly increasing sequence (k,,) of indices such

nthat z o for k not in the interval (kn_ 1, k,].
Let sr (z ") be a block sequence. We denote by c0(’) the sequence space

Co(C) E XnZ"" ( X,,) e Co

where summation is understood in the coordinatewise sense, c0(’) is a
BK-space with the norm

Ilzll i,n Zn suplAnl.
n=l nN

In the same sense we use the notations l(sr) and (’).
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Let X, Y be sequence spaces having c X c Y. Suppose X is a BK-space.
The inclusion X - Y is said to have the gliding humps property if, given any
block sequence " (z n) with Ilznllx 1, n N, there exists a. sequence
(An) such that E_lAnZn Y\X, i.e.,

l() NYCX (cf.[9]).

Let X be a BK-space containing . X is called null for block sequences if,
given any block sequence " (zn), the relation Co(g’) c X implies z n o
(n )in X (cf. [4]).
The following result has been proved in [4, Theorem 1]. We shall need it

again in the present paper, and shall therefore give an alternative proof.

LEMMA 1. Let E be a BK-space containing P. Suppose X E is separa-
ble. Then X is null for block sequences.

Proof. Every BK-space which is a 3,-space may be written as the dual of a
BK-AK-space. Indeed, let F be the closure of in Ev. Then F is BK-AK,
so F’ F3 Fv. It remains to prove that Fv Ev. It follows from [1, Prop.
1, (iii)] that Ev B(E), where B(E) denotes the linear hull of byo E.
Clearly B’(E) c E’. But actually the elements of B’(E) have AK in E
(see [1]). So B(E) F which gives Fv Ev.
Suppose now we had c0(’) c Er X for a block sequence " (z n) with

z - o. Passing to a subsequence if necessary, we may assume IIz IIx >_ > o
for all n. But now the inclusion c0(sr) X turns out to be an embedding.
Indeed, for z E=!Anzn c0(’)we find

IA=I -IlIAnZ"IIx- 7-1llekz ek,_lzllx 2/-lllzllx

in view of the monotonity of the norm II IIx (cf. [12]). This proves that c0(’)
is a closed subspace of X. Since c0() = c0, this is a contradiction since no
separable dual space may contain a copy of co (see [3]), and since X F’by
the above. This ends the proof, r

There is a surprising interrelation between the concept of nullity for block
sequences and the gliding humps property.

LEMMA 2. Let E be a BK-space containing dp and let X E. Then the
following are equivalent"

(1) There exists a sequence space Y such that X -> Y has the gliding humps
property;

(2) X " oa has the gliding humps property;
(3) X is null for block sequences.
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Proof Clearly (1) and (2) are equivalent. Assume (2). Let " (z n) be a
block sequence having c0(sr) c X. Suppose we had zn o. Selecting a
subsequence if necessary we assume IIzllx >_ > o for all n. Let s = (v n)
be the normalized sequence, i.e., vn= (1/llzllx) z. Then c0(:)c c0().
But notice that l(s)c c0(s) c Xr X, the first inclusion being estab-
lished in analogy with the classical fact lc c. Since [Ivnlls--1, this
contradicts the fact that X to has the gliding humps property. So our
assumption must be incorrect, i.e., (2) implies (3). The reverse implication
being clear, the proof of the Lemma is complete. D

Remarks. (1) Lemmas 1 and 2 are not valid for 0-spaces X E. This
may be seen by taking E by, X-- cs. Clearly X is separable, but it is not
null for block sequences. Take z n 62n 2n-- 1, then Co(Z) c cs, but
IIzllc 1. Also the inclusion cs to has the gliding humps property, so
that Lemma 2 is not true for X cs.

(2) Notice that X to has the gliding humps property if and only if
1() c X for a block sequence sr (z) implies z o in X.

2. Meyer-Kfinig Zeller property

Let X, Y be FK-spaces having c X c Y. The inclusion X Y is said to
have the Meyer-K6nig Zeller property (MKZ property for short) if for any
FK-space F, the relation Y c3 F X implies that X c3 F is closed in F. This
notion has been introduced in [9] as Meyer-K6nig Wilansky Zeller property
(MKWZ for short), and later on in [11] has been renamed as presented here.
We refer to [9, 11] for various examples concerning MKZ. Let us just
mention that the choice of the name comes from the fact that Meyer-K6nig
and Zeller proved that co l has MKZ (see [9, 11]).
Our first result concerning the MKZ property indicates a close relation to

the gliding humps property discussed in the previous section.

LEMMA 3. Let E be a BK-space containing dO, and let X E. Let Y be
any FK-space containing X. Then the following statements are equivalent"

(1) X -, Y has the gliding humps property;
(2) X is null for block sequences and X Y has MKZ;
(3) X is nullfor block sequences and, given any BK-space F with Y f3 F X,

X is closed in F.

Proof. (1) implies (2) by Lemma 2 and [9, Theorem 1]. Notice that the
result in [9] is stated under more restrictive assumptions, but that the part of
the proof needed here does not actually use these. We prove that (2) implies
(3). So let F be an BK-space satisfying Y f3 F X. Then (2) implies that X
is closed in F. But X is an AB-space, so is contained in FAa. Clearly this
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implies that X is closed in FAB, SO (3) is proved. Finally assume (3). We
prove that X Y has the gliding humps property. Assume the contrary and
find a block sequence " (z n) having IIzllx 1 and l(") N Y c X. Let
F c0(’) + X. Then

Y (3 F (Y C3 Co(’)) + (Y (3 X) X.

So (3) implies that X is closed in Fan. But notice that F itself has AB.
Indeed, this follows when we check that every z En=lAz c0(sr) has
bounded sections in F. So let k N, kj_ < k < kj, where (k.) is the
sequence of indices corresponding with the block sequence (z). Then we
have

j-1

ek Z E ii Zi + AjPk Zj,
i--1

and by the definition of the norm II IIF on F (cf. [9, 2]) this implies

IIPzlIF <_ Ai zi / IIyezYllx

_< Ilzll + IAyl" IlekzYllx
< 2 IIz II ,

where the last inequality uses the monotonity of the norm IIx and the fact
that IIzllx 1. This proves in fact that z has bounded sections in F. So we
have proved that X is closed in F.
We claim that, on the other hand, X is dense in F. Again this results when

we prove that every z Y’.Az n Co() can be approximated in F by vectors
from b. Since PkjZ --* z(j ---> oo) in c0(’), and since the inclusion c0(’) --> F
is continuous, this is clear.
We have proved X F, so c0(’) c X. This, however, contradicts the fact

that X is null for block sequences. This ends our proof, t2

Remark. Lemma 3 generalizes [9, Theorem 1], since the assumptions
made for the space U in [9] imply that the latter is null for block sequences.

We end this paragraph with a criterion for the presence of the gliding
humps property for an inclusion X Y. This involves another definition
which is a variation of a concept introduced in [8].

Let Y be a BK-space containing . Then Y is said to have the strong
gliding humps property if, given any block sequence sr (z n) having llznllY
1, there exists a strictly increasing sequence (ry) of indices such that l(:) c Y,
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where (zrn). For examples concerning the gliding humps property for
spaces we refer to [8].

LEMMA 4. Let X, Y be BK-spaces having dp X Y. Suppose X --. to has
the gliding humps property, and Y has the strong gliding humps property in the
above sense. Then X - Y has the gliding humps property.

Proof. Let sr (z n) be a block sequence satisfying IIzllx 1, n N.
First consider the case where IlznllY --’ 0 (k --’ oo) for some sequence (nk) of
indices. Then we may select a subsequence (mk) having

Ilz mll Y < ,
k--I

Setting (Zmk), this clearly implies 1() c Y.
Next consider the case where IlznllY > o for all n. Let (v n) h be the

normalized block sequence, i.e., v (1/[[znllY) z. Then the strong glid-
ing humps property for the space Y provides. (mk) so that

I(K) c Y, (Umk).

But notice that l() c 1oo(), where (Zmk),
In both cases we have l(:) c Y, where (Zmk). NOW we apply the fact

that X --, to has the gliding humps property. This gives l(:) X. Therefore
X Y has the gliding humps property, r

Remark. Notice that X to has the gliding humps property whenever X
is a separable BK-AB-space. Consequently, for every space X of this kind
included in , X has the gliding humps property and hence MKZ.
Indeed, we have to use the fact that has the strong gliding humps
property.

3. Main theorem

In this section we obtain our main result which derives the validity of
F < E from the fact that E F has MKZ or rather has the gliding humps
property.

Before starting we need a definition. Given a BK-space E with topological
dual E’, we note E the norm closed linear hull of the projection functionals
x x, n N, in E’. Clearly if E’ turns out to be a sequence space, then E
is just the closure of in E’.
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THEOREM 1. Let E be a BK-AD-space such that E is complemented in E’.
Let F be any FK-space satisfying d c F c E. Let X E, Y F, and
suppose X -, Y has the gliding humps property. Then F < E.

Proof. Let G be an FK-space containing and having E F + G. We
have to prove E G. This requires six steps.

(I) We claim that the weak topologies tr(, G) and tr(, E) have the
same null sequences. Since every tr(, E)-null sequence is clearly null in
tr(, G), we are left to prove the reverse implication. So let (yn) be a null
sequence in tr(, G). It suffices to prove that (yn) is bounded with respect to
the norm Ilx. Indeed, suppose this has been established, Ilyllx < M, say.
Fix x E and some e > o. As E is an AD-space, there exists G having
IIx lle -< e/2M. But now we have

I(x, yn) <- IIx lle" IlYIIx +1(,
< e/2 + e/2

for n > n(e). So (y ") is in fact null for tr(, E).
(II) We prove that (yn) is bounded for IIx. Assume the contrary,

Ilyllx > 2n, say. Since G contains , the sequence (y") is coordinatewise
null. This permits us to find strictly increasing sequences (ni), (ki) of integers
satisfying:

(a) Ily n’ eki_ynillx > 2i;
(b) y has length _< ki, 1,2,...

Now let us define vi= yni_ pk,_yni, ai-- 1/llvillx, zi__ OtiUi. Then "(z) is a block sequence having IlznlIx 1,

(III) We claim that l(r) c Gv. Indeed, let z EA,,zn 1() be fixed.
Let x G. For k N choose j satisfying ky_ < k < ky. Then we have

k j-1 k k

E XiZi E 1iOli E XrUr "" 1jOlj E XrUJr
i=1 i=1 r=ki_l+l r=ky_l+l

j-1

E ii01"i(X’ Ui> "JI- ij(ekX Pky_lX, O[jUJ)o
i=l

Here the first term on the right hand side converges (k o, kj_ < k < kj)
in view of (aj) and (x, v i) --, o (i --. ). The second term remains
bounded (k , kj_ < k < kj) as a consequence of (Aj) and the
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estimate

x pj_x, yvJ>l IIPkx Pk_xlIx," IIyvYlIx
< 2 IIx IIx,,

Here we use the monotonity of the norm Ilx on X Evv.
(IV) Using the fact that X Y has the gliding humps property, we find

some h such that z ,hnzn Y\X. But z G by III. This contra-
dicts the equality Ev F n G. So the sequence (yn) must be bounded,
and this proves that tr(, G) and tr(, E) have the same null sequences
in .

(V) We end the proof of the theorem by showing that G is a barrelled
subspace of E. The closed graph theorem will then imply E G.

Let U be a barrel in G. We have to prove that U is actually a neighbour-
hood of o. Now by assumption E is complemented in E’, i.e., there exists a
closed linear subspace Q of E’ such that E’ E6 Q. Let M (E) +/- be
the annihilator of E6 calculated in the dual pairing (E", E’). Then M n E
{o} since E separates the points of E. Notice that M -= Q’, where Q’ is the
dual of Q with the dual norm. Let B be the polar of Jthe unit ball in Q
calculated in the dual pairing (M, Q). Then B is tr(M, Q)= tr(Q’, Q)-
compact, so B is compact with respect to the topology tr(E", E’) when
regarded as a subset of E". This follows from tr(E", E’)IM tr(M, Q).

Let V U + B. Then V spans G + M, therefore V, calculated in the
pairing (E", E’), is tr(E’, G + M)-bounded. We prove that V is actually
bounded in the dual norm on E’.

Let (yn) be any sequence chosen from V. Using the decomposition of E’
we find sequences (p) in E, (q) in Q having y p" + q. Let M be
fixed. Then we have

(, qn) (, qn) -I- (t, pn) (, yn) O(1),

which proves that (qn) is tr(Q,M)= tr(Q, Q’) bounded. This implies the
norm boundedness of (qn). It remains to prove that (p) is bounded in norm.
Using the definition of E we find vectors r" such that

lip r nll <_ 1, n N,

where denotes the dual norm and r is identified with an element of
E’. So the sequence (r") must be bounded with respect to tr(E’, G), since this
is true for (pn). Regarding (rn) as a sequence in , this means that it is
bounded for tr(, G). But now part I of our proof comes into action. Since
the topologies tr(, G) and tr(, E) have the same null sequences, they also
have the same bounded sequences, thus (rn) is bounded in tr(, E), so is
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bounded in tr(E’, E)via identification. Hence (rn) is norm bounded, and
thus so is (pn).

(VI) We have proved that V is norm bounded, so V is a neighbour-
hood of o in E". Thus V n G is a norm neighbourhood of o in G. Clearly
V is the tr(E", E’)-closure of V. Since B is tr(E", E’)-compact, the latter is
V U + B. Thus we find

VnG=PG=G=U,

proving that U is a norm neighbourhood of o in G. Here the last equality
follows from the fact that U is weakly closed in G. This ends the proof of our
theorem, r

4. Consequences

In this section we obtain two consequences of our main result. The first
consequence below generalizes [9, Theorem 2].

COROLLARY 1. Let E be a BK-AK-space such that E6 is separably
complemented in E’. Then the following statements are equivalent for any
FK-space F having c F c E"

(1) F < E;
(2) E --, F has the MKZ property.

Proof. (2) implies (1) by Theorem 1 when we observe that E E’, being
separable, is null for block sequences, so that E F has the gliding
humps property by Lemma 3.
We prove that (1) implies (2). We check that condition (3) from Lemma 3

is fulfilled. So let X be an FK-space satisfying X F Ev. We have to
prove that Ev is closed in XAB. Actually we shall prove E XAa.

Observe that XAB F E must hold, since a vector x X belonging
to E has bounded sections in E, so its sections must be bounded in X as
well. Now using [2, Satz 2.3(c)] we have XB + F E. So

dualizing once more. Now observe that X (XB b/)0)’ holds by [1,
Prop. 1 (iii)]. Since X c E, we deduce

XtB byo c E byo E,

where the last equality comes from the fact that E has AK. So we have
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shown that

G =XB.bV0
q- F

is a dense FK-subspace of E satisfying Gv E, hence G E. Now using
the fact that E has the Wilansky property (cf. [4, Prop. 2] or [5, Theorem 2]),
we deduce E G.

Applying F < E now, we derive E--X,(B’bVo, giving Ev X, so
actually E XAB. This ends the proof. D

Remark. Notice that the result in [9] uses a similar reasoning. Also the
equality E G has to be derived from the weaker Ev Gv. The author,
however, does not have the full strength of the converse theorem from [4],
[5], so has to use the converse theorem [12, 8.6.1]. The latter, however, relies
on the notion of f-duality, so the space G has to be an AK-space, and this is
possible to arrange only when F is assumed to be AK
Our next result gives a condition for < E. The reader might compare this

with the results in [7].

COROLLARY 2. Let E be a BK-AD-space containing 1. Suppose E is
complemented in E’ and E is null for block sequences. Then < E.

Proof. This follows from Theorem 1 when we prove that Ev --. has the
gliding humps property. But this follows from Lemma 4, since the inclusion
Ev to has the gliding humps property by assumption, while has the
strong gliding humps property.

5. Strict singularity

We have already mentioned in the introduction that Snyder [11] has
introduced an abstract version of the MKZ property for the restriction
operator E’ F’ which turns out to be equivalent to strict singularity of this
operator at least when the space F is assumed separable. This naturally
raises the question of whether in the case of the concrete 3,-duality, the MKZ
property of E F may be expressed equivalently by the strict singularity
of this inclusion. The purpose of this paragraph is to settle this question in
the positive.

First we have to recall the notion of strict singularity. A linear and
continuous operator T" X Y between Banach spaces X, Y is called
strictly singular if the closed linear subspaces S of X for which TIS is a
homeomorphism with closed range are the finite dimensional ones (if there
are any). In the special case of an inclusion operator i: X Y with X, Y



INCLUSION OPERATORS 103

BK-spaces, strict singularity of means that every subspace S of X which is
closed in Y must be finite dimensional.
Our investigation starts with the interrelation of the gliding humps prop-

erty and the notion of strict singularity.

PROPOSITION 1. Let X, Y be BK-spaces having d c X c Y. Suppose Y has
AB. IfX to has the gliding humps property and X Y is strictly singular,
then X Y has the gliding humps property.

Proof. Let " (z n) be a block sequence satisfying Ilznllx 1, n N.
Suppose we had l(sr) n Y c X. Then by the strict singularity of the inclu-
sion, l(") n Y would not be closed in Y since it is infinite dimensional.
We claim the existence of a sequence (nk) of indices such that IIzllY --, o

(k oo). For otherwise we would have IlznllY >_ > o for all n. This,
however, implies that l(sr) Y is closed in Y. Indeed, denoting by the
norm on l(sr) Y and fixing z Ehz within, we have

[An[ 7-1[[AnznllY -llekZ ek_,zllY

< 207-1llzlly,

where O is a constant such that IlekxllY <_ O IIXlIY for all x Y and all k.
This gives Ilzlloo _< 20-lllzllY, so the norms IIY and are equivalent
on l(sr) : Y. This contradiction proves our claim.
We choose a subsequence (mk) of (nk) having =l]lZmkllY < oo. Then

clearly l(:) c Y, where : (zmk). Applying the fact that X to has the
gliding humps property shows that, on the other hand, l(:) X. So X Y
has the gliding humps property, t3

Replacing the AB-condition on the space Y by the stronger fact that
Y F for a BK-space F, we can show that strict singularity of X ---) Y alone
implies MKZ. Before proving this, we need the following result.

LEMMA 5. Let F be a BK-space containing d, and let Y F. Then is
norming when considered as a subspace of Y’, i.e.,

Ilylly sup{l<x, y>l’x , IlxllY, 1}

is satisfied.

Proof. The proof of Lemma 1 shows that Y may be represented as the
dual E’ Ev of a BK-AK-space E. Then clearly is a norming subspace of
E"= Y’ when Y E’ is endowed with the dual norm corresponding with a
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fixed norm on E. But II lit is equivalent with the mentioned dual norm,
and this implies that is also norming for II IIg, r

PROPOSITION 2. Let F be a BK-space containing dp and let Y F. Let X
be any BK-space having p c X Y. Suppose X - Yis strictly singular. Then it
has the MKZ property.

Proof Let G be a BK-space satisfying G N Y c X. We have to prove that
G N Y is closed in G. Assume the contrary. Consequently, there exists a
sequence (yn) of vectors in G Y such that

Ilyn IIY 1, Ilyn 2-n.

Since G is a K-space, the sequence (yn) is certainly coordinatewise null, i.e.,
y --, o in tr(Y, ).

Applying [6, Prop. and Lemma 5, we deduce that there exists a subse-
quence (ynk) of (yn) which is basic with respect to the norm IIY on Y.

Let L denote the closed linear span of (yn) in Y. We prove L X, and
this contradicts the strict singularity of X--, Y, since L is clearly infinite
dimensional.

Let y Epky L, the series converging in norm IIY, Then we find

IPkl llPk ynllY
k k-1

E PiY ni E PiYni

i:=1 i=1

--,o (k
Y

in view of the convergence of the series. So (Pk) Co, and this proves y G,
having regard of IlynllG < 2 -nk. Thus y X. D

What about the reverse implication? We obtain a positive answer in the
case where both, X and Y, are y-spaces.

PROPOSITION 3. Let E, F be BK-spaces containing P, and let X E,
Y F satisfy X Y. Let Eo, Fo be the unique BK-AK-spaces having E
E X, Fd F Y. Then the following statements are equivalent"

(1)
(2)
(3)

(4)
(5)

X--, Y has the MKZ property;
X --, Y is strictly singular with respect to the norm topology;
X Y is strictly singular with respect to the weak star topology
r(Y, Fo) r(F, Fo);
Fo <Eo;
Fo --* Eo is strictly cosingular.

Proof. Recall the proof of Lemma 1, which tells that E0 is just the norm
closure of in Xv E, and similarly for F0. Clearly F0 c E0, and the
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inclusion F0 E0 is dense. But now Proposition 3 is a reformulation of [11,
Theorem 4.7]. Indeed, the inclusion operator X Y is just the restriction
operator E Fd, since F0 is dense in E0. Also the abstract MKZ property
for the restriction operator in the sense of [11] is the same as the concrete
MKZ property for X Y. Finally observe that the result in [11] is applicable
since Fo is a separable space. [3

Remark. Let us mention another consequence of the fact that y-spaces
may be represented as duals of BK-AK-spaces. Suppose X,Y are BK
y-spaces with X closed in Y. Then X Y. Indeed, writing X E E’,
Y Fv F’ for BK-AK-spaces E, F gives F c E. But the norms of E, F are
equivalent, so E F since F is dense in E. This may as well be seen by
writing X, Y as f-duals and applying [12, 8.6.1].

COROLLARY 3 (Compare [9, Theorem 2]). Let E be a BK-AK-space, F a
BK-AD-space, and suppose F c E. Let E F have the MKZ property.
Then F < E. The converse is true when F has AK.

Proofi MKZ for E F implies F0 < E0 by Proposition 3. But here we
have F c F0 c E0 E, and this immediately gives F < E0 E. So the first
part of the statement follows. The second part of the statement is clear from
Proposition 3. D

We conclude with the following useful combination of Corollary 1 and
Proposition 3.

THEOREM 2. Let E be a BK-AK-space such that E is separably comple-
mented in E’, and let F be any BK-space having d c F c E. Then the
following statements are equivalent:

(1) F E is strictly cosingular
(2) Ev F is strictly singular.
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