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Lp AND SOBOLEV SPACE MAPPING PROPERTIES OF
THE SZEG OPERATOR FOR THE POLYDISC

BY

PETER M. KNOPF

1. Introduction

Suppose 1) is a domain and 01) is its boundary. The Szeg6 operator for
OlI is defined to be the orthogonal projection of L2(OlI) into H2(3)where
H2(01)) consists of those functions in L2(01)) which are the extensions of
holomorphic functions in 1). It is well known (see [2], p. 55) that the Szeg/5
operator may be expressed as an integral operator of the form

,/f( z) foa( z, )f()dtr()

where S is the Szeg6 kernel.
Recently it has been shown (see [1]) that the Szeg6 operator for the

topological boundary of the bidisc in C2 with respect to Lebesgue surface
area measure is bounded on Lp and Lp for 1 < p < oo and a > 0. In this
paper we show that the same results hold for the topological boundary of the
polydisc in Cn for n >_ 3. Furthermore one may have arbitrary radii for the
polydisc in each dimension and obtain the same results for any n.
The proofs of these results use the Marcinkiewicz Multiplier Theorem in

order to reduce the problem to considering a more tractable operator than
the Szeg6 operator. It turns out that the "tractable" operator is simply the
composition of n 2 Bergman operators for the disc in C and of the Szeg6
operator for the topological boundary of the bidisc in C2.
We point out to the reader that the mapping properties for the Szeg6

operator for the distinguished boundary of the polydisc are trivial and should
not be confused with the subject of this paper.

I am greatly indebted to K. Diaz for bringing to my attention the problems
that were studied in this paper. I would also like to thank E.J. Straube for his
helpful comments.
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2. The main results

Let D denote the open unit disc in C and let OD be its boundary. The
polydisc in C is Dn D x x D and its closure is D D x x D
where we take n copies of D. The topological boundary of D" clearly is

aDn (aD x n-1) U ( X OD X "-) U U (n-1 X aD).

We let (OD)"= OD x... x OD. The operator On will denote the Szeg5
operator for OD" with respect to Lebesgue measure. If f is in LZ(ODn), it is
well known (see [2], p. 55) that

(1) nf(Zl,...,Zn)

lim n((Zl,. Zn) (’1 ’n))
eO D

8p(z Zn)

"f(srl, sr,)do’(Srl, ’,)

a.e. on OD where dr is Lebesgue surface area measure on ODn, V(Z Zn is
the unit outward normal to ODn at (Zl,..., z,), and g, is the Szeg6 kernel.

LEMMA 2.1. The Szeg6 kernel for ODn is

n((Zl,’’’,Zn), (’1,’’’, ’n)) Sn(Z1;1,’’’,Zn;n)

where

(2) Sn(Xl,...,Xn)

n

I-I (Jk + 1)x
k=l

n

Jl jn=O 27rn -- (Jk-Jr- 1 /
k--1

Proof By the proof of Lemma 2.1 in [6],

k= Jl Jn =0

forms an orthogonal basis for H2(ODn). Using polar coordinates zk rk eik,
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it is easy to calculate that

2

k L2(dDn)

n

2rr" ., (j + 1)
k=l
n

1-[ (jk + 1)
k=l

We conclude that

,.n(( Zl, Zn), ( l, n) )

n

1-I (Jg + 1) "ykyjk’ksk
k=l

n
j, j,=0 2.rrn E (Jk + 1)

k-1

as required.
Henceforth we will denote the Szeg6 kernel for ODn by Sn(Zl’l,..., z’)

with S defined in the statement of Lemma 2.1.

THEOREM 2.2. The Szeg6 operator satisfies [lnfllzP(oon) CIIfll,(oz%
for 1 < p < and n > 1.

The constant C both here and in any subsequent use will stand for a constant
depending only on n and p.

Proof The case n 1 is well known and the case n 2 has recently
been solved (see [1]). So we assume n>3. Fix p with l<p<oo. By
symmetry we may assume that the support of f is contained in OD x -1.
Also by symmetry it is enough to show that

IInnfllL,(OZD"-b <_ CllfllL(OZn-b

or more generally

IInnflloo"-b

Since the operator is difficult to handle directly, consider the operator

(3) /nf( ZI,’’’, Zn) lim fo Kn(Z-I’ Z-2 Z33 ZnL)
e----O D2)<n-2

"(l,...,n)do’(l,...,n)
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where (z, z) (Zl, z2) e/2(Zl, Z2
and

(4) K,(xx,...,x,) =- 1 n

h,.
., 0J +J2 + 2 =I-Ia (] + 1) x.

We claim that

IIfllL0n2--z) < CIlfllL,OD:xn-b.

Since 002 (OD ) W ( OD), by symmetry it is enough to show that

IInnfllL0Dxn-b < CIl/nfllLoOO.-b

It is obvious that both f and nnf are the boundary values of holomorphic
functions in D2 and hence may be expressed in power series form:

(5) JUf(zl,... Zn) lim E (1 E)Jlajl...jn H ZJkk
eO+ Jl Jn =0 k=l

and by (1), (2), Lemma 2.1, and (4) we may write

(6) nnf(Z1,...,Zn)

lim
1

e._,0+ 27rn E (1 --e) jl Jl + J2 + 2
n

y,=0 E (J + 1)
k=l

n

aJ1... Yn
k

eiOl i02Introducing the polar coordinates z z2 rze Zn r,e" for
fixed r2,... rn the functions JUnf and nf have the following multiple
Fourier series expansions:

/nf(ei, r2ei2, rnei.)
n n

ajl...jn VI rk 1-I eijkOk

Jl Jn =0 k=2 k=

and

nnf(eiOl, r2ei2, rneiOn)
n

E Jln +j2+2
Jl Jn-----O E (Jk " 1)

k=l

n n

I-I rYk I-I eiJ.a_l..._nil
k=2 k=l
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We will show that

(7) lilY( r2(’),...,
< Cliff(’, r2(’),..., r,(.

This is equivalent to the following lemma.

LEMMA 2.3. /f
n

f E ajl...j H eijkOk
Jl Jn =0 k=

and

Jn +j2+2
Jl jn=O -, (Jk + 1)

k=l

n

H eijkokajl.. Jn
k=

then

Proof Consider the multiplier on Rn defined by

m( Yl,. Yn) Y1+Y2+2
n

k=l

Let g LV(Rn). Define the operator Tm by

Tmg( Yl, Yn) =- re(y1,..., Yn) , ( Yl, Yn)"

Define the infinite rectangle R to be R {(Yl,..., Yn) Rn’yk " for
all k} and define the operator SR by

SRg( Yl, Yn) XR( Yl, Yn) , ( Yl, Yn)

where XR is the characteristic function of the set R. From the proof of the
Marcinkiewicz Multiplier Theorem (see [3], Chapter IV, Section 6.3) it can be
seen that

TmSRgllz,’(R’) < CIIgllz,<l.),
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Define O such that 0 C(R), is non decreasing, (x)= 0 on
(-0%- 1/4], g/(x)= 1 on [0, o), and Iq(n)(x)l < C for all n > 1. Define the
operator Tq, so that

n

T"’( y,..., Yn) I-I (Y,)( Y,’’’, Yn)"
k=l

Since 1-I.=l(yk) is a Marcinkiewicz multiplier on LV(Rn) (see [3], Theorem
6’, p. 109)we have

Note that Tq,TmSg TmTq, and so ]lTmTq, gllLP(Rn) CllgllL.29. Associated
with the operator TmTq, is a unique periodized operatorTmTq, d,efined in
Theorem 3.8 in Chapter VII in [5]. It is obvious that TmTq, T and by
Theorem 3.8 we have IIfllL.ODr) <- CllfllL<ODr) which proves the lemma.
We return to the proof of Theorem 2.2. Raising both sides of (7) to the

power p and integrating with respect to the measure IIk=Erkdrk gives

IInnfll p n--1)tP(Ooxn-1) " CIlnfll p
LP(OD

as claimed. We have left to show that

(8)

Summing up the series in (4) gives

n

gn( Xl, Xn) 2nS2(x1, x2) H n( Xk)
k=3

where S2 is the Szeg6 kernel for OD2 and B(xk) ,n--l(1- Xk)-2 is the
Bergman kernel for D with k 3,..., n. It is well known (see Theorem 3 in
[4]) that the Bergman operators (k) with associated kernels B(xk) map
LV(D) into LV(D). It has been shown (see [1]) that the Szeg6 operator
,_2(1’2) with the associated kernel S2(X1, X2) maps LV(OD2) into LP(OD2).
By (3) and (4) we may write

(9) onf( Zl, Zn ) ,.(n) ,..(4),.,(3),W2(1,2)f( Zl,... Zn)

Inequality (8) now follows, which concludes the proof of Theorem 2.2.

THEOREM 2.4.
a>0, andn >_ 1.

The Szeg6 operator maps LP into LP for 1 < p <
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Proof The cases n= 1 and n=2 are known (see [4] and [1]). So we
assume n > 3. By induction and interpolation it is enough to do the case
a 1. The inequality

IInfllLf<OOn) CIIfllLf<OO)

follows immediately from (9), Theorem 3 in [4], and Theorem 3.5 in [1]. The
comparison between n and JC/n, which is shown in the proof of theorem
2.2, works for derivatives as well. The theorem now follows.

3. Remarks

(a) The Bergman operator n for the polydisc with respect to Lebesgue
surface area measure maps LPa(Dn) into LPa(Dn) for 1 < p < 0% a > 0, and
any n. This is not difficult to show. Straightforward calculations give

where k) is the Bergman operator for the disc D in the variable zg
the associated kernel

with

B(Xk) ’rr-l(1 --Xk) -2 for k 1,...,n.

The same results hold for the domain D, as defined in part (d) below.
(b) HP(ODn) strictly contains HP((OD)n) for 1 < p < and n > 2. The set

(OD)n is often called the distinguished boundary of the polydisc Dn. In fact it
is easy to show that

Ilfll,oDn) CIIfll,ODr)

for any f and if f(ZI,...,Zn) (1- z1z2)-3/2p then f HP(ODn) but
f nP((OD)n).

(c) In [1] it is shown that the Szeg6 operator 2 for the bidisc is not
weak-type (1, 1) nor does it map Ar into A (the Lipschitz spaces) for any
0 < y < 1. It can be shown using the same counterexamples cited in [1] that
the Szeg6 operator for the polydisc with n > 3 is not weak-type (1, 1) nor
does it map A into A for any 0 < 3’ < 1.

(d) Let D(Rg) denote the disc of radius Re in C. Define

D, D(R1) D( Rn).

Let R denote the Szeg5 operator for OD, with respect to Lebesgue surface
p narea measure. The Szeg6 operator R is bounded on LP(OD,) and L,(ODR)
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for 1 < p < oo, a > 0, and n >_ 1. The proofs are similar to those of Theo-
rems 2.2 and 2.4.
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