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ON THE DUALITY OF THE UNIFORM APPROXIMATION
PROPERTY IN BANACH SPACES

BY

VANIA MASCIONI

In this paper X will always denote a Banach space with norm II, x* its
dual, Ix the identity on X. k(n) will denote a function N N.
X is said to have the uniform approximation property (U.A.P.)with

uniformity function (u.f.) k(n) if there is a constant K > 1 such that, for any
finite dimensional subspace E of X we can find an operator T (X)
satisfying TII _< K, rank T < k(dim E) and Tie Ie. U.A.P. was defined
by A. Peczifiski and H. Rosenthal in [7] and it was shown by S. Heinrich in
[5] that it is a self-dual property. Heinrich’s proof is straightforward but the
problem is that it does not give any estimate of the u.f. of X* in terms of the
u.f. of X. Before Heinrich’s paper, self-duality of U.A.P. was established for
superreflexive spaces by J. Lindenstrauss and L. Tzafriri [4] using a construc-
tive proof which yields an estimate of the u.f. of X* in terms of the u.f. of X
and of the modulus of convexity of an equivalent norm on X. However, this
estimate is too bad to be used in some applications. A much better estimate
(but still worse than exp k(n)) easily follows from an unpublished argument
of Bourgain (see below). In the following pages we will show that a factoriza-
tion trick can be used to deduce a very good asymptotic estimate for the u.f.
of X* (see Theorem 4). For asking the right questions, and for many
stimulating discussions, I would like to thank Professors W.B. Johnson and
G. Pisier.

Let us recall some definitions. Given Banach spaces X and Y, and an
operator T:X---> Y, the 2-summing norm ,r2(T) of T is defined to be the
smallest constant c satisfying

Ilrxill < c sup ( Y, xi) 2
1/2

y Bx,

for all finite sequences x,..., x in X.
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If T is as above and k N, the k-th approximation number ak(T) of T is
defined by

ak(T) inf{llT- LII:L ’(X,Y),rank L < k).

The main properties of the 2-summing norm and of the approximation
numbers can be found in [8].

Let a be an operator ideal norm (in the sense of [8]). Then we say that X
has the a-U.A.P, if there are a constant K > 1 and a function k(n) such
that, for any n-dimensional subspace E of X, we can find a finite rank
operator T .(X) such that IITII <_ K, a(T) < k(n) and Tie Ie. Notice
that II-U.A.P. is nothing but B.A.P. (bounded approximation property).

Finally, let us recall that X has the convex U.A.P. if there are a constant
K > 1 and a function k(n) such that, for any n-dimensional subspace E of
X, we can find operators (T/)im__ 1, m N, T/ ..(X), such that IIT/II _< K,
rank T/< k(n), and such that some convex combination Ei.YiTi extends the
identity on E.
To avoid annoying repetitions, let us agree that a space X has (K, k(n))-

U.A.P. (resp. (K,k(n))-a-U.A.P., (K, k(n))-convex U.A.P.) if the desired
U.A.P. property holds for a constant K and a u.f. k(n).

It is immediately seen that (K,k(n))-U.A.P. implies (K, k(n))-convex
U.A.P., which in turn implies (K, Kk(n))-a-U.A.P. for any norm a (in fact,
we always have a < v, where v is the so-called nuclear norm, and v(IE) n
for every n-dimensional Banach space E). Conversely, if one does not pay
attention to the constants and u.f.’s involved, to show that a-U.A.P, implies
U.A.P. you need (for example) ultrastability of a (see [8] for the definition)
and a fixed m such that the quasi-norm/3 a a (m-times) defines an
operator ideal consisting exclusively of operators which are approximable
(with respect to/3) by finite rank operators. For instance, 7r2 will do the trick.
Some years ago, Bourgain [unpublished] proved that convex U.A.P. passes

over to the dual with the same u.f. Actually, Bourgain proved that convex
U.A.P. is equivalent to U.A.P. (with possibly different u.f.), and so his proof
produces an estimate of the U.A.P.-u.f. of X* (which still lies somewhere
near exp[ k(n)log k(n)], where k(n) is the convex U.A.P.-u.f. of X).
To obtain a better estimate, we are going to exploit an idea which appears

in Bourgain’s proof of the duality of convex U.A.P. (see Lemma 1). After-
wards, a factorization argument combined with 7r2-U.A.P. will give us what
we need (Proposition 2) to prove the main Theorem. Lemma 1 is stated for
general a-U.A.P, because we feel that this property has independent interest
(at least for the 2-summing and nuclear norms). Given the ideal norm a, we
write ad for the dual norm, which is defined by ad(T) a(T*). Let us agree
to say that an ideal norm a satisfies property (.) if the following holds:

(.) For any finite rank operator u:X Y we have

a(u) inf a(UF),
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where the inf runs over all finite dimensional subspaces F of Y containing
u(X), and uF is u considered as an operator X --+ F.

It is clear that, if a is injective (in the sense of [8]), then a satisfies ( ) (this is
the case for r2 and we will use this later).

LEMMA 1. Let a be an ideal norm satisfying property (,). Then, ifX* has
(K, k(n))-aa-U.A.P., X has ((1 + e)K, (1 + e)k(n))-a-U.A.P, for all e > O.

Proof Let a be an ideal norm satisfying (.), and let X* have (K, k(n))-
aa-U.A.P. Fix an n-dimensional subspace E of X and an Auerbach basis
{el,..., en} of E, i.e., a basis such that

maxl/3il ieill

for all scalars ]i" Fix e > 0 and define

= {Z (X)’IITII g(1 + 8) 1/2, a(T) _< (1 + e)’/2k(n), rankT < m}
and

n
-g5a= {(Tei)i=a:T

We show first that (ei) -’, where the closure is taken in l(X). In fact,
supposing that (ei) -g, by the convexity of g’ we can find (zi) in the unit
ball of l’(X*) such that

E ( Zi, Zei) < E ( zi, ei) V Z ,... (1)

Now, let S ’(X*) be a finite rank operator such that IISII K, aa(S)
a(S*) < k(n) and SZ Z for all 1,..., n. Since a has property (,), we
can find a finite dimensional subspace F of X* * containing S*(X* *) and
such that, if SF is S* considered as an operator X** F, we have

a(SF) < (1 + 8)1/4og(8").

By local reflexivity, let J:F X be an isomorphism such that IIJII (1 +
e)1/4 and (zi, Jf) (zi, f) for all 1,..., n and all f F. In particular,
we have (zi, JS*ei) =(zi, S*ei) for all i= 1,...,n, since S*(X**) cF.
Further, if we define TO JSFIx, we see that

To) < (1 + e)l/4og(SF)
< (1 + 8)1/2og(5 *)
< (1 + e)1/Zk(n),
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and liT011 < (1 + e)l/4llSll. Consequently, TO but, since TO satisfies

E ( zi, Zoei) E ( zi, ei),

we have a contradiction with (1).
Having proved that (ei) -, for an arbitrarily small 8 we can find an

operator T such that

max IlTe -eill n3/2.l<_i<n

The system {el,..., en} was chosen to be Auerbach, and so it is easy to see
that we actually have IITle I11 -< /n1/2. This means that Tie is invertible
with inverse V satisfying IIVII _< (1 /nl/2)-1. Let P be a projection from
X onto T(E)with Ilell-< n1/2 (such a projection exists by [8, 28.2.6]) and
define Too (Ix (Ix V)P)T. We have then

IlIx- (Ix- V)PII 1 +
1 6In1/2"

Choose such that the quantity on the right hand side of the last inequality
does not exceed (1 + e)1/2. Then we get (recalling that T )

Too (1 + e) 1/211TII (1 + e) K,

a(Too) _< (1 + e)l/2ot(r) < (1 + e)k(n)

and it is immediately verified that Toole Ie. Q.E.D.

Note that Lemma 1 can be seen as a generalization of Grothendieck’s
theorem stating that if X* has B.A.P. then X has B.A.P. Oust let a be the
usual operator norm). This also shows that X and X* in Lemma 1 cannot be
interchanged in general: for this to hold you need (for instance) an ultra-
stable norm a such that a-U.A.P, already implies U.A.P. (see above).

PROPOSITION 2. IfX has (K, k(n))-rr2-U.A.P., then X has

1 1/m K1 +m + __m )2+2/m)m2/mk(n -U.A.P.

for all integers m > 1.

Proof Fix m > 1, let E be an n-dimensional subspace of X and let
T .a(X) satisfy IlZll _< K, r2(T) _< k(n) and Tie Ie. By the Pietsch
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Factorization Theorem [8, 17.3.7], there are a probability measure /x on a
compact space S and operators A ’(X, C(S)), B ..a(C(S), L2(/x, S)),
C ’(L2(, S), X) such that T CBA and IlZll IIBII 1, IICII
-2(T). Since the approximation numbers form a nonincreasing sequence and
satisfy the inequality ak(PQR)< [IPIla(Q)IiRll for all operators P, Q, R,
we get

supim/2ai(Tm+l) ( ?ai(Tm+l)2/m)
IICII [I(a,((BAC)m)),II    IIBAII
  (Z)II (ai((nzf)m)) lll /m (2)

Since BAC is in ’(L2(/, S)) and since the second factor of the right hand
side of the above inequality is nothing but the norm of (BAC)m in the
Schatten class C2/m, the H61der inequality gives

II(ai((BZC)m))i II1/,,, C2/m((BAC) m)
< c2(BAC)m

7/-2(BAG) m

< ,rr2(n)mllZllmllC[[m

__< 7’2(T) m

<_k(n) m. (3)

Putting (2) and (3) together we see that, if we take 0 to be the smallest
integer strictly greater than m2/mk(n)2+2/m, we have aio(Tm+l) < l/m,
which means that we can find an operator L .(X) such that rank L < 0
and

lITm+l LII < 1/m.

The operator Ix Tin+l+ L is invertible with inverse V, Ilvll < (1-
l/m)-1. Consequently, if we define TO VL, we have

liT011 -< IIVII(IITm+alI + lITre+l- LII) _< (1- 1/m)-l(Km+l + l/m),
rank To < m2/mk(n)2+2/m

and

Z01e Ie. Q.E.D.



196 VANIA MASCIONI

Since (K, k(n))-convex U.A.P. implies (K, Kk(n)I/2)-r2-U.A.P. (recall that
,n’2(IE) n1/2 if E is n-dimensional [8,28.2.4]), we have the following imme-
diate.

COROLLARY 3. IfX has (K, k(n))-convex U.A.P., then X has

1 1/m K1 +m q_ m2/mK2+ + 1/m
m

for all integers m > 1.

Now we are able to state and prove the main theorem:

THEOREM 4. If X has (K, k(n))-U.A.P., then X* has U.A.P. with uni-
formity function ck(n) + for any > O. More precisely, X* has

1 1/m [(1 +e)K] ’+m+-

m2/m[(1 + e)K]Z+2/mk(n)a+/m)-U.A.P.
for all e > 0 and all integers m > 1.

Proof. Let X have (K,k(n))-U.A.P. Then, by [4], X** has (K,k(n))-
U.A.P., too, and, in particular, X** has (K, Kk(n)/z)-Traz-U.A.P. Since ’W2
satisfies property ( ) (see the remark above Lemma 1), Lemma 1 implies that
X* has

((1 + e)K, (1 + e)Kk(n)I/2)-’n’2-U.A.P.
for all e > 0 and, finally, Proposition 2 concludes the proof. Q.E.D.

The nice dualization properties of convex U.A.P. and of a-U.A.P, together
with Theorem 4 suggest the following conjecture:

CONJECTURE. IfX has U.A.P. with u.f. k(n), then X* has U.A.P. with

u.f. ck(n) for some constant c.

It is interesting to note that the conjecture holds in the case when k(n) has
linear growth. In fact, in [3] we can find a refinement of an argument in [6]
yielding that linear U.A.P. for X implies that X is a weak Hilbert space (as a
matter of fact, in [3] it is also proved that, conversely, all weak Hilbert spaces
have linear U.A.P., but we won’t need this in the sequel). Given this result,
we proceed as follows: X has linear U.A.P., and thus linear convex U.A.P.
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Hence, X* has linear convex U.A.P. and, a fortiori, (K, cn)-u-U.A.P, for
some c. Since X* is a weak Hilbert space, we have supe kay(T) < c’u(T) for
all T .(X*) and some c’, and so an easy approximation and perturbation
argument produces linear U.A.P. in X*, as desired. At the moment, the
above idea does not seem to generalize to higher growth rates of k(n).
Let us conclude with an easy application of Theorem 4, which answers a

question asked in [1]:

COROLLARY 5. For any K > 1 let kx(n, K) be the smallest k(n) such that
L has (K, k(n))-U.A.P. Then there exist constants c a, c2 (depending on K)
such that

exp(can) < kl(rt, g ) <_ exp(c2n ).

Proof By [2, Lemma 17], any C(K)-space has the

,- + 1 -U.A.P.

for all e > 0. By Theorem 4, this shows that any C(K)-predual has
(K, exp cK)-U.A.P, for some constant c depending on K and for all K > 1.
On the other hand, an exponential lower bound for kl(n,K) has been
obtained in [1]. Q.E.D.
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