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Quasitriangular and quasidiagonal operators on Hilbert space were first
introduced by Halmos in [Hall], [Hal2] and quasitriangular operators in
particular have played an especially important role in operator theory since
that time (e.g., [DP], [AFV]). The natural extension of these concepts to
quasitriangular and quasidiagonal algebras first appeared in [Ar] and then in
[FAM]. Again, quasitriangular algebras have proved to be very important,
especially in the area of similarity of nest algebras [An], [L], [D2]. On the
other hand, very little is known about quasidiagonal algebras. Several inter-
esting results appeared in [Pl] for the one particular case in which the
quasidiagonal algebra is defined by a nest of finite-dimensional projections
{P,} which increase to the identity operator. One result was that such a
quasidiagonal algebra is always larger than the commutant of the nest
modulo the compact operators. Thus, while a quasitriangular operator is the
sum of a triangular operator and a compact operator, a quasidiagonal
operator is not always the sum of a diagonal operator and a compact. In
Theorem 10, we extend this result to all quasidiagonal algebras: if 22(.#")
is the quasidiagonal algebra determined by the infinite nest of projections .7/,
then 292(#") is always larger than .#" + %, where .#” is the commutant
of the nest and ¥ is the set of compact operators.

Even though a quasidiagonal operator is not necessarily diagonal plus
compact, Halmos showed that it is nevertheless block diagonal plus compact.
We also extend this result to arbitrary quasidiagonal algebras (Proposition
13), and this implies that there is an index obstruction for membership in
quasidiagonal algebras defined by certain purely atomic nests, and it is the
same as the obstruction for .#” + %" In addition, we give an index obstruc-
tion for .#" + % if # is a continuous nest (Theorem 14), but it is not clear
if the same is true for the corresponding quasidiagonal algebra. It does lead,
however, to an alternate characterization of .#" + % in the continuous case
(Theorem 15).

Another result in [Pl] is that the essential commutant of the quasidiagonal
algebra considered there is CI + %" This provides an example of a nonsepa-
rable unital C*-subalgebra of the Calkin algebra which does not equal its
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double commutant (by Voiculescu’s reflexivity theorem [V, Theorem 1.8], this
is not true if such an algebra is separable). We show, however, that the
essential commutant is CI + ¥ for essentially only this one case. We also
show that for a large class of nests, the essential commutant of the corre-
sponding quasidiagonal algebra 22(.#") is C*(#") + J% (Corollary 23).

In this paper, -Z(#°) will denote the set of bounded operators on a
complex, separable, infinite dimensional Hilbert space -#, and the set of
compact operators will be given by % (), or just % if the Hilbert space is
clear from the context. If . is a subset of .Z (%), then

S ={TeL(H):TS = ST forall § € .}

is the commutant of ., and .#" denotes the double commutant (") of /.
The essential commutant of .7 is

S ={TeL(H): TS - ST € ¥ forall § € ./}.

All projections on Hilbert space will be self-adjoint in this paper.

A nest ¥ is a set of projections on s# which is linearly ordered with
respect to range inclusion, contains 0 and I, and is closed in the strong
operator topology. A nest equipped with the strong operator topology is a
compact separable complete metric space.

Alg /=T e £(H): P TP =0forall P € ./}

is the nest algebra of ¥, i.e., the set of all operators for which each
projection in .#  is invariant. Alg 4"+ % is the quasitriangular algebra of
A, denoted 27 (.#"). Note that (Alg .#") N (Alg .#')* = .#". On the other
hand, 29(4) N 29 (#)* is the quasidiagonal algebra of .4, denoted
29 (N). 29 (4) is norm-closed [FAM, §1, Corollary 2], so 22(4") is a
C*-algebra which clearly contains .#” + %" One objective of this paper is to
show that if .#” is infinite, then 29(4) 2 4" + ¥.

A projection E is an atom of # if E =P, — P, for some P, P, € .4,
P, < P,, and there isno P € .# with P, < P < P,. If .# has no atoms, then
A is nonatomic, or continuous. 4 is purely atomic if ¥ E; = I, where the
sum is taken over all atoms E; of .#” and convergence is in the strong
operator topology. The operator § , is defined by & ,(T) = LE,TE,, again
summing over all atoms and converging strongly. Note that if .#” is purely
atomic, then T € #” if and only if T = §_,(T). If .#" is continuous, then ./
can be parametrized by the unit interval, .#'= {N,: 0 < ¢ < 1}, by defining
N, = (pl.»)~1¢) for some faithful normal state p on £ (#).

Finally, .#"* denotes the nest {P*: P € .#}. Note that 2I(/*) =
LI(N), 2D(NL) = 29(A4), and AH" = (A1)
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TueoreM 1 [FAM, Theorem 2.3]. T € 29(A4) if and only if (a) P*TP €
X for all P € 4 and (b) the function P € 4 — P'TP € % is continuous
with respect to the strong operator topology on A4 and the norm topology
on X%

The following characterization of 292(.#") is an easy consequence.

ProrposiTION 2. T € 29(#) if and only if (a) TP — PT € % for all
P e / and (b) the function P € #— TP — PT € % is continuous with
respect to the strong operator topology on 4 and the norm topology on % .

Proof. f Te29(4#), then Te 29(#) and T € 2T (N )* =
27 (A1), Therefore, Theorem 1 implies that P*TP and PTP* are in %
for all P € .# and the maps P - P*TP and P — PTP* are strong-norm
continuous. Now (a) and (b) follow since TP — PT = P*TP — PTP*,

If (a) and (b) hold, then P*TP = PX(TP — PT)P € % for all P € 4.
Now suppose P, — P strongly. Then

IPLTP — PATP,|l < IIPX(TP — PT)(P - P,)l
+ lI(P+ —=P*)(TP - PT)P,||
+ [IBX((TP — PT) — (TP, — P,T))P,|.

The first two terms converge to zero since TP — PT is compact and P, — P
strongly [W, Lemma 1.8], and the last term converges to zero by property
(b). Therefore, T € 29(#") by Theorem 1. A similar estimate with
|PTP+ —P,TP; || shows that T € 29 (A#) = 2T (#)*. O

A consequence of the last proposition is that 47 + ¥ c 29(4) C
A = C*(A),. Now by [JP, Theorem 2.1], .#" + J¥ is the essential commu-
tant of .#", and if .#  is a finite nest, then .#" = C*(.#"), so the following
result is immediate.

ProrosITION 3. If ¥ is a finite nest, then 29(NV) = N + X.

If .# is a nest and Q is a projection in .#”, then Q.#g is also a nest,
denoted .#},. 4, is called an induced nest of e

Lemma 4. Suppose ¥ is a nest and Q is a projection in A". Let T be an
operator in £(QH), and define T € L (H) by T = T & 0 with respect to the
decomposition H'=QH ® Q*H. Then T € 29(N) if and only if T €
2P (N, and T € N + KX if and only if T € (ANp) + F(QH).
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Proof. If T€ 29(4), then T — L € Alg .# for some compact opera-
tor L. Then QLQ € ¥(Q+#), and

QP*(T ~ QLQ)QP = QP*(QTQ ~ QLQ)QP = QP*(T - L)PQ = 0

for all P € 4, so T € 29(A4y). By interchanging P and P+, we also have
T € 29(A5) = 2T(Ay)*, so T € 29(A,). Conversely, if T €
29X (A), then T-Ke Alg(./I/) c .Z2(QH#) for some K € #(QH#). Let
K=K €B 0 with respect to the decomposmon QH® Q+#. Then

PX(T - K)P = P+(QTQ — QKQ)P = QP*(T — K)QP = 0

for all P € 4, so T € 29(#). Again, interchanging P and P! yields
Te 29 (#), soTe 22(4). The proof for 4" + % is similar. O

The following lemma is a generalization of [Pl, Proposition 4].

LeMMA 5. Suppose ¥ is purely atomic. Then T € A" + ¥ if and only if
T-68,T)eX.

Proof. Suppose T =S + K where S € .#” and K € J¥. Then
6,(TY=6,(8)+6,(K)=S+6,(K)=T—-K+6,(K),

so T—6,(T)=K-5,(K). But § ,(K)e€ % by [FAM, Lemma 2], so
T - 6 ,(T) € %. The converse is clear since § ,(T) € A#". O

We can now use this lemma to generalize [Pl, Lemma 17]. First, we say
that ./ is an order-N nest if it has the form /= {0, P,,I: 1 < n < »} with
P,<P,., for all n and P, — I strongly. An operator S is strictly upper
tnangular with respect to ./I/ if BX, SP, = 0 for all n. Similarly, S is strictly
lower triangular if P,SP-, =0 for all n.

LEmMA 6. If ¥ is an order-N nest, then there is a strictly upper triangular
noncompact operator R**, a strictly lower triangular operator R™~, and a
compact operator D such that R = R**+ D + R™~ is compact.

Proof. With a small modification, the argument is the same as in the

proof of [Pl, Lemma 17]. We will include the details for completeness. For
each n, choose a unit vector e, € (P, — P,_,)#. Let

K, = span{e,,: i’<n<(i+ 1)2} fori=1,2,...
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If § € Z(H#)), written as a matrix with respect to the basis {e;2,j,. .., ;1)
let S* denote the matrix obtained by replacing the entries below the main
diagonal with zeros, and denote the map § = S* by +,. || +,|| = o since
dim &, — » [D1, Example 4.1], so there are operators S; € -£(5,) such that
ISl = Il +;1I" and 1—1/i < IS;*|l < 1. Define R, R}€ £(Py, 1y —
P2)#)by R, =S, ®0and R}=S®0. Then R=R, ®R, ® - is com-
pact, and thus so is 8 ,(R) = 8 ,(R*) by [FAM, Lemma 2], but R*= R &
R} @ --- is not compact. Now just let D =8 ,(R), R**=R*— D, and
R~ =R-R*. O

CorOLLARY 7. If A is an order-N nest, then 29(N) 2 N + K¥.

Proof. Let R, R**, R™~, and D be the operators given by Lemma 6.
Then

R** e Alg /' C 2T (N)

and
R**= —RT™+(R-D) e Alg NS+ + X =25 (N)*,

so R**e 29(4"). However, R**— 6§ _,(R**) = R** is not compact, so
R**¢ 4"+ % byLemma5. 0O

Remark. It would be interesting to have a concrete example of an
operator in 22(.#") which is not in " + ¥ If we let T, = A} be the
operators in example 4.1 of [D1], then A,/||T;|| can be used in place of S; in
the proof of Lemma 6 to construct R**. This would be a concrete example
except that we don’t know the norms || T;|.

To show that 29(4") 2 A" + ¥ in general, we first consider the case
in which .#” has an infinite number of atoms. The set of atoms of .#  is
linearly ordered by E < F if E=P,— P; and F =P, — P; with P, < P,
(P, € #), so there must be either an increasing or decreasing sequence of
atoms. By replacing .#” with .#"* if necessary, we can assume that there is an
increasing sequence of atoms {Ey: 1 < n < «}.

THEOREM 8. If 4 has an infinite number of atoms, then 29(N")
N+ K.

Proof. As indicated above, we can assume that .#” has an increasing
sequence {E,: 1 <n < «} of atoms, i.e., E, = P,, — P,,_, with P, in ./
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and P,,_, <P,, <P,,,, for all n. Let

Q= Y E, e .

n=1

Then .#;, is an order-N nest consisting of the set of distinct projections
{0, P,l, = QPanQX, IQX: 1 <n< m}.

Now Corollary 7 shows that there is an operator T in .@.@(./VQ) but not in
(A) + #(QH), and the result follows by Lemma 4. O

THEOREM 9. If ¥ is a continuous nest, then 29(N) 2 N + K.

Proof. Choose an increasing sequence of projections {P,} C .#” such that
P, — I strongly, and let .# be the subnest {0 = Py, P,, I: 1 < n < «}. Let R,
R**, R™~, and D be the operators given by Lemma 6 for the nest .#. Now if
Pe 4, P+1, then P,_; < P < P, for some n, and therefore

PR**P = P*PL _ R**P,P =0,
so R**te Alg .#. Similarly, R~ € Alg 4", so
R**= —R-"+(R - D) € Alg #/'* + ¥ = QT (N)*.

Therefore, Rt¥te 29(4). Also, #"' + ¥C #' + K%,and R*"& 4"+ ¥
by Lemma 5 since R**—§ ,(R**) = R** is not compact. 0O

Tueorem 10.  For any infinite nest N, 29(N) 2 N + K.

Proof. Theorems 8 and 9 cover the cases in which .#” either has an
infinite number of atoms or is continuous. The only other possibility is that
# has a finite positive number of atoms. Then since .#” is infinite, .#” must
have a continuous interval. In other words, there are projections P;, P, € A4~
with P, < P, such that E(P, — P;) = 0 for every atom E of .#. Letting
Q = P, — P,, it follows that .#,, is a continuous nest on Q-#". Theorem 9
then implies that there is some operator T € 22(.#,) which is not in
(ALY + X(QH), and the result follows from Lemma 4. O

Provosrition 11.  For any infinite nest N, (C*(A)), 2 29(N).
Proof. Let {P,} be an increasing or decreasing sequence of projections in

4. By replacing .#~ with .#"* if necessary, we can assume the sequence
increases. Let Py =0 and let P = V P, € .4, so P, = P strongly. For each
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n, let e, be a unit vector in (P, — P,_,)#, and let V' be the partial isometry
defined by Ve, = e, for all n. Then ||[P;}VP,|| = 1 for all n, but P*VP = 0,
so V& 29(4") by Proposition 2. Now if Q € .#, then either Q > P, or
P,_, < Q < P, for some n. In the first case OV — VQ = 0, and in the second
case

(QV - VQ)h = —{h,e,_;)Q%, — (h,Qe,ye,,, forheH,
so QV — VQ is compact. Therefore, V € 4, = (C*(/)),. O

One of the first results on quasidiagonal operators was given in [Hal2,
p. 903], where it was shown that every quasidiagonal operator is the sum of a
block diagonal operator and a compact. In terms of nests, if {0, P,, I
1 < n < «} is an order-N nest with dim P, < o for all n, then each operator
T € 29(#) has a compact perturbation which is block diagonal with
respect to .7, i.e., there is a compact operator K and a subsequence P,
such that

(T-K)P, =P, (T-K)

for all k. Equivalently, an operator § is block diagonal if there is an infinite
subnest .# such that § € .#’. The set of all such block diagonal operators is
denoted by Z2(.#"). Now if we remove the finite dimensional restriction, so
4 is a general order-N nest, then the same argument given in [Hal2] works
in this case also because TP, — P,T € ¥ for all T € 22(.#") (by Proposi-
tion 2).

ProrosiTion 12. If A4 or A4+ is an order-N nest, then 29(4) ¢
BIN) + K.

Proof. Since BA(N+) = BD(¥), it is enough to prove the result if ./
is an order-N nest. From the above remarks, it only remains to show that the
containment is strict. For each n, let ¥, be a partial isometry with ini-
tial space in (P,,_, — P,,_,)# (where P,=0) and final space in

(Pzn - Pzn_l)%, al‘ld let V = Vl ® V2 ® - . Then ”PZJ;I—I VPZn—l" = 1
for all n, so V& 22(.#") by Proposition 2, but V' commutes with the
subnest {0, P,,, I}. |

The notion of a block diagonal operator does not generalize easily to
arbitrary nests. After all, if T € 292(#"), then Proposition 3 shows that for
any finite subnest .# of .4, there is a compact perturbation of 7' which
commutes with .#. The content of the last proposition is that there is
an infinite subnest with this property. Now if .#” or .#'* is order-N, then
¥ has just one strong accumulation point, namely I or 0, respectively.
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Because a nest is compact, every infinite nest must have at least one
accumulation point, but there may be many, and they need not include 0 or 1.
However, at each accumulation point P, there must be either an increasing
or decreasing sequence of projections in the nest which converges to P. With
this in mind, we will generalize the notion of a block diagonal operator as
follows.

DeriniTioN.  If .#7 is an infinite nest and P is a strong accumulation
point of .#/, then an operator T is block diagonal at P with respect to 4 if
there is an increasing or decreasing sequence {P,: 1 < n < »} C .# such that
P, » P strongly and TP, = P,T for all n. #2,(.#") denotes the set of all
such block diagonal operators.

ProrositiON 13.  If 4 is an infinite nest and P is an accumulation point of
N, then 29(N) ¢ BDp(N) + K. In fact, if .# is any infinite subnest
with accumulation point P, then 29(N) ¢ BD(H) + K.

Proof. Suppose that {P,} is a sequence of increasing projections in .#
such that P, — P strongly. The argument for a decreasing sequence
is similar. Let T be an operator in 292(.#"). Then TP — PT € %/, so
P+ TP, PTP+ € % also. Now PTP € 29(%), where & is the order-N nest
{0, P,, P = I|px} on PH. It follows from Proposition 12 that PTP = S + K,
where § € £ (P#) is block diagonal with respect to some subsequence {P, }
and K € ¥(Ps##). Considering S and K as operators on ¥, we have

P,(S + P* TP*) = P, P(S + P* TP*) = P, PS = SPP,
= (§ + P TPY)PP, = (S + P- TPY)P,

for all k. It follows that
T=(S+P-TP') +(K+ P TP + PTP*) € #Dp(H) + X.

To show that the inclusion is strict, define an isometry V just as in the proof
of Proposition 12, using the sequence {P,}. O

If T is a semi-Fredholm operator, let i(T) denote the Fredholm index of
T. One of the uses of these results on block diagonal operators is the
following: if .#” is an order-N nest with all atoms finite-dimensional, and T
in 29(4") is semi-Fredholm, then i(T") = 0. This follows from Proposition
12 since each subnest .# has finite-dimensional atoms and therefore i(S) = 0
for every semi-Fredholm operator S in .#’. Proposition 13 implies the same
result if .#” is purely atomic with all atoms finite-dimensional and a finite
number of accumulation points. Of course, if .#” has just one infinite-
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dimensional atom, then .#”, and therefore 22(.#") also, has semi-Fredholm
operators of arbitrary index. On the other hand, if .#  is continuous, then it
turns out that there is again an index obstruction for membership in .#” + %"
We will use the notation T ~ R to mean that T is unitarily equivalent to a
compact perturbation of R, ie., if T € Z(H#;) and R € £(H#%), then
T~R if T=U*RU + K for some K € #(#,) and unitary operator
U: Hp - Hx.

TueoreM 14. Suppose A4 is continuous and T is a semi-Fredholm operator
in 4"+ % Then i(T) = 0, ©, or —o.

Proof. T=S+ K, where S € 4" and K € %, It is well-known that
since .# is continuous, then C*(S) N % = {0}. To see this, first parametrize
A by #={N,: t €[0,1]}, and note that if C*(§) N %+ {0}, then C*(S)
contains some nonzero finite rank projection E. But then the map ¢ — EN, is
strongly continuous, so the map ¢ — trace(EN,) is continuous also, a contra-
diction since trace(EN,) = 0 and trace(EN,) = rank(E). It now follows from
Voiculescu’s Theorem [V, Theorem 1.3] that

S~SOSOS® - € L(HOHOHD ).

Thus, S and S ® S & - -+ must be semi-Fredholm and i(T) = i(S) = i(S &
S @ ---). But this implies that either ker(S) = {0} or ker(S*) = {0}. If both
are {0}, then i(T)=1i(S)=0. If dim(ker(S)) > 0, then dim(ker(S & S
@ - )=0,50(T)=i(S®S & ) = o, Similarly, if dim(ker(S*)) > 0,
then i(T) = —. 0O

QuestioN. If .# is a continuous nest, does 292(.#") contain Fredholm
operators with nonzero index? If so, this would give another proof that
29 (N) 2 A4 + X in the continuous case, by virtue of Theorem 14. We
have been unable to answer this question, but the following example comes
tantalizingly close, and is interesting in its own right.

Example. Let 4= {N,: t € [0, 1]} be a continuous nest on &, and define
A% for 0 <& <1 to be the nest {0, N,: t > &} (thus, #° = #"). We will
show that there is a Fredholm operator X with i(X) = —1 such that
X € 29(#®)foralle,0 < e < 1,but X & 29(A). First, let #, = L*0,1]
with Lebesgue measure m, and define a projection P, on &%, by P,f = Xpo,01f
for each ¢ in [0,1]. Let & be the continuous nest {P,: 0 <t < 1} and
P ={0,P;:t > ¢},0 <& < 1. By Andersen’s Theorem [An, Theorem 3.5.5],
there is a unitary operator U: #— #, such that U*P,U — N, € J¥ for all ¢
and the map ¢ - U*P,U — N, is strong-norm continuous. Since the map
[0,1] - (7, strong) by ¢ = N, is a homeomorphism, and the same is true for
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the map ¢ — P,, it follows easily from Proposition 2 that
U*29(P)U = 29(A4") and U*29(F*)U = 29(47°).

Let j € J#, be the constant function j(x) = 1, let Q be the projection
onto span(j), and let %, = Q*#, € #,. Then 2={Q,=Q* AP: 0 <t
< 1} is a continuous nest on #,. By applying Andersen’s Theorem again,
there is unitary operator V: #; = &%, (i.e., an isometry in -£(5#,) whose
range has codimension 1) such that the map ¢t - V*Q,V — P, € X(H#)) is
strong-norm continuous, and it follows that the map P, —» Q,V — VP, €
F(H)) is strong-norm continuous. Note that V' is a Fredholm operator with
index — 1. Now Proposition 2 shows that VV € 22(2°) if and only if the map
P, » PV — VP, € #(H,) is strong-norm continuous for ¢ < ¢ < 1, and in
that case it would follow that X = U*VU is a Fredholm operator of index
—1in 29(®).

Since P, » Q,V — VP, € ¥(#,) is strong-norm continuous, the map
P, » PV — VP, € ¥(#,) is strong-norm continuous if and only if the map
P, - PV — Q,V € #(H#)) is strong-norm continuous. But P,V — Q,V can
be computed directly. If 0 < ¢ < 1, let {e,: 0 <n < o} and {f,: 0 <n < o}
be orthonormal bases for P,o#; and P/ 2%, respectively, with

1 1
€= Xoa ad fo= m=Xe

Thus, j = Vte, + V1 — tf,, and {g,e,, f,; 1 <n <o} is an orthonormal
basis for #, = V#,, where g = V1 — te, — Vi f,. Let h € #,. Then

hogypyg = | L7 [hm) ~ ( [ham) o

1 t
7(johdm)xm

since [(hdm = 0. Thus, PV — Q,V is a rank one operator, and an easy
calculation shows that the map

Ph — Q,h

]

1 ¢
t > T(/(;hdm)X[o’t]

is continuous on the open interval (0, 1) with respect to the norm topology on
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K (H#,). Also,
1/ pt
(P = Q1h) = (B = @l = I { ['ham |,

1(
nﬂ“mhwu

LIHlT=EVE >0 ast -1,

IA

so this map is continuous at 1 also. Thus, P, » PV — Q,V € #(H#),) is
strong-norm continuous on the interval (0, 1]. However, it is not continuous
at 0. To see this, define a function &, for each ¢ in (0, 1) by

1
h, = E(X[O,t] - X[l—t,l])’

Then h, € #, and |h,ll, = 1, but

1/( pt 1
”(Ptht = Q.h,) — (Poh, - Qoht)”2 = ”7(](;ht dm)X[O,t]HZ = ﬁ o

In the proof of Theorem 14, it is noted thatif T € #" + %, then T has a
compact perturbation S with the property that C*(S) n %= {0}. It is
interesting to note that the converse is also true.

TuEOREM 15.  If C*(S) N % = {0}, then there is a continuous nest ¥ such
that S € 4" + K.

Proof. By Voiculescu’s Theorem, S~S&® S ® --- . Let H= J£ H# dm
be the direct integral of # over X, where X = [0,1] and m is Lebesgue
measure. Then S @ S ® S & - -+ is unitarily equivalent to S = [S(x) dm,
where S(x) = S for all x € X [Had, Lemma D). For each ¢ € [0, 1], define a
projection

®
P, = fX X[O,t](x)l(x) dm

on #, where I(x) =1I|y for each x. Then .#={P: 0<t<1}is a
continuous nest and clearly P,§ = SP, for all ¢. Writing § = U*SU + K, with
U unitary and K compact, it follows that § € (U*#ZUY + J%. Now just let
N=U*#U. O
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The Weyl-von Neumann-Berg Theorem states that if N is a normal
operator, then there is an order-N nest .#/, with each atom one-dimensional,
such that N = D + K for some D € .#" and some compact operator K [B].
The last theorem provides us with the following continuous analogue (and,
since the theorem is a direct consequence of Voiculescu’s Theorem, this gives
another indication why the title of [V] is appropriate).

CoroLLARY 16. If N is a normal operator, then N = D + K, where K is
compact and D is in 4" for some continuous nest N

Proof. We can assume that N is not compact. Let () be an at most
countable dense subset of the essential spectrum of N, and let D be a
diagonal operator with point spectrum equal to ) and such that each
eigenvalue has infinite multiplicity. Then N ~ D since their essential spectra
are the same [Pe, Corollary 2.13], and C*(D) n %= {0}. Now apply Theo-
rem15to D. O

We turn now to essential commutants of quasidiagonal algebras. If .7 is
an order-N nest with all atoms finite-dimensional, then it was shown in
[Pl, Theorem 20] that 29(.#), = CI + ¥. As noted in that paper, this
provides a nonseparable selfadjoint counterexample to Voiculescu’s reflexiv-
ity theorem for separable subalgebras of the Calkin algebra [V, Theorem 1.8].
There are other nonselfadjoint examples; for instance, CI + % is the
essential commutant of both Alg .#" and 29(#") for every nest [CP]. In
the quasidiagonal case, however, it is easy to see that this property is the
exception rather than the rule. Before proving this, note that since
N+ K2 N)C CHA), and A" + K= (A"), by [JP], it follows
that

N+ K= (N + K 22D9(N ), 2(CHAN),), 2CHAN) + X
=span(A) + X¥.

Note that if .#” is countable, then (C*(A#),), = C*(A#") + & by [V, Theo-
rem 1.8]. In the following lemma, it is easy to see that Q. 29(.#)Q and
29(A,) are the same sets except that Q.29(.#")Q is technically a subset of
L(H) and 29(A;) is a subset of £(QH). Similar remarks apply to
(Q22(A4)Q), and 22(4),.

Lemma 17. If T€ 29(4'), and Q is a projection in A", then T,
QTQ € (Q22(A4)Q),, and therefore QTQ, viewed as an operator on Q¥ ,
is in 29(Ay),.
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Proof. T € (Q22(4)Q), since Q29 AN)Q < 29(H), so TQCQ —
QCQT € X for all C € 29(#"), and therefore QTQCQ — QCQTQ =
X forall C € 29(¢). O

ProrosiTioN 18. 29( A7), = CI + ¥ if and only if either (a) ¥ is finite
with exactly one infinite-dimensional atom, or (b) ¥ is countable with exactly
one left or one right accumulation point and all atoms finite-dimensional.

Proof. It 292(A4),=CI + ¥, then C*(A#) + K= CI + % also by
the remarks preceding Lemma 17, and this implies that either (a) or (b) must
hold. On the other hand, if (a) holds, then C*(#") = #" and CI + ¥ =
C*(A) + %, which yields the desired result. If (b) holds, then either .# or
A4+ has the form

0=Py<P,<P,< ++ <Qy<Q, <+ <Q,=1

with P, = Q, strongly and dim(P, — P,_,)#, dim(Q, — Q,_,)# < « for
all possible n. Now if T € A" N 29(AH),, then Q,TQ, € 29(A4, ), by
Lemma 17. Thus, the problem is reduced to the order-N case with finite-
dimensional atoms, the case proved in [Pl], and it follows from that result
that

QOTQO (S CIlQOX'F -}2/= CQO + Ji/,
and therefore Te CI + %. O

This proposition can also be obtained from Corollary 21 below.
Observe that if T € .#” and E is an atom of .#/, then TE = ET = ETE =
AE for some A € C.

THEOREM 19. Suppose T € 4" N 29(N),, {E,} is any increasing or
decreasing (with respect to <) sequence of atoms of 4, and {A;} C C is the
sequence defined by TE; = A,E;. Then {A;} converges.

Proof. Suppose there is such a sequence {E;} with {A;} not convergent.
{A,} is bounded since T is a bounded operator, so there are at least two
cluster points @ and B of the sequence. Then there is a subsequence {Aij}
such that A;, —aand A, > B. Let ay =1, , F,=E, , B.=2;,
G, =E, , A= YX(a, — a)F;, and B = (B, — B)G,. Each F, and G, is in
CH(A),s0 A, Be C*(AN). Let S=T - A — B. We will show that S &
29(4),, so neither is T, a contradiction.

Assume that S € 29(#),, and let Q = LF, + LG,. By Lemma 17,

0SQ =a) F, +BY.G, € (Q29(A4)Q)..
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For each k, let f, and g, be unit vectors in F,5# and G, respectively,
let P be the projection onto span{g,}, and let V' be the partial isometry

with initial space P-# and final space span{ f,} defined by Vg, = f,. Let P,
be the projection onto span{g,: 1 </ < k}, and note that

o/,/Q={O,Ql=F1,Q2=F1+G1,Q3=F1+G1+Fz,...,Q}

and

Np={0,P,P:1 <k <}

are order-N nests. By Lemma 6, there is a strictly upper triangular operator
R**e 29(.#}) which is not compact, and an operator R~ which is strictly
lower triangular with respect to .#, such that R**+ R~ ¥ Then VR**,
viewed as an operator on QJ%, is not compact, and it lies in Alg(./l/Q) since it
is strictly upper triangular with respect to ./I/Q. On the other hand, — VR~
is a compact perturbation of VR** and is strictly lower triangular with
respect to .#p, so it follows that VR™* e 22(.4,). Now view VR** as an
operator on ¢, so VR*" is in 292(.#") by Lemma 4, and therefore is in
029(4)Q. But then

QSQVR’++— VR++QSQ = (a — B)m++
is not compact, contradicting Lemma 17. O

CoroLLArRY 20. If A or N+ is an order-N nest, then 29(N ), =
CHAN) + X.

Proof. By replacing .#” with .#"* if necessary, we can assume ./ is
order-N. Let {E;} be the atoms of .#, with E;, < E, ; for all i. Now if
Te V" N29N), then T = LAE; with A; > some A by Theorem 19.
But then T — Al = 2(A; — ME; € C¥(A),s0 T € C*(A#) also. O

CoOROLLARY 21. If 4 is a nest which has a finite number of accumulation
points, then

2Y(N Y, = CHN) + X.

Proof. From the hypothesis, there are projections 0 < P; <P, < --- <
P, <I in 4 such that A#p _p oOr - p is order-N for each k.

Suppose T € 4" N 29(#),. Then Lemma 17 and Corollary 20 imply that

T(Py—Piy) = (P =P )T(P— P_y) € C*(/V}’k—Pk_l)
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for each k. The result follows since C*(Ap,_p, ) € C*(A#) and T = LT(P;
- Py O

CoroLLARY 22. If # is a nest whose accumulation points form an
increasing or decreasing sequence, then 29(N ), = CHAH) + KX

Proof. By replacing .# with .#'* if necessary, we can assume that the
accumulation points form an increasing sequence. Let P, < P, < --- be the
nonzero accumulation points, and let P, = 0. If '/VPl— Py is finite, define
A =P, — P, and otherwise 4 = 0. Let P= V P, and B =P — A. Now if
Te V" N29AN), then T = ATA + BTB + P+ TP* , and ATA, P+ TP+
€ CX(A) since #, and Ap. are finite. Thus, it is enough to show that
BTB € C*(#'). Equivalently, we can assume that P =1 and ./} _p is
infinite.

Now for each k, either .#p _p  is an order-N nest, /I{k p,_, isorder-N
or else ./I/ —Pe_, is order 1somorphlc to the extended 1ntegers If the last
case holds, choose any Q, € 4 with P,_, < Q, < P..Let /={Q,} U {P,}.
- forms an 1ncreas1ng sequence, so its projections can be relabeled by
0=R,<R;<R,< w1thI—VRk Now A%, _g,_, OF Sgg, IS
order-N for each k > 1 As in the proof of Corollary 21 it follows that if
TeN"N2AN), then T(Ry — Ry_y) € C*( MR, _g,_) for each k.

For each k,let F, =R, — R,_; and let {E,;: 1 < ‘1 <} be the atoms of
A, Define u, = l1m,_,,,o Ay, where TE,, = A, E,,. The limit exists by
Theorem 19. Now for each k, choose an atom E,; € {E,;}. No matter how
{E},,} is chosen, Theorem 19 implies that A, converges as k — . It follows
that there is a sequence {g,} of positive real numbers such that g, — 0 and
|Ag; — pil < € for all k and /. In addition, the sequence {u,} must converge
to some p. Now let § = 7 — pl. Then SF, € C*(A5,) € C*(A) for each k
and ||SF || < g, so § = LSF, € C*(.#") and thus T'e CX¥). O

CoROLLARY 23. Suppose that ¥ is a nest with subnests /1 G N5 G -
G A, = N such that

(a) A is finite, and

(b) for each atom E of A}, j < m, either (N}, )g or (A} is order-N.
Then 29(N ), = CH(AN) + K.

Proof. Note that .#] may just be the trivial nest {0, I}. We will just sketch
the proof, as it is simply a generalization of the previous corollary. Let
Te 4" N29(N),, and first suppose that F is an atom of .#,,_,. Then
Corollary 22 implies that TF € C*(.#%). But now we can apply the same
argument as in the proof of Corollary 22 to show that if 4 is an atom of
A, _3, then TA € C*(#,). More specifically, let {F,} be the atoms of
(A;,-,)4, and choose atoms E, of .#” with E, < F,. Let {A;} be defined by
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TE, = A E,. Then the sequence {A,} converges to some u, and u is
independent of the choice of the sequence {E.}. Now let S =T — ul. It
follows that SF, € C*(A4%,) € C*(#) for each k, and [ISF, |l — 0, s0 S =
LSF, € C*(#,) and thus T € C*(4)).

The remainder of the proof simply repeats this same argument: next show
that T € C*(.#,) for each atom A4 of .#,,_,, then T € C*(.#)) for each
atom A of .4, _s, etc. Finally, we will have that T € C*(.#,) for each atom
A of A7. But 4] is finite and C*(A#,) c CH(A),s0 T € CXHA#'). O

Note that a nest which satisfies the hypotheses of Corollary 23 can be quite
complicated, so this is a substantial generalization of [Pl, Theorem 20]. Also,
if # is such a nest, then

(29(AYe)e = CH (A Ve

s0 29( ) + (22(.4),), by Proposition 11. It follows that 29(4) is a
nonseparable selfadjoint counterexample of [V, Theorem 1.8] in this case as
well.

QuEsTiON. Is there a nest .# for which 29(A47), + C*(A) + X ? As
we have seen, for purely atomic nests Theorem 19 imposes a very strong
restriction on membership in 29(4),.

Addendum. Kenneth R. Davidson has shown that the question following
Theorem 14 has a negative answer [D3]. Along with Theorem 14, this shows that
2Y(N) and N + KX have the same index properties if NV is a continuous
nest.
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