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Quasitriangular and quasidiagonal operators on Hilbert space were first
introduced by Halmos in [Hall], [Hal2] and quasitriangular operators in
particular have played an especially important role in operator theory since
that time (e.g., [DP], [AFV]). The natural extension of these concepts to
quasitriangular and quasidiagonal algebras first appeared in [Ar] and then in
[FAM]. Again, quasitriangular algebras have proved to be very important,
especially in the area of similarity of nest algebras [An], [L], [D2]. On the
other hand, very little is known about quasidiagonal algebras. Several inter-
esting results appeared in [P1] for the one particular casein which the
quasidiagonal algebra is defined by a nest of finite-dimensional projections
{Pn} which increase to the identity operator. One result was that such a
quasidiagonal algebra is always larger than the commutant of the nest
modulo the compact operators. Thus, while a quasitriangular operator is the
sum of a triangular operator and a compact operator, a quasidiagonal
operator is not always the sum of a diagonal operator and a compact. In
Theorem 10, we extend this result to all quasidiagonal algebras: if ..(//)
is the quasidiagonal algebra determined by the infinite nest of projections //,
then __() is always larger than /’ + /, where //’ is the commutant
of the nest and - is the set of compact operators.
Even though a quasidiagonal operator is not necessarily diagonal plus

compact, Halmos showed that it is nevertheless block diagonal plus compact.
We also extend this result to arbitrary quasidiagonal algebras (Proposition
13), and this implies that there is an index obstruction for membership in
quasidiagonal algebras defined by certain purely atomic nests, and it is the
same as the obstruction for //’ / ff’. In addition, we give an index obstruc-
tion for 4/’ + /if //is a continuous nest (Theorem 14), but it is not clear
if the same is true for the corresponding quasidiagonal algebra. It does lead,
however, to an alternate characterization of //’ / in the continuous case
(Theorem 15).
Another result in [P1] is that the essential commutant of the quasidiagonal

algebra considered there is CI + /. This provides an example of a nonsepa-
rable unital C*-subalgebra of the Calkin algebra which does not equal its
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double commutant (by Voiculescu’s reflexivity theorem [V, Theorem 1.8], this
is not true if such an algebra is separable). We show, however, that the
essential commutant is CI + JU for essentially only this one case. We also
show that for a large class of nests, the essential commutant of the corre-
sponding quasidiagonal algebra ..(//) is C*(//) + JU (Corollary 23).

In this paper, ’()will denote the set of bounded operators on a
complex, separable, infinite dimensional Hilbert space , and the set of
compact operators will be given by (), or just JU if the Hilbert space is
clear from the context. If is a subset of .z’(’), then

’= {T ..(e): TS ST for all S }

is the commutant of , and " denotes the double commutant (’’)’ of .
The essential commutant of ’ is

ee’ {T (): TS ST /for all S ’}.

All projections on Hilbert space will be self-adjoint in this paper.
A nest M/ is a set of projections on which is linearly ordered with

respect to range inclusion, contains 0 and I, and is closed in the strong
operator topology. A nest equipped with the strong operator topology is a
compact separable complete metric space.

Alg 4/= {T ’(): P+/-TP 0 for all P //}

is the nest algebra of //, i.e., the set of all operators for which each
projection in M/ is invariant. Alg M/+ JU is the quasitriangular algebra of
//, denoted _-(//). Note that (Alg M/) (Alg //)* /U’. On the other
hand, .-(4/) _-(//)* is the quasidiagonal algebra of 4/, denoted
_.(4/)..-(M/) is norm-closed [FAM, 1, Corollary 2], so ..(//) is a
C*-algebra which clearly contains M/’ + JU. One objective of this paper is to
show that if 4/is infinite, then ._(M/) /’ +
A projection E is an atom of M/ if E P2- P1 for some P1, P2 4/,

P1 < P2, and there is no P //with P1 < P < P2. If //has no atoms, then
M/is nonatomic, or continuous. 4/is purely atomic if E E I, where the
sum is taken over all atoms E of ,/// and convergence is in the strong
operator topology. The operator 6 is defined by 6r(T)= Y’,EiTEi, again
summing over all atoms and converging strongly. Note that if // is purely
atomic, then T M/’ if and only if T tr(T). If /" is continuous, then //
can be parametrized by the unit interval, //= {Nt: 0 < < 1}, by defining
N (plr)-l(t) for some faithful normal state p on

Finally, //+/- denotes the nest {P+/-: P M/}. Note that .Y-(///+/-)=
.-(M/)*, ._(///+/-) ..(1/), and M/’= (M/+/-),.
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THEOREM 1 [FAM, Theorem 2.3]. T .’(//) ifand only if (a) P-TP
JU for all P ,/1/and (b) the function P 1/’- P+/-TP JU is continuous
with respect to the strong operator topology on 1/ and the norm topology

The following characterization of _.(M/) is an easy consequence.

PROPOSITION 2. T ._(//) /f and only if (a) TP PT JU for all
p 1/and (b) the function P I/- TP PT JU is continuous with
respect to the strong operator topology on 4/ and the norm topology on

Proof. If T _.(//), then T e .-(M/) and T e _Y-(#Y)*
-(//z). Therefore, Theorem 1 implies that P’LTP and PTP+/- are in JU
for all P //and the maps P PZTP and P PTPz are strong-norm
continuous. Now (a) and (b) follow since TP PT PZTP PTP-.

If (a) and (b) hold, then PZTP P+/-(TP PT)P JU for all P //.
Now suppose Pn P strongly. Then

IIP+/-TP PTgnll < IIP’(TP PT)(P gn)ll

+ II(P- -P)(TP PT) Pn
+ IIP((TP PT) (TP PnT))Pnlt.

The first two terms converge to zero since TP PT is compact and Pn P
strongly [W, Lemma 1.8], and the last term converges to zero by property
(b). Therefore, T .Y-(4/) by Theorem 1. A similar estimate with
[[PTP" -PnTP[[ shows that T _-(1/-) .-(#//)*. 0

A consequence of the last proposition is that //’+ JU_ _(//)_
/’ C*(I/)’e. Now by [JP, Theorem 2.1], /’ + is the essential commu-
tant of //", and if U is a finite nest, then //" C*(4/), so the following
result is immediate.

PROPOSITION 3. If 1/ is a finite nest, then ..(/’) M/’ + JU.

If W is a nest and Q is a projection in 1/’, then Qt/Io is also a nest,
denoted Ua. #Ya is called an induced nest of 1/’.

LEMMA 4. Suppose 4/ is a nest and Q is a projection in 1/’. Let T be an
operator in ’(Q), and define f" ,() by T 0 with respect to the
decomposition =Q Q+/-. Then T ..(I/) if and only if T
_oO_q(UQ), and U’ / ,YU if and only if T (M/Q)’ + Y’(QY).
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Proof If __@(M/), then 7 L Alg //for some compact opera-
tor L. Then QLQ a(Qe’), and

QP+/-( T QLQ) QP QP(Qf’Q QLQ)QP QP+/-( f" L ) PQ 0

for all P M/, so T .-(a). By interchanging P and P’, we also have
T _-(a+/-) .-(/0)*, so T _.@(/o). Conversely, if T
.(a), then T- g Alg(a) ..’(Q) for some g oYd’(Q). Let
K K 0 with respect to the decompositionQ Q’a. Then

P’(- I)P P+/-(QQ QgQ)P QP-(T- K)QP 0

for all P a/, so 7 _-(M/). Again, interchanging P and P+/- yields
7 .-(4/)*, so T ..(M/). The proof for M/" + is similar.

The following lemma is a generalization of [P1, Proposition 4].

LEMMA 5. Suppose 1/ is purely atomic. Then T /’ + JU if and only if
T- 6r(T)

Proof. Suppose T S + K where S M/’ and K . Then

6/(T) =(S) +6(K) =S+6(K) T-K+6(K),

so T- 8r(T) K- 8r(K). But tr(K) by [FAM, Lemma 2], so
T- 8r(T) . The converse is clear since 8r(T) //’. t3

We can now use this lemma to generalize [P1, Lemma 17]. First, we say
that //is an order-N nest if it has the form M/= {0, P, I: 1 < n < oo} with

Pn < Pn/l for all n and Pn "-+ I strongly. An operator S is strictly upper
triangular with respect to M/if en&_._l se 0 for all n. Similarly, S is strictly
lower triangular if PSP_I 0 for all n.

LEMMA 6. If 1/ is an order-N nest, then there is a strictly upper triangular
noncompact operator R ++, a strictly lower triangular operator R--, and a
compact operator D such that R R++/ D / R-- is compact.

Proof. With a small modification, the argument is the same as in the
proof of [P1, Lemma 17]. We will include the details for completeness. For
each n, choose a unit vector en (en en-)o. Let

o/=span{en’i2<n < (i+ 1) 2 fori= 1,2,
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If S _W(g/), written as a matrix with respect to the basis {e+ 1,..., e(i+ 1)},
let S / denote the matrix obtained by replacing the entries below the main
diagonal with zeros, and denote the map S S/ by +i. [[ +i[[ -> oo since
dim g/---> oo [D1, Example 4.1], so there are operators Si -’(g/) such that
[[Sil[ [I /ill -1 and 1 1/i < IlS/+[[ < 1. Define Ri, R.za((P(i+l)2-
Pi.)) by R S 0 and R= S+O 0. Then R R R. is com-
pact, and thus so is 8r(R) tr(R+) by [FAM, Lemma 2], but R/= R-
R- ... is not compact. Now just let D---6r(R), R+/= R/- D, and
R--=R-R+. []

COROLLARY 7. If 1/ is an order-N nest, then _(1/) 4/’ + JU.

Proof.
Then

Let R, R /+, R--, and D be the operators given by Lemma 6.

and

R++= -R--+ ( R D) Alg ./Y+/- + ---= _,-(.A/)*,

so R++ ..(//). However, R++- 8r(R++) R++ is not compact, so
R++ //’ + J/by Lemma 5. []

Remark. It would be interesting to have a concrete example of an
operator in ..(//) which is not in 4/’ + J. If we let T --A/ be the
operators in example 4.1 of [D1], then A/IITII can be used in place of S in
the proof of Lemma 6 to construct R++. This would be a concrete example
except that we don’t know the norms II TII.
To show that ._(4/) //’ + J in general, we first consider the case

in which // has an infinite number of atoms. The set of atoms of // is
linearly ordered by E -< F if E P. P1 and F P4 P3 with Pa < P3
(Pi //), so there must be either an increasing or decreasing sequence of
atoms. By replacing 4/with //+/- if necessary, we can assume that there is an
increasing sequence of atoms {Ev: 1 < n < oo}.

THEOREM 8.
.A/’ + J.

If 4/ has an infinite number of atoms, then .g)(l/)

_
Proof. As indicated above, we can assume that // has an increasing

sequence {En: 1 < n < oo} of atoms, i.e., En--P2,,- P2-1 with P in 4/
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and P2,- < Pz,, < P2, + for all n. Let

O=Een

Then is an order-N nest consisting of the set of distinct projections

{0, e QP2nlQ, IQjta" 1 <_ n < }.
Now Corollary 7 shows that there is an operator T in ..(//a) but not in
(a)’ + JU(Q), and the result follows by Lemma 4. D

THEOREM 9. If 4/ is a continuous nest, then _(1

Proof Choose an increasing sequence of projections {P,,}
_
//such that

P,, I strongly, and let /be the subnest {0 P0, Pn, I: 1 < n < }. Let R,
R+/, R--, and D be the operators given by Lemma 6 for the nest ’. Now if
P //, P 4: I, then P,,_ < P < P,, for some n, and therefore

P+/-R++P P+/-P+/-n_IR++PnP O,

so R++ Alg .///. Similarly, R-- Alg //-, so

R++= -R--+(R D) Alg 4/+/- +JU= .-(/’)*.

Therefore, R++ .(//). Also, /’ + //’ + JU, and R++ /’ + JU
by Lemma 5 since R+/- 6.z(R++) R// is not compact.

THEOREM 10. For any infinite nest 4/, .()

Proof Theorems 8 and 9 cover the cases in which //either has an
infinite number of atoms or is continuous. The only other possibility is that

has a finite positive number of atoms. Then since //is infinite, 4/must
have a continuous interval. In other words, there are projections P1, P2
with P1 < P2 such that E(P2 -P1)= 0 for every atom E of /. Letting
Q P2- P1, it follows that U0 is a continuous nest on QJet. Theorem 9
then implies that there is some operator T _.(//a)which is not in
(/a)’ + JU(Q), and the result follows from Lemma 4.

PROPOSITION 11. For any infinite nest 4/, (C*(4/))’ .5(//).

Proof Let {P,,} be an increasing or decreasing sequence of projections in
4/. By replacing 4/with //- if necessary, we can assume the sequence
increases. Let P0 0 and let P V P //, so P,, P strongly. For each
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n, let en be a unit vector in (Pn P,_1), and let V be the partial isometry
defined by Ve,, e+ for all n. Then [[PVPn[[ 1 for all n, but P+/-VP 0,
so V ..(4/) by Proposition 2. Now if Q 4/, then either Q > P, or
Pn-1 <’ Q < Pn for some n. In the first case QV- VQ 0, and in the second
case

(QV- VQ)h -(h, en_l)Q+/-en (h, Qen)en+ forh ,
so QV- VQ is compact. Therefore, V ke’ (C*(I/))’e. t2

One of the first results on quasidiagonal operators was given in [Hal2,
p. 903], where it was shown that every quasidiagonal operator is the sum of a
block diagonal operator and a compact. In terms of nests, if {0, Pn, I:
1 < n < oo} is an order-N nest with dim P,, < oo for all n, then each operator
T ._(//) has a compact perturbation which is block diagonal with
respect to //, i.e., there is a compact operator K and a subsequence
such that

(T- K)P,,k P,,(T- K)

for all k. Equivalently, an operator S is block diagonal if there is an infinite
subnest such that S ". The set of all such block diagonal operators is
denoted by .(//). Now if we remove the finite dimensional restriction, so
//is a general order-N nest, then the same argument given in [Hal2]works
in this case also because TP PT JU for all T ..(//) (by Proposi-
tion 2).

PROPOSITION 12.
() + . If / or /1/+/- is an order-N nest, then ..(/) c+

Proof Since ’_(///+/-) _(1/), it is enough to prove the result if 4/
is an order-N nest. From the above remarks, it only remains to show that the
containment is strict. For each n, let Vn be a partial isometry with ini-
tial space in (P2,,-1- P2,,-2)gg (where Po 0) and final space in
(e2n e2n- 1)’’ and let V V ]9 V2 Then IIP%_ VP2n- 111 1
for all n, so V ._(/) by Proposition 2, but V commutes with the
subnest {0, PEn, I}. rn

The notion of a block diagonal operator does not generalize easily to
arbitrary nests. After all, if T ..(//), then Proposition 3 shows that for
any finite subnest ’ of //, there is a compact perturbation of T which
commutes with ’. The content of the last proposition is that there is
an infinite subnest with this property. Now if 4/or /+/- is order-N, then
// has just one strong accumulation point, namely I or 0, respectively.
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Because a nest is compact, every infinite nest must have at least one
accumulation point, but there may be many, and they need not include 0 or I.
However, at each accumulation point P, there must be either an increasing
or decreasing sequence of projections in the nest which converges to P. With
this in mind, we will generalize the notion of a block diagonal operator as
follows.

DEFINITION. If / is an infinite nest and P is a strong accumulation
point of //, then an operator T is block diagonal at P with respect to 1/ if
there is an increasing or decreasing sequence {Pn: 1 _< n < oo}

_
//such that

Pn P strongly and TP PT for all n. _e(//) denotes the set of all
such block diagonal operators.

PROPOSITION 13. If I/ is an infinite nest and P is an accumulation point of
4/, then ..(/) _qp(I/) + . In fact, if ’ is any infinite subnest
with accumulation point P, then ._(/) .p(.) + .

Proof. Suppose that {P,,} is a sequence of increasing projections in
such that P,, P strongly. The argument for a decreasing sequence
is similar. Let T be an operator in ..(4/). Then TP- PT dg’, so
px TP, PTPx J also. Now PTP ._q(), where is the order-N nest
{0, P,,, P I[e} on P. It follows from Proposition 12 that PTP S + K,
where S _W(P,) is block diagonal with respect to some subsequence {P,,,}
and K J(Pg’). Considering S and K as operators on , we have

Pn,( S + P+/- TP+/- ) P,,P( S + P+/- TP-L ) p,,,ps SPP,,,
(S + P+/- TP-)PP,,, (S + P+/- TP+/-)Pn,

for all k. It follows that

T (S + P TP+/-) + (K + p.L TP + PTP+/-) ..p(.Zg’) + JU.

To show that the inclusion is strict, define an isometry V just as in the proof
of Proposition 12, using the sequence {P,,}. [3

If T is a semi-Fredholm operator, let i(T) denote the Fredholm index of
T. One of the uses of these results on block diagonal operators is the
following: if //is an order-N nest with all atoms finite-dimensional, and T
in _.(//) is semi-Fredholm, then i(T) 0. This follows from Proposition
12 since each subnest ’ has finite-dimensional atoms and therefore i(S) 0
for every semi-Fredholm operator S in g’. Proposition 13 implies the same
result if // is purely atomic with all atoms finite-dimensional and a finite
number of accumulation points. Of course, if // has just one infinite-
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dimensional atom, then .///’, and therefore ._(#//) also, has semi-Fredholm
operators of arbitrary index. On the other hand, if #//is continuous, then it
turns out that there is again an index obstruction for membership in //’ + jr,(.

We will use the notation T R to mean that T is unitarily equivalent to a
compact perturbation of R, i.e., if T .o/(r) and R .’(n), then
T~R if T= U*RU+K for some KJU(r) and unitary operator
U’. ,T -’) R"
THEOREM 14. Suppose #U is continuous and T is a semi-Fredholm operator

in 1/’ + JU. Then i(T) O, , or -.

Proof. T S + K, where S //’ and K JU. It is well-known that
since ///is continuous, then C*(S) JU= {0}. To see this, first parametrize
#// by 1/= {Nt: [0, 1]}, and note that if C*(S) C J4: {0}, then C*(S)
contains some nonzero finite rank projection E. But then the map ENt is
strongly continuous, so the map trace(ENt) is continuous also, a contra-
diction since trace(EN0) 0 and trace(EN1) rank(E). It now follows from
Voiculescu’s Theorem [V, Theorem 1.3] that

Thus, S and S S must be semi-Fredholm and i(T) i(S) i(S
S ). But this implies that either ker(S) {0} or kerfS*) {0}. If both
are {0}, then i(T)= i(S)= 0. If dim(ker(S)) > 0, then dim(ker(S S

)) 0% so i(T) i(S S ) o. Similarly, if dim(kerfS*)) > 0,
then i(T)= -oo. D

QUESTION. If // is a continuous nest, does ._(4/) contain Fredholm
operators with nonzero index? If so, this would give another proof that
__(#//) M/’ + JU in the continuous case, by virtue of Theorem 14. We
have been unable to answer this question, but the following example comes
tantalizingly close, and is interesting in its own right.

Example. Let 4/= {Nt: t [0, 1]} be a continuous nest on a’, and define
#Y for 0 < e < 1 to be the nest {0, Nt: > e} (thus, #//0 ///). We will
show that there is a Fredholm operator X with i(X)=-1 such that
X .(./U") for all e, 0 < e < 1, but X ._(,///). First, let ggl L2[0, 1]
with Lebesgue measure m, and define a projection Pt on 1 by Ptf Xt0, If
for each in [0,1]. Let ,9 be the continuous nest {Pt: O<t<l} and
,9 {0, Pt: > e}, 0 < e < 1. By Andersen’s Theorem [An, Theorem 3.5.5],
there is a unitary operator U: g’ g---l such that U*PtU Nt J for all
and the map U*PtU-Nt is strong-norm continuous. Since the map
[0, 1] (.///, strong) by t Nt is a homeomorphism, and the same is true for
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the map t ---> Pt, it follows easily from Proposition 2 that

U*_(._)U ..(d//) and U*...(._)U ..@.(../F).

Let j W be the constant function j(x)= 1, let Q be the projection
onto span(j), and let aW2 Q+/-del

___
del Then .= {Qt Q+/- APt: 0 <t

< 1} is a continuous nest on 2. By applying Andersen’s Theorem again,
there is unitary operator V: d(d 2 (i.e., an isometry in -(l)whose
range has codimension 1) such that the map t ---> v*atv- et de’(e/al) is
strong-norm continuous, and it follows that the map Pt-> Qtl/-vet "d(d(d1) is strong-norm continuous. Note that V is a Fredholm operator with
index 1. Now Proposition 2 shows that V ..() if and only if the map
et --> PtV et (1) is strong-norm continuous for e _< _< 1, and in
that case it would follow that X U*VU is a Fredholm operator of index

1 in ..(4/).
Since Pt QtV- VPt ’/(1) is strong-norm continuous, the map

Pt -> PtV VPt (1) is strong-norm continuous if and only if the map
Pt -> PtV QtV -/(e-1) is strong-norm continuous. But PtV- QtV can
be computed directly. If 0 < < 1, let {e,," 0 _< n < oo} and {f: 0 _< n < oo}
be orthonormal bases for Ptl and Ptl, respectively, with

1 1
eo "-Xto, tl and f0 /lTtXt,,l

Thus, j" vrt-e0 + v/i tfo, and {g, e,,, fn: 1 < n < oo} is an orthonormal
basis for ’ Vl, where g ’1 t eo V-fo. Let h a. Then

Pth Qth (h, g)Ptg t

(f:hdm)x[o,t]
since fdhdm 0. Thus, PtV-atV is a rank one operator, and an easy
calculation shows that the map

t --> 7 dm /[0, t]

is continuous on the open interval (0, 1) with respect to the norm topology on
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(1). so,

II(Plh alh) (eth Qth)ll2 I1- hdm Xto, tll2

lit dm Xto, tjII2

1
_< 711h1121- t t- 0 ast 1,

so this map is continuous at 1 also. Thus, Pt PtV-QtV /(r-al) is
strong-norm continuous on the interval (0, 1]. However, it is not continuous
at O. To see this, define a function h for each t in (0, 1/2) by

1
ht 2 (X[0’t] ’[1-t, 1])"

Then ht -2 and Ilhtll2 1, but

II(etht atht) (eoht aoht)ll2 7 htdm X[0,
1

In the proof of Theorem 14, it is noted that if T 1/’ + dV, then T has a
compact perturbation S with the property that C*(S) d/= {0}. It is
interesting to note that the converse is also true.

THEOREM 15. If C*(S) n Jf(= {0}, then there is a continuous nest 4/such
that S

Proof. By Voiculescu’s Theorem, S S S .... Let ,= fff dm
be the direct integral of over X, where X [0, 1] and rn is Lebesgue
measure. Then S S S is unitarily equivalent to , fffS(x)dm,
where S(x) S for all x X [Had, Lemma D]. For each t [0, 1], define a
projection

Pt Xt0,tj(x)I(x) dm

on ’, where I(x)=II for each x. Then ’={Pt" O<t<l} is a

continuous nest and clearly Pt Pt for all t. Writing S U*,U + K, with
U unitary and K compact, it follows that S (U*,C’U)’ + dr/. Now just let
//= U*/U.
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The Weyl-von Neumann-Berg Theorem states that if N is a normal
operator, then there is an order-N nest //, with each atom one-dimensional,
such that N D + K for some D /’ and some compact operator K [B].
The last theorem provides us with the following continuous analogue (and,
since the theorem is a direct consequence of Voiculescu’s Theorem, this gives
another indication why the title of [V] is appropriate).

COROLLARY 16. If N is a normal operator, then N D + K, where K is
compact and D is in /’ for some continuous nest 4/.

Proof. We can assume that N is not compact. Let f be an at most
countable dense subset of the essential spectrum of N, and let D be a
diagonal operator with point spectrum equal to l and such that each
eigenvalue has infinite multiplicity. Then N D since their essential spectra
are the same [Pe, Corollary 2.13], and C*(D) N J= {0}. Now apply Theo-
rem 15 to D. rn

We turn now to essential commutants of quasidiagonal algebras. If 4/is
an order-N nest with all atoms finite-dimensional, then it was shown in
[P1, Theorem 20] that "-(/)’e CI + J. As noted in that paper, this
provides a nonseparable selfadjoint counterexample to Voiculescu’s reflexiv-
ity theorem for separable subalgebras of the Calkin algebra [V, Theorem 1.8].
There are other nonselfadjoint examples; for instance, CI + J is the
essential commutant of both Alg //and .-(,) for every nest [CP]. In
the quasidiagonal case, however, it is easy to see that this property is the
exception rather than the rule. Before proving this, note that since
//" + o,3C__...(]/) C_ C*(/’)’e and //" + J= (’/]/’)’e by [JP], it follows
that

+ + =-- =_ +
span(//) + J.

Note that if ,///is countable, then (C (,/)e)e C*(,/]/) -[- by [V, Theo-
rem 1.8]. In the following lemma, it is easy to see that Q.(,A/)Q and
.(,/) are the same sets except that Q.(/)Q is technically a subset of
.W(,) and _.(,/) is a subset of _W(Qg’). Similar remarks apply to
(a.(l/)a)’e and ..(,/O)’e.

LEMMA 17. ff T "’(//)’e and Q is a projection in /’, then T,
QTQ (Q-(I/)Q)’e, and therefore QTQ, viewed as an operator on Qgf
is in "--(/Q)’e"
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Proof T (Q_.(U)Q)’e since Q..(I/)Q __. _.(//), so TQCQ
QCQT Ju for all C ..(’), and therefore QTQCQ QCQTQ
Ju for all C ..(//). D

PROPOSITION 18. -()’e CI + JU ifand only ifeither (a) 4/ isfinite
with exactly one infinite-dimensional atom, or (b) 1/is countable with exactly
one left or one right accumulation point and all atoms finite-dimensional.

Proof If --(//)’e CI + JU, then C*(//) + JU= CI + JU also by
the remarks preceding Lemma 17, and this implies that either (a) or (b) must
hold. On the other hand, if (a) holds, then C*(4/) //" and CI + JU=
C*(//) + JU, which yields the desired result. If (b) holds, then either //or
//+/- has the form

0=P0 <P1 <P2 < < Q0 < Q1 < < Qm =I

with Pn Qo strongly and dim(Pn- en_l)/a, dim(Q- Qn_l)eta< o for
all possible n. Now if T //" N --(//)’e, then QoTQo _(/O0)’e by
Lemma 17. Thus, the problem is reduced to the order-N case with finite-
dimensional atoms, the case proved in [PI], and it follows from that result
that

QoTQo Clloor + Ju= CQ0 + Ju,

and therefore T CI + JU. D

This proposition can also be obtained from Corollary 21 below.
Observe that if T //" and E is an atom of 1/, then TE ET ETE

AE for some h C.

THEOREM 19. Suppose T //" ( --(//)’e, {El} is any increasing or
decreasing (with respect to -<) sequence of atoms of 4/, and {A i} c_ C/s the
sequence defined by TEi AiEi. Then {Ai} converges.

Proof. Suppose there is such a sequence {Ei} with {hi} not convergent.
{hi} is bounded since T is a bounded operator, so there are at least two
cluster points a and /3 of the sequence. Then there is a subsequence {hij}
such that Aik_ a and Ai_k -/3. Let ak 1i2k_1, Fk Ei._, [k li2k,
Gk gi2k, A .(olk a)Fk, and B E(flk fl)Gk. Each Fk and Gk is in
C*(//), so A, B C*(1/). Let S--T- A-,B. We will show that S
..(4/)’e, so neither is T, a contradiction.
Assume that S .q(I/)’e, and let Q EFk + EGg. By Lemma 17,

QSQ a _,Fk + _, Gk ( Q_.q( I/)Q) e
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For each k, let fk and gk be unit vectors in Fk and Gke, respectively,
let P be the projection onto span{gk}, and let V be the partial isometry

with initial space P and final space span{fk} defined by Vgk fk. Let Pk
be the projection onto span{&: 1 _< _< k}, and note that

dl/Q [O, QI F1, Q2 F + G1, Q3 F + GI +F2,...,Q}

and

//p {0, ek P: 1 <_ k <

are order-N nests. By Lemma 6, there is a strictly upper triangular operator
R++ ..(d//)which is not compact, and an operator R-- which is strictly
lower triangular with respect to ./Up such that R+/+ R-- JU. Then VR++,
viewed as an operator on QoW, is not compact, and it lies in Alg(da) since it
is strictly upper triangular with respect to dUo. On the other hand, -VR--
is a compact perturbation of VR+/ and is strictly lower triangular with
respect to dUo, so it follows that VR++ _.(dUa). Now view VR// as an
operator on .det, so VR+/ is in _.(d//) by Lemma 4, and therefore is in
Q_(dl/)Q. But then

QSQVR++- VR++QSQ (a )VR++

is not compact, contradicting Lemma 17. D

COROLLARY 20.
c*() +

If dl/ or dl/+/- is an order-N nest, then ..(dl/)’e

Proof. By replacing d// with d//1 if necessary, we can assume d// is
order-N. Let {E} be the atoms of d//, with E-< E+ for all i. Now if
T d//" N ._(d//)’e, then T Y’.AiE with A some A by Theorem 19.
But then T- AI E(Ai A)E C*(dl/), so T C*(d//) also. t

COROLLARY 21.
points, then

If 4/ is a nest which has a finite number of accumulation

( vr c, ( ) +

Proof From the hypothesis, there are projections 0 < P1 < P2 < <
P, < I in d// such that d//e_e_ or d/_e_ is order-N for each k.
Suppose T d//" N __(d//)’e. Then Lemma 17 and Corollary 20 imply that

T(Pk Pk-1) (Pk Pk-1)T(Pk Pk-1) C*("/]/Pk--Pk_)
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for each k. The result follows since C*(//pk_ek_l)
_
C*(//) and T E T(Pk

--Pk-1). I-]

COROLLARY 22. If 4/ is a nest whose accumulation points form an
increasing or decreasing sequence, then "-(//)’e C*(/) +

Proof. By replacing //with //+/- if necessary, we can assume that the
accumulation points form an increasing sequence. Let P1 < P2 < be the
nonzero accumulation points, and let P0 0. If //el-e0 is finite, define

A=P1-P0 and otherwise A =0. Let P= VPk and B=P-A. Now if
T //" N ’(//)’e, then T ATA + BTB + P+/- TP+/- and ATA, P+/- TP+/-

C*(//) since and //e. are finite. Thus, it is enough to show that
BTB C*(4/). Equivalently, we can assume that P I and //P1-P0 is
infinite.
Now for each k, either //ek-e_l is an order-N nest, /,+/-Pk_ek_l is order-N,

or else //P-P-I is order isomorphic to the extended integers. If the last
case holds, choose any Qk 4/ with Pk-1 < Qk < Pk. Let ’= {Qk} U {Pk}.

forms an increasing sequence, so its projections can be relabeled by
/.- is0=R0<RI<R2< with I= VRk. NOW4/R_Rk_I or R-R_I

order-N for each k > 1. As in the proof of Corollary 21, it follows that if
T /" t -’(//)’e, then T(Rk Rk_ 1) C*(I/R_R_I) for each k.
For each k, let Fk Rk Rk_ and let {Ekl: 1 _< < } be the atoms of

//Fk. Define /zk lim__.Ak/, where TEkl AklEkl The limit exists by
Theorem 19. Now for each k, choose an atom Eklk {Ekl}. No matter how
{Eklk} is chosen, Theorem 19 implies that iklk converges as k ---> . It follows
that there is a sequence {ek} of positive real numbers such that ek 0 and
IAkl tZkl < ek for all k and I. In addition, the sequence {/z k} must converge
to some/z. Now let S T -/zI. Then SFk C*(I/F)

_
C*(I/) for each k

and IISFkll < ek, SO S ESFk C*(t/) and thus T C*(//). rq

COROLLARY 23. Suppose that / is a nest with subnests
1/m 1/such that
(a) is finite, and
(b) for each atom E of /y, j < m, either (4y+ I)E or (4fj+Xl)e is order-N.

Then ._q(l/)’e C *(I/) +

Proof Note that may just be the trivial nest {0, I}. We will just sketch
the proof, as it is simply a generalization of the previous corollary. Let
T /" c _(4/)’e, and first suppose that F is an atom of //m-2" Then
Corollary 22 implies that TF C*(I/F). But now we can apply, the same
argument as in the proof of Corollary 22 to show that if A is an atom of
//m-3, then TA C*(I/A). More specifically, let {Fk} be the atoms of
(//m-2)A, and choose atoms Ek of //with Ek < Fk. Let {hk} be defined by
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TEk AkEk. Then the sequence {Ak} converges to some /, and /x is
independent of the choice of the sequence {Ek}. Now let S T-/xI. It
follows that SFk C*(4/k) c_ C*(//) for each k, and IISFklt -) O, so S
ESFk C*(I/) and thus T C*(//).
The remainder of the proof simply repeats this same argument: next show

that T C*(//)for each atom A of /m-4, then T C*(//)for each
atom A of //m-5, etc. Finally, we will have that T C*(//) for each atom
A of V1. But V is finite and C*(./V)

_
C*(), so T C*(/). O

Note that a nest which satisfies the hypotheses of Corollary 23 can be quite
complicated, so this is a substantial generalization of [PI, Theorem 20]. Also,
if //is such a nest, then

)e)e C*(/)re

so ._(4/) : (’-(/)’e)’e by Proposition 11. It follows that .(//) is a
nonseparable selfadjoint counterexample of [V, Theorem 1.8] in this case as
well.

QUESTION. Is there a nest /< for which -’(//)’e = C*(/) + O<d’? As
we have seen, for purely atomic nests Theorem 19 imposes a very strong
restriction on membership in --()’e"

Addendum. Kenneth R. Davidson has shown that the question following
Theorem 14 has a negative answer [D3]. Along with Theorem 14, this shows that
._(1/) and 4/’ + g" have the same index properties if / is a continuous
nest.
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