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SOME REMARKS ON COMPLEX POWERS OF (—A)
AND UMD SPACES

BY

SYLVIE GUERRE-DELABRIERE

Introduction and notations

If X is a Banach space, ({, &7, u) a measure space and 1 <p < +o, we
will denote by L, (2, X) (L,(Q) if X = R), the Banach space of classes of
Bochner measurable functions f from ) to X such that

LIl du(z) < +e,

equipped with the norm

£l = [IFCo)I5 dia()"”.

We will also denote by C3(R, X) (C5(R) if X = R) the space of C*-func-
tions from R to X such that lim, , ., [If(#)|| = 0, equipped with the norm

Ifll. = sup{llf(t)llx, t € R}.

We recall that X is UMD if martingale differences with values in X
converge unconditionally in L,({), X) where ( is any probability space, that
is: there exists a constant C > 0, such that whenever (M), <y is a bounded
martingale in L,(Q, X) and (g;), < is @ choice of signs,

0

X d,

k=1

<C
2

where d; ., = M., — M,.

]
Z e dy
k=1

2

By a martingale, we mean that there exists an increasing sequence of
o-subalgebras (&7, ), < 5 of &7 such that E“[ M, ,,] = M,, where E“ is the
conditional expectation with respect to 27,. It is well known that this
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condition is equivalent to the {-convexity of X and also to the fact that the
X-valued Hilbert transform #® Id, is a bounded operator on L,(R, X).
These results were proved by D. Burkholder [Bu] and J. Bourgain [B,].

We will denote by A the Laplace operator on Cj(R). We will use the well
known fact that A is a convolution operator and the Fourier transform of its
distribution kernel K is K(x) = —x? on R.

Here we are interested in the operator (—A)* where s € R: in agreement
with theory of complex powers of operator [K],Awe will define this operator as
the convolution by the kernel K|, such that K (x) = (x?)'* on R. We know
by results of E. Stein [S,], [S,] or of R. Edwards and G. Gaudry [EG], that
this operator is bounded on L,(R) for all p € (1, +). As a consequence of
T. McConnel in [B,] or J. Bourgain [M], it is easy to see that if X is UMD,
then (—A)” ® Id is a bounded operator on L,(R, X) for all p € (1, +)
and s € R.

Using techniques introduced in [B,], we are going to prove an inverse
property.

Main result

THEOREM. Let 1 < p < o and X be a Banach space. If (—A)* ® Idy isa
bounded operator on LP(R, X) for all s € R, then X is a UMD space.

Proof. First of all, we can suppose that p = 2 (by using the results of T.
Coulhon and D. Lamberton [CL]).
Then, it is shown in [V] that, under the hypothesis of the theorem,

s (—A)" ®Idy

is a strongly continuous group and thus the norm of (—A)* ® Id, is
uniformly bounded for s in compact subsets of R.

We are going to work with the scalar multiplier (x2)”), x € Ron L,(R, X).
By the usual transference techniques developed by R. Coifman and G. Weiss
in [CW] which are applicable in the vector valued setting as well by results of
J. Bourgain [B, ], if T denotes the torus, we know that the discrete multiplier
((n?)¥*), <  is bounded on L,(T, X).

By changing s to s/2 to simplify the notation we can work with the
multiplier m (n) = |n|* and suppose that its norm is less than A4 for all
s € [—1, +1]. That means that if

f(8) = Y A€ e Ly(T, X)
JEZ
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and

m,f(6) = L my(j)re”,

jez
then
lm fllL e, xy < AlfllL,a, xy forse[-1,+1].
To prove that X is UMD, we are going to consider, as in [B,], bounded

X-valued martingales (M,), cy on TY, associated with the filtration induced
by the coordinates, defined by the inductive rule

My 1(015--5,0,41) = M(0; - 6;) + (60155 0,)Pi(0k1)
(so that d; (64,...,0,.1) = &x(04,...,0)9,(6,.) with
(81,...,0;41) € TFY

¢k € LZ(Tk’ X) ’

¢ € LAT), fT o(t) dt =0,

o0

L d,

k=1

< +oo,
LTV, X)

By an approximation argument, we can assume first that d, = 0 for k > k,
and second that the ¢,- and ¢,-functions are respectively X-valued and
R-valued trigonometrical polynomials, namely, for k < ki,

¢k(01’ ceey ok) = E e Z ajl "'jkei:ilal ‘e eijkok
lial <Li,1 liel <Lg &
ljl <Ky

where

Ky,L, ;€N forl<j<k,1<k<k,,
afl"’jk eX fOI' |11| SLk,l;-'-ankl S-Lk,]u

Then, with this notation we have to show that there exists a constant C
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(independent of k) such that for all choices of signs (¢;), < 5, We have

ko

Z e, dis1(0y 7 Opiq)
k=1

<C

LyTN, X)

ko
E dk+1(01 0k+1)
k=1

LATN, X)
If f is a trigonometric polynomial on T, defined by

f(e) = Z /\jeijo

ljl <L

we will denote by sp(f), the set of integers j such that A; # 0.
We are going to use Bourgain’s transform [B,]: For ¢ in T, and for a
monotone increasing N-valued sequence (N, ), <, We can define

ko
F() = X &p(0, + N, ..., 0, + N0 (0441 + Niyytb) € Ly(T, X),
k=1

() = (8, + Nytb, ..., 0, + Netb) @(0541 + Nipiq¥p) € Ly(T, X),
k

Sk = Zlv]Lk’] (S N.
j=1
Since b, = 0, with this notation, we get

sP(fi) €[ =Sk = New1Ki, Si = Niy 1 J U [ =Sk + Niwo1, S + Niy 1 K ).

The aim is to prove that we can choose s € R and an increasing sequence
(N )i en Of integers such that the multiplier m(n) = |n|”, n € Z, acts
almost like a given choice of sign ¢, on each f,.

Lemma 1. Let §, > 0,5 > 0, &, = +1 and choose €, = e'?" withp, € N.
Then

ePrT—81)/s < In| < ePrm+8)/s =>||n|i5 - ekl < Bk'
Proof of Lemma 1. 1t is an easy application of the inequalities
|lInl** = &, | = leilosinl — eirim| <| pr — sloglnl |
and

|Pk”7 — s log|n| | <6, ePkm=8/s < || < ePRTFE/5
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LEmMMA 2. There exist s € (0,1], two increasing N-valued sequences
(N ien and (plren and a decreasing non-negative sequence (8;); cn»
converging to 0 such that

€ 1
@ Pt < T T
(2) P = gy i1,
(3 [Nex1 = Sk Ny 1K + 8] © [ePrnm=0ren/s, Pra* O/ 2],
(4) New1 = S 2 N Ky = 8p .

Proof of Lemma 2. First of all, note that (1), (2), (4) can be verified with
N, » +o, p, = +x, §, — 0 sufficiently fast.

The main problem is to deal with (3).

An easy computation shows that (3) is equivalent to

Dypom— 6 T— 0
k+1 K+l _ oo Pr+1 k+1

log(Nyi1 — S) = 7 log(Ngw Ky + S;)

Choose
s
pk+1 = ; IOg Nk+l’ Nk i +w.

Then, up to negligible terms, the inequalities become

Ok 11 slog Nyyq + 844y
- <
ST 10g Neax =°° Tog(N,. Ky
_ slog K, 8411

- log(Nis1Ky) — 1og(Niy1Ky) *
This condition can be realised if and only if

slog K, < 6.4,

that is,
Besi
§= log K,
So, if we choose s less than
)
inf k+1 ,
K<k, { log K},

then if (NV,) tends to + sufficiently fast, (1)-(4) hold.
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Back to the proof of the theorem. Let ¢ > 0 and (g;), < 5 e any sequence
of signs.

Let us suppose that s, (N )iens (Pedeen and (8;),<n are given by
Lemma 2. Then, assuming (1)—(4), we are going to describe the action of the
multiplier m(n) = |n|”, n € Z, on F(¢):

With (1)-(4) it is clear that for k < k,

sp( fk) c [_e(Pk+1‘"'+5k+1)/5, _e(Pk+1"f"5k+1)/-']

U [e(Pk+1‘""'3k+l)/S, e(Pk+11""8k+1)/S].
Then, we can write
kO

mF(¢) — Z ecfi(¥)

k=1

ko

< Y Sllfill,m x <e.
LT, X) k=1

And then, by hypothesis,

ko

Y & fiul(W)

k=1

< myFllp,mx) + ¢
LT, X)

< AllFllL,m, x) + €.

We can integrate this last inequality in 6,,-, 8,,... . Using the invariance of
the measure on T by the transform 6; — 6; + Ny, it is easy to see that we
obtain

ko k0
Y e drex <Al Y orox +e
k=1 L(TN, X) k=1 LyTN, X)
or equivalently,
ko ko
2 exdirt <A| Y diyy +e.
k=1 LTV, X) k=1 LATN, X)

Letting ¢ — 0 proves the theorem with C = A4.

Remark. This theorem is also true for some other operators on L,(R, X)
of type T ® Idy, where T is a convolution operator on L,(R) with “nice”
associated multiplier.

The origin of my interest in complex powers of operators is the paper of G.
Dore and A. Venni [DV]. See also [G] for an extension of their result.
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I am very grateful to B. Maurey who showed me the starting point of this
proof for analytic martingales. I must thank also Y. Raynaud who helped me
to understand this subject and with whom I had a lot of very fruitful
conversations.

I want to mention that T. Coulhon gave me a lot of motivation to work on
this question by his great knowledge of the subject.
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