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RELATIVE CHOW GROUPS

BY

STEVEN E. LANDSBURG

We shall propose a definition for the relative Chow groups of a scheme
with respect to a closed subscheme and establish some basic properties. The
definition generalizes to provide a definition of relative higher Chow groups
as well.

In Section 1 we recall for reference the most important relationships
between the classical (absolute) Chow groups and algebraic K-theory. In
Section 2 we describe analogous relationships for the higher Chow groups
introduced by Bloch in [B]. (These are canonically isomorphic to the higher
"PreChow groups" of [L].) The results here are of independent interest. In
Section 3 we introduce relative analogues of many important constructions.
In Section 4 we define the relative Chow groups and relative higher Chow
groups. We establish their basic properties and their relationship to K-the-
ory, emphasizing the analogies between this material and that of Sections 1
and 2.

I. Absolute Chow groups and algebraic K-theory

We begin by recalling, for later reference, some of the main properties of
the usual (absolute) Chow groups, particularly those that relate the Chow
groups to algebraic K-theory.

1.1. Let X be a regular scheme essentially of finite type over a field k.
(Regularity can be relaxed in much of what follows.) We have the following
invariants:
zm(x), the group of codimension-p algebraic cycles on X. That is, zm(x)

is free abelian on those reduced and irreducible closed subschemes of X that
have codimension m.
Chin(X) zm(X)/Rm(X), the ruth Chow group of X. Here R’(X)c

zm(x) is the subgroup consisting of cycles rationally equivalent to zero.
Km(X) the ruth Quillen K-group of X.
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RELATIVE CHOW GROUPS 619

JUm, the sheafification of the presheaf U KIn(U) on X.
E’q(X), the E’’q term in the Gersten-Quillen spectral sequence converg-

ing to K_p_(X).
gr’Ko(X), the rnth graded piece of the Grothendieck group Ko(X), under

the filtration induced by codimension of support (using the natural isomor-
phism between Ko(X) and K0 of the category of coherent sheaves on X).

1.2. The objects above are related as follows:

grmgo( X) (1 Chm( X) )nm(X, Jm) 3) ET’ -m( X)

and the arrow (1) is an isomorphism up to torsion.

2. Higher analogues

We continue to assume that X is regular and essentially of finite type over
a field.

2.1. Spencer Bloch has defined higher Chow groups Ch’(X, n) in [B].
The author has given an alternative definition in [L], where the groups are
called PreChm(X, n). By Proposition 3.5 of [L], the two constructions are
canonically isomorphic. (For a detailed proof, see Corollary 1.9 of [L2].) We
recall Bloch’s definition. Let X’ be the cosimplicial scheme that is defined by

X(n) X Xk Spec(k[to,...,tn]/(ti- 1)),
with the obvious cofaces and codegeneracies. Let zm(x, n) be the subgroup
of zm(xn) consisting of those cycles that meet properly (i.e. in the correct
codimension) with the images of all of the cofaces and compositions of
cofaces. Make zm(x, ) into a simplicial group by defining the faces and
degeneracies by pullback along the cofaces and codegeneracies of X’. Then
Chm(X, n) "tln(Zm(X, )).

2.2. We view Chm(X,n) as a higher analogue of Chin(X) (note that
Chm(X, O) Chm(X)) and list the higher analogues of the relations in 1.2
above. First, Bloch has shown in [B] that Chm(S,n) is isomorphic to

grmKn(X) up to torsion, where grmK(X) is the rnth graded piece associated
to the gamma filtration on higher K theory. In [L] it is shown that this map

1This statement relies on Theorem 3.1 of [B], although the proof given in [B] is inadequate.
The gap appears to be filled by the widely circulated preprint [B2]. Bloch has indicated in private
correspondence that because he finds [B2] extraordinarily complicated and difficult to under-
stand, he has no plans to publish it at the present time.

Similar comments apply to the proof of Theorem 2.5 of the present paper, and the associated
lemmas, which make use of results in [B] that depend on the crucial Theorem 3.1.
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arises from an integrally defined map

Chm(S,n) FmKn(X)/Fm+IKn(X),

where Chm(x, n) is a certain subgroup of Chin(X, n) and F’ is an appropri-
ate filtration. This map is the higher analogue of the map (1) in 1.2.

In [L] it is conjectured that there is a spectral sequence with E’’q=

Ch-q(x, -p q), converging to the filtration F on K__p_q(X). This should
be the higher analogue of the composition of isomorphisms (2) and (3) in 1.2.

Alternatively, the Gersten-Quillen spectral sequence has E’’q=

HP(X, ,W’_q), which can be viewed as a higher analogue of the isomorphism
(3) in 1.2.
The higher analogue of (2) should be a map Chm(X,m-19)

HP(X, ,Win). In the next subsection, we construct such a map.

2.3. We define a map m,p: Chin(X, m -p) HP(X, JUra). Recall that
Chm(X, m -p) is the homology of the complex

zm(g,m -p + 1) zm(X,m -p)
ZP(X,m-p- 1)

and that HP(X, ,f’m) can be computed as the homology of the Gersten
complex

H
xXP-

XXp

Km-p+l(k(x))-’-> LI rm-p(k(x))
xxp

gm_p_l(k(x))

(Here Xp represents the set of points in X whose closures have codimension
p). Thus it will suffice to construct maps

z’n(X,m p) .. I_I Km-p(k(x))
xXt’

that are compatible with the differentials in these complexes.
To construct am, we construct a map

zm(X,m-p) Mrm-p(k(x))
xXp

where Kt is Milnor’s K-theory; am, p will then be the composition of aMm,p
with the natural map from Milnor’s K-theory to Quillen’s.
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We construct aM as follows: If [2] is a generator of zm(S,m -p), andm,p

if x is the generic point of 2, then am,p([ ])y 0 unless y II, (x). If y is
the generic point of II, (x), then set

oMp([’])Ym, Nk(x)/k(y){tl/tO, t2/t0, tin-p/to}

where the t are the coordinate functions as in the definition of the cosimpli-
cial set X’, the curly brackets denote a Steinberg symbol, and N is the norm
map partially constructed by Bass and Tate in [BT] and confirmed to exist by
Kato in [K].
We claim that am, is compatible with the differentials in the sense that

the following diagram commutes:

zm(X,m-p+l) zm(X,m-p) zm(X,m-p-1)

H Km-p+(k(x))"--- H Km-p(k(x))--’-’ H Km-p-1(k(x))--’--
x.Xp-1 x.X xXp+l

Taking homology gives the desired map m,p.
In verifying the claim of commutativity, it will be convenient to write

n m -p. Let z be any element of Xp+ 1. Then it suffices to demonstrate
the commutativity of the square

zm(x, n) d zm(x, n 1)

I_I KMk(x) KM- lk(z)
X_.Xp

(2.4.1)

Let [2] be a generator of zm(x, n) (that is, x is the generic point of a
variety of codimension m in X<)). Let F be the locus of ti 0 in X<). Let
{zij} be the generic points of those components of $ n F which project to z.
Note that d([]) -,i,j dij([]), where

dij([ ]) ( -1)ilziy( Yc, Fi) ij]

and I denotes an intersection number.
(It is possible that the classes [] do not remain distinct after they are

identified with classes in zm(X,n- 1), but we continue to maintain a
separate summand for each of the original zo..)

Let 0: Kk(x) K,,_k(z) be the Milnor K-theory differential.
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We will prove the following two lemmas:

LEMMA A. O(er([])) Ei,Nkzo/kz(Oi{tl/tO,..., tn/to})

LEMMA B. Nk(zo)/k(z)(Oiy{tl/tO, t./to}) Otz(diy([.]).

From these will follow immediately:

THEOREM. The square (2.4.1) commutes; therefore m,v is well-defined.

Proof of the theorem. (a d)([$]) (a o(Edii))([]). Apply Lemma B and
then Lemma A to see that this is equal to 0(a([])). Q.E.D.

Proof of Lemma A. It follows from a proposition of Suslin [Su, 4.3] that
{tl/to,..., tn/to} maps to the same image under either composition in the
diagram

Kk(x) N Kk(II(x))

(According to Suslin, the diagram becomes commutative if the lower left
corner is replaced with a sum over all points that project to z. But the
components of O{tl/to,..., G/to} are trivial for all of these points except the
Zij.)
Now

O(N({ 1/to, tn/tO} ))

is easily seen to be

and

N(O({ t/to, tn/tO} ))

is easily seen to be

E Nk(zij)/k(z)(Oij{ l/tO,’", tn/tO} )"
l,J

Q.E.D.



RELATIVE CHOW GROUPS 623

Proof of Lemma B. From the definitions,

Otz(dij([ ]) ) (- 1)i,Iz,( , Fi)Nk(zij)/k(z){tl/to, ti)to, tn/tO}
J

when 4= 0; and

Ctz(doj([ . ]) ) EIzoj( , Fo) gk(zoy)/k(z){ t2/tl, t3/tl, tn/tl}
J

It therefore suffices to demonstrate that

Oiy{tl/to, tn/to} (-- 1)iEI(’, Fi){tl/to,. ti)to,. tn/to}

for # 0 and that

Ooy{ tl/to, tn/tO} Elzo(, Fo){ t2/tl, t3/tl, tn/tl}
J

Both of these follow from repeated used of the formulas in [BT, 4.5],
together with the multilinearity of the Steinberg symbols. Q.E.D.

2.4. Remark. In Section 10 of [B], Bloch introduces the filtration

Fnzm(x, .)
Z - zm(s, .)lthe projection of z on X has codimension > n}.

Clearly the map m,p induces zero on Fp+Izm(x, m -p).

2.5. THEOREM. alitm, p is an isomorphism for p m or m 1.

Proof. For p 0, m,p is precisely the isomorphism from Chin(X, O)
Chm(X) to Hm(X, m) constructed by Quillen in [Q, 5.19].
For p 1, we need a sequence of lemmas. Lemma E in 2.8 will complete

the proof.

2.6. LEMMA C. Let X Spec(k). Then m,o" Chin(X, m) Km(k) is an
isomorphism for m 0 or 1 and a surjection for m 2.

Proof For m 0, 0,0 is the identity map on Z. For m 1, the unit a
(# -1) Kl(k) is the image of the cycle given by the rational point

X X Spec(k[to, tl]/(to + + 1)).1-a’l-a
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This demonstrates that a,0 is surjective. For m---2, the symbol {a,b}
(a + b 4: -1) is the image of the cycle defined by the rational point

1 a b ) X21 +a +b’ 1 +a +b’ 1 +a +b

If a + b -1, then a ab 4:1 (since b is a unit), and it is either the case
that a 1/a 4:0 or that a + 1/a 4 O. Write either

{a,b} {a,-l/a} {a,-ab}

or

{a, b} {a, -1} {a,1/a} {a, -ab}

so that each factor in the product can be lifted. This shows that 2,0 is also
surjective.

It remains to demonstrate injectivity of 1,0. First we show that Chl(X, 1)
is generated by the classes of rational points. Because

R =k[to, ta]/(to+t1- 1)

is a principal ideal domain, ZI(x, 1) is generated by the classes of modules
of the form R/f(to), where fo is an irreducible monic polynomial. Given
such an f, write f(T) Tg(T) a for some a k. By definition of ZI(x, 1),
we have a 4:0 and g(1) a. Now define a function h on the boundary of
X2 as follows:

On the set {t2
On the set {tl
On the set {to

0}, h(to, t1) g(1) a.
0}, h(to, 2) tog(to) a f(to).
0}, h(t 1, 2) tlg(1) a.

These descriptions are compatible at the three vertices and so h is really
well-defined. Lift h arbitrarily to a function/ on X2. The cycle defined by f
in Z(X, 2) has as its boundary the cycle defined by the rational point
(1 a/g(1), a/g(1)) minus the cycle defined by f. It follows that Cha(X, 1)
is generated by the classes of rational points.
Now let a and b be arbitrary units. Consider the cycle defined by the line

a 2 + b t a b to in ZI(x, 2). The boundary of this cycle is

a +b’a +b 1 +b’ 1 +b + 1 +a’ 1 +---
giving a relation in Chl(X, 1) that lifts the relation (ba-1).a b in k*.
Since all of the relations among elements of k* are generated by relations of
this form, it follows that the map 1,0 is injective.
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2.7. LEMMA D.
in [B]. Then

Let "’dlem(q) be the sheafified higher Chow group defined

0
nq- ( x, -(ffam( q ) ) Hq_

ifqqm

l(x, ,q) /fq m.

Proof By theorem 10.1 of[B], we can compute Hq-l(x, "am(q)) as the
homology of the complex

I_[ Chm-q+2(k(x), 2) I_I Chm-q+l(k(x), 1)
Xq X

I_I Chin-q( k(x), 0).
x

The term in the middle is zero by definition when rn < q- 1 and easily
seen to be zero when rn =q 1. It is zero for reasons of dimension when
rn > q. In case rn q, we apply Lemma C to see that xlt induces a map of
complexes

LI Ch2(k(x), 2) I_I Chl(k(x), 1) LI Ch(k(x), 0).
Xn* -2 Xn* X

LI Kz(k(x)) I_I Kx(k(x)) ---* LI Ko(k(x)).
In*-2 Xm-1

where the bottom complex is the Gersten-Quillen complex that computes
Hm-I(x, de{m). It is immediate that the induced map on cohomology is an
isomorphism.

2.8. LEMMA E.
for every m.

Xltm, m_l: Chm(X, 1) Hm-l(x,’m) is an isomorphism

Proof From Section 10 of [B], there is a spectral sequence

E’-q Hr(X,-6m(q)) =* Chm(X,q r).

The spectral sequence arises from the filtration of 2.4 above. We invoke
Theorem 10.1 of [B] to see that E" -q can be computed as the homology of a
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complex

H Chm-p*l( k( x), q p -[- 1) I_[ Chm-p(k(x), q p)
Xp Xp

H Chm-p-l(k(x), q p 1).
XP+I

which shows that the spectral sequence is concentrated in degrees (p,-q)
such that p > m > q. (In all other cases the middle term of the complex is
zero). By Lemma D, the only E2-term along the diagonal q r 1 is

ET-1, -m nm-l(x,-,m(m)) nm-l(x,,m),

and by the observation of the preceding sentence, there are no non-zero
differentials mapping into or out of this term. Therefore the map to the
abutment gives an isomorphism : nm-l(x, ,.]em) Chm(X, 1).
We claim that this isomorphism is in fact inverse to m,m-l" For this,

let F’zm(x, ) be the filtration described in 2.4. It is shown in [B]
that Fm-Izm(x, )/Fm(X, ) is quasi-isomorphic to the complex
11 xm-IZI(X, ) giving an exact sequence

HI(Fm-Izm(x,’))--) LI Chl(Spk(x), 1)

n(fmzm(x, ")) zm(x,o).

From this and the construction of the spectral sequence, we see that can
be described as follows: given an element of t-/m-l(S, ,K’m), represent it by a
sum _, (xi, fi) I__[ Chl(Sp k(x), 1) I_I k(x)*.

X S

(The x are points of codimension m 1 and the fi are rational functions in
their residue fields); then map this to the class of (E graph(f)) in Chm(X, 1).
It is thus manifest that q is a right inverse to m,m-1; since q is an
isomorphism it is a left inverse as well.

2.9. The maps m,p relate higher Chow groups to higher K-theory. The
cycle map in [L] also relates higher Chow groups to higher K-theory. We can
ask in what sense these maps are compatible. For example, consider the case
X Spec(k), where k is a field. Then both the map m,0 and the cycle map
in [L] take Chm(X, m) to Km(k). Here we will show that the two maps agree
up to a sign in the case m 2. The case m 1 is an easy exercise.
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THEOREM. When X Spec(k) with k a field, tt2, 0. Ch2(X, 2) K2(k) is
the same as the cycle map constructed in L].

Proof We recall the cycle map q2,0 from [L]. Identify

X2 Spec(k[z, x, y]/(x + y + z 1))

with X A2, where x and y are identified with the coordinates on A2. Let C
consist of two copies of X A2 pasted together along the set

S= {xy(1-x-y) =0}.

Then a generator for Ch2(X, 2) can be represented by a prime cycle [V] of
dimension zero on X A2 that does not meet S. Identifying X A2 with
the first copy of X A2 in C, we view the structure sheaf of V as a module
on C. That module necessarily has finite projective dimension, and so
determines a class in Ko(C) KE(k) Ko(k). Projecting onto KE(k) gives
the image of V ].
Arguing as in the proof of Lemma C in 2.6, we conclude that ChE(X, 2) is

generated by the classes of rational points. Let (a, b) be such a point. Then
2,0(a, b) {a/(1 a b), b/(1 a b)}, where the curly brackets stand

for the Steinberg symbol. Next we compute 2,0(a, b).
Let g be the function on C which is identically 0 on the first copy of

X A2 and equal to xyz on the second copy. Then the module associated to
(a, b) is M F(C)/(x a, y b, g). We can resolve M as follows:

0 --) N --) F(C)3 (x-a,y-b,g)) F(C) --) M --) O.

where N is defined to be the kernel. The image of M in K2(k) is the same as
the image of the rank two projective module N in KE(k). Let N and N2 be
the restrictions of N to the two copies of X A2 in C. Then N is generated
by the two column vectors

-(x-a) 0
0 1

and N2 is generated by the two column vectors

( y b)(ab yz)
( x a) ( ab yz ) xyz

y-b

( y b)(ab az) + xyz

-(x a)(ab az)
-(x-a)

(To verify this, note that both vectors are in N2, and that when combined
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with the column vector

( ab yz)
( ab az)

1

they form a matrix whose determinant is a unit.)
On the overlap xyz 0, these two pairs of generators are related by the

patching matrix

ab yz ab az )y -b a -x

That is, N is constructed from free rank two modules on the two compo-
nents of C, patched together by p along the overlap. The groups Ko(C)/Ko(k)
and Kl({xyz- O}/Kl(k) are isomorphic by Karoubi-Villamayor theory, and
the isomorphism takes the class of N to the class of the matrix p.

It remains to pass from Kl({xyz O})/Kl(k) to KE(k k)/gE(k). To do
so, we first perform some elementary transformations (one with rows and one
with columns) to bring p to the more convenient form

P’ ( (ab yz)

( y2 by) z/ab 2)/ab2(, b + a 1)).
where is an unpleasant expression. Without affecting the K class, we can
alter p’ to

p,l/(ab )
-p’211(a + b- 1)

-,o’12(a + b 1) 1
P’22ab J

Then p" restricts to the identity on {yz 0}, and to an elementary matrix

" on the set {x 0}. To find the corresponding class in K2(k)we must lift

" to the Steinberg group, and then reduce to the Steinberg groups of the two
vertices (y 0, z 1) and (y 1, z 0).
The reader with access to a good symbolic manipulation program (or a lot

of time on his hands) may verify that " can be written as the following
product of elementary matrices:

b-y )if’= e21 a + b- 1 el2
(b + a -1)y ) (ab e21 (

ab )b-1)(a+b-1)

-(b- 1) 2

Xe12 ab2

-be21(b_ 1)e12(--)
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Let s be the element of the Steinberg group St(k[x, y]/(x))corresponding
to this presentation. It is easy to check that the map y 0 takes s to the
identity in St(k), so we only need to check the image of s under y --, 1. One
verifies that this image is given by

(0 1)-1(b + a 1
\ ab (b+a- 1)(b- 1)

where the pointy brackets denote the Dennis-Stein symbol. (The easiest way
to veri this calculation is directly from the definition of the pointy brackets
on page 8 of [DS]. Much cancellation occurs.) Now using the formulas in [DS]
to convert to Steinberg symbols, we discover that this is the same as

{ b a
a+b-l’a+b-1

which is XI2, 0(a, b) up to a sign.

Remark. The cycle map q2,0 can be defined "cubically" instead of simpli-
cially, by patching two copies of X A2 together along the set xy(x- 1)
(y 1). In this case, it seems natural to expect that

{ a b_cubical b) (a 1)(b 1)’ (a 1)(b 1)2,0 (a

up to a sign. However, a calculation similar to the one in the proof of the
theorem reveals that in actuality

cubical[ b) { a 1
2,0 .a, a

which does not appear to be the same thing. Similar maps exist for any
configuration of lines that is topologically a one-sphere, so it should be
possible to write down a general formula of which this and the theorem are
special cases.

3. Relative Invariants

Here we introduce the relative analogues of the objects and theorems in
Sections 1 and 2. Throughout, X is a regular scheme essentially of finite type
over a field and Y is a regular closed subscheme. As in earlier sections,
regularity can be relaxed in much of what follows.
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3.1. We begin with the relative analogue of the group zm(s). Define
Z(X) to be free abelian on those closed subvarieties of X that have
codimension rn and meet Y properly. An obvious candidate for a relative
cycle group is the kernel of the restriction map

Z(X) zm(Y).

In Section 4 we will discover that this definition is not quite right and will
have to modify it. Nevertheless, it will be convenient to have a name for this
"naive" relative cycle group for the time being. Thus we define

Zni(X, Y) ker(r).

3.2. We turn now to the relative analogue of the Gersten-Quillen spectral
sequence. Let ./m(y) be the category of those coherent Y-modules that
have codimension of support > rn. Let .,m(y) be the category of all
complexes C. of coherent Y-modules that satisfy these three conditions:

(a) C. is bounded below.
(b) There is a surjective quasi-isomorphism Q. C. where Q. is a complex

of locally free coherent modules that is bounded in both directions.
(c) C. has all of its homology objects in .,,m(y).

Let m(s) be the category of those coherent X-modules that have
codimension of support > rn, and restrict to modules in .,m(y). (Thus
’m(x) depends on Y, but we suppress this dependence in the notation.)
Define m(x) to be the category of those complexes of X-modules that
satisfy conditions (a) through (c) above, with ,m(y) replaced by .m(x) in
condition (c).

In m(x) or .m(y) we define a cofibration to be a degree-wise split
monomorphism and a weak equivalence to be a quasi-isomorphism of com-
plexes. Then ’m(x) and ,,m(y) are categories with cofibrations and weak
equivalences in the sense of Waldhausen [W]. By the methods of [W], we
construct spectra K(’’m(x)) and K(cm(Y))whose homotopy groups are
defined to be the K-groups of m(x) and .m(y).

Let im: .,m+l(y) ffm(y) be the inclusion, let F(im) be the homotopy
fiber of in, and let g(’’m/m+l(Y)) l"l-l(F(im)). Define g(’m/m+l(x))
similarly. (Note that we jump directly to the construction of the K-theory; we
do not construct a category m/m+l(s).) Thus there are homotopy fibra-
tions

K(-cm+ l( x) ) K(-m(x) ) K(-o’m/m+ l( x) )

K(-’m+l(Y)) K(-om(Y)) K(-m/m+l(Y)).
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We construct a map of fibration sequences as follows: From Waldhausen’s
Approximation Theorem (see [W]; also [T, 1.9.1]), K(’d’m(s)) is homotopy
equivalent to K(,.’(X)), where ,.m(x) c "d’m(x) is the subcategory con-
sisting of bounded complexes of locally free sheaves. Similarly for ,.m(y).
Thus the exact functor ,9m(x) ..m(y) given by restriction induces a map
K(’’m(x)) K(-fffm(Y)). The same construction gives a compatible
map K(’m+I(x)) "-> K(’o’m+I(Y)) and hence a map K(’gm/m+l(s)) "->

K(’6m/m/l(Y)). These fit together to give the bottom two rows of the
following diagram:

Fm + .> Fm Fm/m +

K(-o’m+ l(x)) K(-d’m(x)) _....._, K(.m/m+ l(x))

I I I
K(.,m+ (y)) K(.6m(y)) K(.g,m/m+ l(y))

The top row is constructed by taking fibers of the vertical maps. The top
sequence is a fibration by the Quetzlcoatl Lemma.
For each m we get a diagram as above and a corresponding long exact

homotopy sequence

7rn+l(Fm/m+l) ,rrn(Fm+l) .-..> 7rn(Fm) ---.> 7rn(Fm/re+l)-- ,rrn_ ( Fre+l) ...,
and these sequences fit together to form an exact couple. From this we
deduce a spectral sequence

E’ 7r_,_(F/’+ 1) = K__(X, Y).

Perhaps a word more should be said on the definition and determination
of the abutment. Let K(X) K((X)) and K(Y) K((()). Then the
homotopy groups of K(X) and K() are the Quillen K-groups of X and Y
by [W, 1.9]. (See also [T, 1.12.].) Thus there is a homotopy fibration

FK(x) K(Y)

and we define the relative groups K, (X, Y ) to be zr, (F). The abutment of
the spectral sequence is 7r_p_q(F) K_,_q(X, Y).

3.3. We want analogues of the maps in 1.2. Here we focus on the
composition of the isomorphisms (2) and (3) from that subsection. That is, we
would like to interpret the elements of E’-m as cycle classes. Since E"-m
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is a subquotient of E"-m, we would like to interpret the elements of E"-m
as cycles, for example by showing that E’’-m= Znive(X,Y), where the
latter group is as defined in 3.1.
From the diagram of fibrations in 3.2, we have an exact sequence

Kl(-m/m+l(x)) --> gl(’m/m+l(y)) ---> Eta, -m ._ go(-gff’m/m+l(g))

Ko(-om/m+l(Y))

To understand E"-m, we can attempt to understand the other groups in
the exact sequence.
Note that Ki(’g’m/m+ l(y)) Ki(.,l,m(y)/.g,m+ l(y)) where the group on

the right is the ith Quillen K-group of the quotient category. (To see this,
note that Walhausen’s Approximation Theorem ([W, 1.9] or [T, 1, 12.1]) gives
a homotopy equivalence of K-theory spaces K(d’m(Y)) K(.,’m(Y)), and
that the fiber of K(.,’m+I(Y)) K(.’m(Y)) can be identified with the
loop space of K(/m(Y)/g’m+I(Y)) by Quillen’s Localization Theorem
from [O].)
Thus

Ko(-g’m/m+ l(r) ) zm(Y) and KI(-m/m+ l(y))
ym-1

As for the groups Ki(-$’m/m+ I(X)), we also have

Ki(-’m/m+l(x)) Ki(.,’m(x))fKi(.,’m+l(x)),

but the latter group is more difficult to interpret. Suppose for the moment
that we could establish the following two statements:

(*) Ko(m/m+ l(s)) Z(S) (as defined in 3.1);
(, , ) Kl(.m/m+ l(g)) Kl(.m/m+ l(y)) is onto.

Given ( ) and ( ), the exact sequence allows us to conclude that E’-m
znmive(X, Y) (as defined in 3.1).

In the next subsection, we will establish some cases in which conditions
and (. ) hold.

3.4. THEOREM. Suppose that either the codimension of Y in X is 1 or the
dimension of Y is O. Then conditions ( ) and ( ) of 3.3 hold. Thus in either
of these two cases, E"-m is isomorphic to zmi(X, Y).

(In the case of codimension 1, compare this result to Lemma 1.2 of [Lev],
where the categories are defined slightly differently but the analogous result
holds.)
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Proof. We make use of our earlier observation that

K, (-w’m/m+ l( x) ) K, (.,’m( x)/.,’m+ I( x) )

where the latter is the Quillen K-group of the quotient category. Let
’fu’ql(X) be the category of all coherent X-modules with codimension of
support >_ m. Write ’(R) for the category of all finitely generated modules
of finite length over the ring R. We have

’"fumll(X)/"’m(x) l’fl(X’ y)

,,m( x,y)

ifm O,
if m > 0 and codx(Y) 1,

if m > 0 and dim(Y) O,

by applying [S, Thm. 5.11]. (We have written ,m(x,y) for ,’m(Spec(x,y)).
First assume m > 0 and codx(Y) 1. Then we have a diagram:

nK(’d"n/’n+ i(X)) lK(’duml(’n+ (X)) LI [IK(.’fl(@x,y)) o I_I K(’’fl(@x,y))
ym- ym

K(.’m+ l(x))

1
K(’duml I(x)) LI K(.dfl(gYx, v))

ym

K(’’fl(X)) LI K(.d’fl(’x, y))
ym-1

(The categories appearing in the top row are the obvious quotients).
The bottom two rows and first two columns are fibrations by Quillen’s

localization theorem. The rightmost column is a fibration in which the second
map induces zero on all homotopy groups. It follows that the top row is a
fibration, yielding a long exact homotopy sequence

Kl(e’m/m+l(x)) "-+ H k(x)* H k(y)* LI Z
x ym-1 ym

-’+ Ko("’m/m+l(x)) "+ H Z "+ H Z
X ym-1

from which we get

Kl(.l’m/m+ l( x)) + LI
(X-Y)

-+ I_I z--,0.
(X-Y)

k(x)* H Z "+ Ko(.’m/m+l(x))
ym
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The map f is onto by an application of Chow’s moving lemma. Indeed, the
generators of LI ymZ are closed subvarieties, each of which can be moved to
a cycle that meets Y properly. The functions that do the moving constitute an
inverse image for the cycle under f. This demonstrates (,). For (, ,), let
y ym. A typical generator of Kl(’6’m/m+ l(y)) is a unit u k(y)*. Choose
any codimension rn subvariety V X that meets Y in y u W td tA W
for some codimension rn subvarieties Wy of Y. Let R be the coordinate ring
of V semilocalized at y and the generic points of the Wi. Then u lifts to a
unit in R, which can be viewed as an element of ker(k(V)* LI ymZ). By
the Chinese Remainder Theorem, the lifting can be chosen to restrict to 1 on
each W/. Then by the exact sequence, u lifts to gl(-O’m/m+ l(y)), establishing
(**).
Next assume m > 0 and dim(Y) 0. Then we have a diagram:

K(.,’m* l(x)) K(’fu"]+ l(g)) K(.,’m+ l(x,y))

K(,.,m(x)) g(’fun]l(g)) K(.,"m(Yx, y))

g(.c’m/m+ l(g)) g(.cg"fuml?m+ l(x)) g(.,"m/m+ l(’x, y))

The bottom row is then a fibration, giving the exact sequence

Kl(,,,,m/m+l(x)) H k(x)* H k(x)* Ko(,’m/m+l(X))
X xX

y

LIz
X xX

yX

from which we get

Kl(,cm/m+ l( x) ) ---) H k(x)* 0 Ko(.m/m+l(x))
xX
y

xX
y$

The rightmost four terms establish (,). Note that (, ) is vacuous.
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Finally, suppose that rn 0. Then ’(X)= full(X)o In either case
(cod(Y) 1 or dim(Y) 0) we get a square

12K(.,’/I(x)) nK(’l(X)) K(.’l(x,g)

I -I I
K(,/fl(X)) ----, K(./ull(X)) K(.1(@x,g)

K(.,d’O(x)) .--. K(.’fun(X)) .-.--) .
in which the top row is a fibration because everything else is.

If cod(Y) 1, then K(.I(Ox, y) K(k(Y)) and we get

Kl(e/d’/l(x)) ---) Kl(k(X)) ---) Ko(k(Y)) Ko(./l(X)) ---) Z -+ O.

whence Ko(.,/l(x))= Z and Kl(.,’/l(x)) maps onto ,,y, which in
turn maps onto k(Y)* Kl(.d’/l(Y)). This gives (,) and (, ).

If dim(Y) 0, then Ko(.l(Ox y)) k(X)/.* and we getX, Y

Kl(.,d’/l(x)) --) Kl(k(X)) -") k(X)*/,y-+ Ko(.,/d’/I(x)) -+ Z 0

k(X)*

SO that Ko(.,/d’/l(x)) Z and Kl(.,/d’/l(x)) maps onto * (and conse-X, Y
quently onto k(Y)*) as needed.

3.5. Remark. Theorem 3.4 is substantially generalized by Theorem 1 of
[L3], which was written after this paper was submitted.

3.6. Next we introduce the relative analogue of the sheaf tJr//m Write
dg’m(X) for the K-theory sheaf on X (that is, OWn(X) is the sheaf that was
called ’ff’m in 1.1.) Write ded’m(Y) for the analogous sheaf on Y. Let i: Y X
be the inclusion. Let Km be the (cohomological) complex of sheaves on X:

Km m(X) --+ i,gm(Y)

with dm(X) in the degree zero and i, drd’m(Y) in degree 1.
a relative analogue of drdm

Km will, serve as

3.7. We shall construct a map E" -q HP(X, Kq) that generalizes the
classical isomorphism E’-q(x) , H’(X, S,Wq) where E,-q(x) is the E2-
term in the Gersten-Quillen spectral sequence. In particular, when m --p
q, this gives the relative analogue of the isomorphism (3) in subsection 1.1.
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as
Write the Gersten-Quillen resolutions of the sheaves ’m(X) and ’m(Y)

Also, take injective resolutions

There are maps of resolutions OZ’mj’ m’ for j 0, 1. Also, the map
Jg’m(S) i, .’m(Y) induces a map of resolutions m’ OCm1’ *.

In the notation of subsection 3.2, write

E,q(X,Y) ,rr_t,_q(F’/’+l )

(which has been denoted simply E’q until now),

,’q(X) K_p_q(C’P/P+I(x)) and g"q(Y) K_p_q(C’P/’+l(Y)).

Also write Ef’q(x) r(w_bp) and E’q(Y) r(cc’}kp) for the E terms in
the Gersten-Quillen spectral sequences for X and Y. There are obvious maps
of complexes

E?’q(X, Y) /l*,q(x) /*,q(Y)

E?,(X) E},(Y)

1 l
) ----, )

and the composition in the first row is zero. Thus there is an induced map
from E;’q(x, Y) to the shifted mapping cone of [/l*’q(X) /l*’q(Y)] and
from there to the shifted mapping cone of [F(’_, *) F(o_0, )]. Since the
latter computes the hypercohomology I-I’(X, K_q), there is an induced map
E,q(x, Y) I-IP(X, K_q), as promised.

3.8. We shall construct a map Znmaive(X,Y) Hm(X, Km) that is the
analogue of the isomorphism (2) in 1.2. Suppose that we are given a cycle
z Zn"ive(X, Y), and write for the support of z. Let rm m(X) and



RELATIVE CHOW GROUPS 637

rml i. JUra(Y), and consider the spectral sequence of hypercohomology

E’’q H( X, ,.t,) = I.i+q(X, Kin)

From the Gersten-Quillen resolution, it is easy to check that

0 when q < m
E’,q free abelian on the components of z when q m and p 0

free abelian on the components of z Y when q rn and p 1.

From this we easily compute that

H(X, Km)= ker( LI z LI z)components components
of z of zNY

and in particular that there is a canonical class representing z itself in

I-I’(X, Kin). Now the natural map I-I’(X, Km) - Hm(S, Km) carries this
class to the image of z in I’In(X, K,,,).

3.9. To summarize: Writing Ep’q for the terms in the spectral sequence
of 3.3, we have constructed maps

exists(3.5) mE?.-m Znaive(X y)
sometimes iso (3.4)

frm cnstructin f 1 1spectral sequence (3.3) (3.8)

-m Hm(x, Km)En’ (3.7)

Moreover, it is an easy exercise to verify that the square commutes. The
arrows in the square generalize the maps (2) and (3) in subsection 1.2, and
the map to the abutment in the spectral sequence is a generalization of map
(1). Also, the bottom arrow is defined more generally in the case where the
two indices differ.
The square suggests that one could hope to define Chm(X,Y)=

Hn(X, Km) and to prove that this is a quotient of Znmaive(X, Y). However, this
is not the course that we will take. In the next section, we will give a more
concrete definition for the relative Chow group Chin(X, Y) as a quotient of a
relative cycle group zm(x, Y). zm(x, Y) contains Znmaive(X, Y) as a sub-
group. Then we will show that the right-hand map in the square above
extends to an isomorphism Chm(X, Y) I’Im(X, Km).
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4. Relative Chow groups

In this section we will define the relative Chow groups and the higher
relative Chow groups. The assumptions of Section 3 remain in force.

4.1 DEFINITION. Let Zm(X, ) denote the Bloch complex of 2.1. Let
Z(X, ) c zm(x, ) be the subcomplex consisting of cycles that meet all of
the faces of Y Am properly, where Am c Am+l is the set {Y’.t 1}. Then by
[B, 2.3], the inclusion Z(X,. ) c zm(x, ) is a quasi-isomorphism. There is
a restriction map r" Z(X,. ) - zm(Y, ), and we define

zm(x,Y, .) (Cone(r))[-1].

Then we set Chm(S, Y, n) "rl’n(Zm(X, Y, )). Chm(X, Y, 0) will be abbrevi-
ated as just Chm(X, Y). We call Chm(X, Y) the mth relative Chow group of
the pair (X, Y), and the groups Chm(X, Y, n) (n > 0) are called the higher
relative Chow groups.

4.2. By construction, there is a long exact sequence

--’> Chin(X, Y, m) --. Chm(X, m) Chm(y, m)
--> Chm(S,Y,m 1)

4.3. As in 3.7, let ,,,0, and Wm1’ be the Gersten resolutions of m(S)
and i. JUra(Y). Let m’ and m’* be injective resolutions. The map
JUm(X) i. JUm(Y) induces a map of complexes m’* --* ’ *. From 2.3,
we have maps of complexes zm(x, * ) F(am’* ) and Z"(Y, ) F(m’* ).
These induce a commutative square

Z(X," ) ----> zm(Y, )

, *) r( 2, *)

and hence a map between the mapping cones of the two horizontal arrows.
Taking cohomology of these mapping cones, we get a map

m,l: Chin(X, Y,m -P) -’-> HP(X, Krn)

When Y is the empty set, this reduces to the same map m,p constructed in
2.3 above.
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4.4. In general, we do not expect m,p to be an isomorphism for the
higher relative Chow groups. However, for the lower Chow groups, it is an
isomorphism:

THEOREM (Bloch’s Formula).
morphism

g/ktrn, m: Chin(X, Y) Hm(X, Km) is an iso-

Proof From the construction of 4.3 we have a commutative diagram

Chm(X, 1) Chin(Y, 1) Chm(X, Y) Chin(X) Chin(Y)

Hm-l(X,off’,) Hm-(y, dff’l) ltm(X, Km) nm(x,,’m) Hm(y,d’m)

in which all vertical arrows except the middle one are isomorphisms by 2.4.
The five lemma completes the proof.

4.4. We want to give a geometric interpretation of the elements of
Chm(X, Y). By construction, Chm(S, Y) is the homology of the complex

zm(Y, 2) * Z’( X, 1) zm(y, 1)Z(X) (d,r zm(Y)
0 d

where the differential d comes from the complex zm(-, ) and r is
restriction. Set zm(x, Y) kernel(Zm(Y, 1) Z(X) zm(Y)), so that
Chm(X, Y) is a quotient of zm(x,Y). Thus we can think of each class in
Chm(S, Y) as being represented by a pair consisting of a cycle z on X and a
choice of trivialization for Zly in Chin(Y).

Let znmive(X,Y) be as in 3.1. Then there is an inclusion Znive(X, Y)
zm(x, Y) given by z (0, z).

4.5. We can easily compute the relative and relative higher Chow groups
in codimension 1.

THEOREM.

Chl(X,Y,m)
Pic(xLix)/Pic(x)Y

/fro O,

ker(F@.. ) F( @, ) if rn 1,
0 ifm>l.

Proof By 4.3, ChX(X, Y, 0) Chl(X, Y) Hl(x, K1)" A straightforward
Cech calculation identifies the latter with Pic(X LI yX)/Pic(X). The remain-
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ing two statements follow from the exact sequence of 4.2, together with
Bloch’s theorem [B, 6.1] that Chl(X,m) is F(@,) for m 1 and 0 for
m>l.

4.6. In the spirit of the map (1) in 1.2, one expects a filtration on higher
relative K-theory such that grmKn(X, Y) . Chin(X, Y, n) up to torsion.
Karoubi-Villamayor calculations show that

Thus 4.5 can be viewed as a first result in this direction. In general, I expect
that patching techniques such as those of [L] can be used to define a cycle
map. For example, consider the case n 0. Then a class in Chm(X, Y, O)
Chm(X,Y) can be represented by the difference of tWO positive cycles
z/- z_ on X, together with a cycle w on Y A such that

w. (Y O) =z+. Y and w. (Y 1) =z_.Y.

One hopes to represent these cycles by modules that can be patched together
to give a class in

(YO) (YI)

Actually, for reasons that will be clear to readers of [L], one only expects that
to work for classes in a certain subgroup of Chin(X, Y, n). I expect to return
to this subject in a forthcomir/g paper.

4.7. Let B cA c X be closed inclusions. One can ask when there is an
excision isomorphism Chm(X,A)--Chm(X B,A- B). A simple coun-
terexample is given by {0} c A c A2, with m---1. In this case a quick
calculation with the exact sequence of 4.2 shows that

but

Chl(A2,A1) 0

Chl(A2 --{O},A -{0})-- Z.

Of course this failure of excision is due to the failure of excision for K0 in the
same example.
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